Prof. Girardi	Math 142	
MARK BOX		
PROBLEM	POINTS	
$1 \mathrm{a}-\mathrm{y}$	25	
$2 \mathrm{a}-\mathrm{o}$	15	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
13	10	
14	10	
15	10	
16	10	
$17 \mathrm{a}-\mathrm{f}$	10	
18	10	
тOTAL	200	

Fall 2006
12.15.06

Final Exam

NAME: \qquad
please check the box of your section

or

\square Section 006 (WF 9:05 am)

Problem Inspiration:
1.-3. Fill in blanks \& True/False
4.-5. Ch. 7
6.-11. Ch. 8
12.-16. § $10.1-10.6$ and 10.8
17.-18. § 10.7, 10.9, 10.10

INSTRUCTIONS:

(1) To receive credit you must:
(a) work in a logical fashion, show all your work, indicate your reasoning; no credit will be given for an answer that just appears;
such explanations help with partial credit
(b) if a line/box is provided, then:

- show you work BELOW the line/box
- put your answer on/in the line/box
(c) if no such line/box is provided, then box your answer
(2) The mark box indicates the problems along with their points. Check that your copy of the exam has all of the problems.
(3) You may not use a calculator, books, personal notes.
(4) During this exam, do not leave your seat. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down, and raise your hand.
(5) This exam covers (from Calculus by Anton, Bivens, Davis $8^{\text {th }}$ ed.):

Sections: 7.1-7.4, 7,6, 7.7, 8.1-8.5, 8.8, 10.1-10.10.

1. Fill in the blanks.

1a. $\int \frac{d u}{u}=\longrightarrow|u|+C$
1b. If a is a constant and $a>0$ but $a \neq 1$, then $\int a^{u} d u=$ \qquad $+C$

1c. $\int \cos u d u=$ \qquad $+C$

1d. $\int \sec ^{2} u d u=$ \qquad -
\qquad $+C$
1e. $\int \sec u \tan u d u=$
1f. $\int \sin u d u=$ \qquad $+C$

1g. $\int \csc ^{2} u d u=$ \qquad $+C$
1h. $\int \csc u \cot u d u=\square+C$
1i. $\int \tan u d u=$ \qquad $+C$

1j. $\int \cot u d u=$ \qquad $+C$

1k. $\int \sec u d u=$ \qquad $+C$
11. $\int \csc u d u=$ \qquad $+C$
1m.If a is a contant and $a>0$ then $\int \frac{1}{\sqrt{a^{2}-u^{2}}} d u=\square+C$
$\mathbf{1 n}$. If a is a contant and $a>0$ then $\int \frac{1}{a^{2}+u^{2}} d u=$ \qquad $+C$
1o. If a is a contant and $a>0$ then $\int \frac{1}{u \sqrt{u^{2}-a^{2}}} d u=\square+C$
1p. Partial Fraction Decomposition. If one wants to integrate $\frac{f(x)}{g(x)}$ where f and g are polyonomials and [degree of $f] \geq[$ degree of g], then one must first do \qquad
1q. Integration by parts formula: $\int u d v=$ \qquad
1r. Trig substitution: (recall that the integrand is the function you are integrating) if the integrand involves $a^{2}-u^{2}$, then one makes the substitution $u=$ \qquad
1s. Trig substitution:
if the integrand involves $a^{2}+u^{2}$, then one makes the substitution $u=$ \qquad
1t. Trig substitution:
if the integrand involves $u^{2}-a^{2}$, then one makes the substitution $u=$ \qquad
$\mathbf{1 u}$. trig formula.. your answer should involve trig functions of θ, and not of $2 \theta: \sin (2 \theta)=$ \qquad .

1v. trig formula ... $\cos (2 \theta)$ should appear in the numerator: $\cos ^{2}(\theta)=$ \qquad
1w.trig formula $\ldots \cos (2 \theta)$ should appear in the numerator: $\sin ^{2}(\theta)=$ \qquad
1 x . trig formula ... since $\cos ^{2} \theta+\sin ^{2} \theta=1$, we know that the corresponding relationship beween tangent (i.e., \tan) and secant (i.e., sec) is \qquad .

