Prof. Girardi	Math 142	Fall 2006	12.15 .06	Final Exam - Take Home Part

MARK BOX		
PROBLEM	POINTS	
$1 \mathrm{a}-\mathrm{y}$	25	in class
$2 \mathrm{a}-\mathrm{o}$	15	in class
3	10	in class
$4-16(10 \mathrm{pts}$ each $)$	130	in class
$17 \mathrm{a}-\mathrm{f}$ take home	10	
18 take home	10	
TOTAL	200	

NAME: \qquad
please check the box of your section
\square Section 005 (WF 8:00 am)
or
\square Section 006 (WF 9:05 am)

The (whole) final exam covers (from Calculus by Anton, Bivens, Davis $8^{\text {th }}$ ed.):
Sections: 7.1-7.4, 7,6, 7.7, 8.1-8.5, 8.8, 10.1-10.10.
The above MARK BOX and below Problem Inspiration gives you an idea of the break down.
Problem Inspiration:
IN CLASS: 1.-16.
1.-3. Fill in the blanks and True/False (omitting sections 10.7, 10.9, 10.10)
4.\&5. Chapter 7
6.-11. Chapter 8
12.-16 Sections 10.1 - 