1y. $\arctan (-\sqrt{3})=$ \qquad RADIANS, not degrees.
2. Fill-in-the blanks/boxes. All series \sum are understood to be $\sum_{n=1}^{\infty}$.

Hint: I do NOT want to see the words absolute nor conditional on this page!
2a. Sequences Let $-\infty<r<\infty$. (Fill-in-the blanks with exists or does not exist, i.e. DNE)

- If $|r|<1$, then $\lim _{n \rightarrow \infty} r^{n}$ \qquad
- If $|r|>1$, then $\lim _{n \rightarrow \infty} r^{n}$ \qquad
- If $r=1$, then $\lim _{n \rightarrow \infty} r^{n}$ \qquad
- If $r=-1$, then $\lim _{n \rightarrow \infty} r^{n}$ \qquad
2b. Geometric Series where $-\infty<r<\infty$. The series $\sum r^{n}$
- converges if and only if $|r|$ \qquad
- diverges if and only if $|r|$ \qquad
2c. p-series where $0<p<\infty$. The series $\sum \frac{1}{n^{p}}$
- converges if and only if p \qquad
- diverges if and only if p \qquad
2d. Integral Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $f:[1, \infty) \rightarrow \mathbb{R}$ be so that
- $a_{n}=f($ \qquad for each $n \in \mathbb{N}$
- f is a \qquad function
- f is a \qquad function
- f is a \qquad function.
Then $\sum a_{n}$ converges if and only if \qquad converges.
2e. Comparison Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
- If $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and $\sum b_{n}$ \qquad , then $\sum a_{n}$ \qquad .
- If $0 \leq b_{n} \leq a_{n}$ for all $n \in \mathbb{N}$ and $\sum b_{n}$ \qquad then $\sum a_{n}$ \qquad .
2f. Limit Comparison Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $b_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$.
If \qquad $<L<$ \qquad , then $\sum a_{n}$ converges if and only if \qquad .
2g. Ratio and Root Tests for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $\rho=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \quad$ or $\quad \rho=\lim _{n \rightarrow \infty}\left(a_{n}\right)^{\frac{1}{n}}$.
- If ρ \qquad then $\sum a_{n}$ converges.
- If ρ \qquad then $\sum a_{n}$ diverges.
- If ρ \qquad then the test is inconclusive.
2h. Alternating Series Test for an alternating series $\sum(-1)^{n} a_{n}$ where $a_{n}>0$ for each $n \in \mathbb{N}$. If
- $a_{n} \ldots a_{n+1}$ for each $n \in \mathbb{N}$
- $\lim _{n \rightarrow \infty} a_{n}=$ \qquad
then $\sum(-1)^{n} a_{n}$ \qquad
2i. $n^{\text {th }}$-term test for an arbitrary series $\sum a_{n}$.
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or $\lim _{n \rightarrow \infty} a_{n}$ does not exist, then $\sum a_{n}$ \qquad .
$\mathbf{2 j}$. By definition, for an arbitrary series $\sum a_{n}$, (fill in the blanks with converges or diverges).
- $\sum a_{n}$ is absolutely convergent if and only if $\sum\left|a_{n}\right|$
- $\sum a_{n}$ is conditionally convergent if and only if $\sum a_{n}$ \qquad and $\sum\left|a_{n}\right|$ \qquad
- $\sum a_{n}$ is divergent if and only if $\sum a_{n}$ \qquad
$\mathbf{2 k}$. Fill in the 3 blank lines, with
absolutely convergent, conditional convergent, or divergent,
on the following FLOW CHART for class used to determine if a series $\sum_{n=17}^{\infty} a_{n}$ is: absolutely convergent, conditional convergent, or divergent.

Does $\sum a_{n}$ satisfy the conditions of the Alternating Series Test?
if YES \Downarrow
$\sum a_{n}$ is \qquad
21. Fill in the blank with: perpendicular or parallel.

If you revolve a graph of a function about an axis of revolution and you want to find the volume of the resulting solid of revolution using the disk or washer method, then you draw in your typical rectangles (used to form your typical elements) \qquad to the axis of revolution.
$\mathbf{2 m}$.Fill in the blank with a formula involving some of:
$2, \pi$, radius, radius $_{\text {big }}$, radius $_{\text {little }}$, average radius, height, and/or thickness.
In problem 21 above, if you use the washer method, then the volume of a typical washer is:

2n. Fill in the blank with: perpendicular or parallel.
If you revolve a graph of a function about an axis of revolution and you want to find the volume of the resulting solid of revolution using the shell method, then you draw in your typical rectangles (used to form your typical elements) \qquad to the axis of revolution.

2o. Fill in the blank with a formula involving some of:
$2, \pi$, radius, radius $_{\text {big }}$, radius $_{\text {little }}$, average radius, height, and/or thickness.
In problem $\mathbf{2 n}$ above, if you use the shell method, then the volume of a typical shell is:
3. Circle T if the statement is (always) TRUE. Circle F if the statement is (sometimes) FALSE.
$\mathrm{T} \quad \mathrm{F} \quad$ If $f(n)=a_{n}$ for $n=1,2,3, \ldots$ and if $\lim _{x \rightarrow \infty} f(x)=L$ then $\lim _{n \rightarrow \infty} a_{n}=L$.

T \quad F If $f(n)=a_{n}$ for $n=1,2,3, \ldots$ and if $\lim _{n \rightarrow \infty} a_{n}=L$, then $\lim _{x \rightarrow \infty} f(x)=L$.
$\mathrm{T} \quad \mathrm{F} \quad$ If $0<a_{n}<1$, then $\lim _{n \rightarrow \infty} a_{n}$ exists.

T

T

T

T

F
Calculus is fun! (each honest solution is correct!)

For problem 4 and 5: Let R be the region in the first quadrant of the $x y$-plane enclosed by:

- the parabola $y=3 x^{2}$
- the x-axis
- the vertical line $x=2$.

Let V be the volume of the solid obtained by revolving the region R about the y-axis .
Please remind Prof. Girardi to sketch R on the board for you.
4. Using the disk or washer method, express the volume V as an integral.

You do not have to evaluate the integral nor do lot of algebra to the integrand.
5. Using the shell method, express the volume V as an integral.
$\mathrm{V}=\mathrm{L}$

You do not have to evaluate the integral nor do lot of algebra to the integrand.
6.
$\int \sec ^{4} x \tan ^{4} x d x=$

Hint: problem 1x.
Remark: box your substitution box for more partial credit.
Recall: you can check your answer via differentiation (if you have time).
7.

$$
\int \frac{d x}{\left(4+x^{2}\right)^{2}}=
$$

Hint: problem 1s, $1 \mathrm{u}, 1 \mathrm{v}, 1 \mathrm{w}$.
Remark: box your substitution box for more partial credit.
Recall: you can check your answer via differentiation (if you have time).
8.

$$
\int \frac{2 x^{2}-2 x-1}{x^{2}(x-1)} d x=
$$

Hint: $x^{2}=(x-0)^{2}=(\text { a linear term })^{2} \neq(\text { an irreducible quadratic })^{1}$.
Remark: box your substitution box for more partial credit.
Recall: you can check your answer via differentiation (if you have time).
9.
$\int x^{2} e^{x} d x=$

Remark: box your substitution box for more partial credit.
Recall: you can check your answer via differentiation (if you have time).
10.

$$
\int \ln (x+17) d x=
$$

Hint: some cleverness in your choice of v can make life easier.
Remark: box your substitution box for more partial credit.
Recall: you can check your answer via differentiation (if you have time).
11.

$$
\int e^{(2 x)} \cos (3 x) d x=
$$

Hint: bring to the other side idea.
Remark: box your substitution box for more partial credit.
Recall: you can check your answer via differentiation (if you have time).
12. Sequences (not series)

12a. $\lim _{n \rightarrow \infty} \frac{\ln \left(n^{2}\right)}{n}=$

12b. $\lim _{n \rightarrow \infty} \frac{\sqrt{4 n^{3}+7 n+5}}{7 n^{\frac{3}{2}}+8}=$

NOW Series - NOT sequences

13. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.
\square absolutely convergent $\sum_{n=17}^{\infty} \frac{(-1)^{n}}{n} \quad \square$ conditionally convergent

divergent
14. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.
\square absolutely convergent

conditionally convergent
\square divergent
15. Consider the formal power series

$$
\sum_{n=1}^{\infty} \frac{(2 x-12)^{n}}{n}
$$

Hint: $(2 x-12)^{n}=[2(x-6)]^{n}=2^{n}(x-6)^{n}$.
The center is $x_{0}=$ \qquad and the radius of convergence is $R=$ \qquad .
As we did in class, make a number line indicating where the power series is:

absolutely convergent, conditionally convergent, and divergent.

Indicate your reasoning and specifically specify what test(s) you are using. Don't forget to check the endpoints, if there are any.
16. Consider the formal power series

$$
\sum_{n=2}^{\infty} \frac{(n!) x^{n}}{2^{n}}
$$

The center is $x_{0}=$ \qquad and the radius of convergence is $R=$ \qquad .
As we did in class, make a number line indicating where the power series is:
absolutely convergent, conditionally convergent, and divergent.
Indicate your reasoning and specifically specify what test(s) you are using. Don't forget to check the endpoints, if there are any.
17. Do parts (a) - (f) for the following:

$$
f(x)=x e^{x} \quad x_{0}=0 \quad J=(-17,2)
$$

You might find it easier to do problems (a) - (f) in a different order. Just do what you find easiest.

Use only:

- the definition of Taylor polynominal
- the definition of Taylor series
- the theorem/error-estimate on the $N^{\text {th }}$-Remainder term for Taylor polynomials.

Do NOT use a known Taylor Series (i.e., do not use methods from section 10.10).

17aFind the following. Note the $1^{\text {st }}$ column are functions of x and the $2^{\text {nd }}$ and $3^{\text {rd }}$ columns are numbers

$f^{(0)}(x)=$	$f^{(0)}\left(x_{0}\right)=$	$c_{0}=$
$f^{(1)}(x)=$	$f^{(1)}\left(x_{0}\right)=$	$c_{1}=$
$f^{(2)}(x)=$	$f^{(2)}\left(x_{0}\right)=$	$c_{2}=$
$f^{(3)}(x)=$	$f^{(3)}\left(x_{0}\right)=$	$c_{3}=$
$f^{(4)}(x)=$	$f^{(4)}\left(x_{0}\right)=$	$c_{4}=$
$f^{(5)}(x)=$	nothing for here	nothing for here

$\mathbf{1 7} \mathbf{b F i n d}$ the $N^{\text {th }}$-order Taylor polynomial of $y=f(x)$ about x_{0} in OPEN form for $N=0,1,2,3,4$.

$P_{0}(x)=$
$P_{1}(x)=$
$P_{2}(x)=$
$P_{3}(x)=$
$P_{4}(x)=$

17c.Find the Taylor series of $y=f(x)$ about x_{0} in OPEN form.
\square
$P_{\infty}(x)=$

17dFind the Taylor series of $y=f(x)$ about x_{0} in CLOSED form.
$P_{\infty}(x)=$

17e.Consider the given interval J. Find an upper bound for the maximum of $\left|f^{(5)}(x)\right|$ on the interval J. You answer should be a number. You answer cannot have an: N, x, x_{0}, c.
$\max _{c \in J}\left|f^{(5)}(c)\right| \leq$
17f.Consider the given interval J. Using Taylor's Remainder Theorem (i.e., Taylor's Big Theorem), find an upper bound for the maximum of $\left|R_{4}(x)\right|$ on the interval J. You answer should be a number. You answer cannot have an: N, x, x_{0}, c.
$\max _{x \in J}\left|R_{4}(x)\right| \leq$
18. Using the fact that

$$
\begin{equation*}
\frac{1}{1-r}=\sum_{n=0}^{\infty} r^{n} \quad \text { when } \quad|r|<1 \tag{*}
\end{equation*}
$$

find a power series expansion of

$$
\frac{x}{4+100 x^{2}}
$$

and state when it is valid. Simplify your answer so that your power series has the form $\sum_{n=0}^{\infty} c_{n} x^{\text {some power }}$ for some constants c_{n}.

$$
\frac{x}{4+100 x^{2}}=\sum_{n=0}^{\infty}
$$

valid when $|x|<$

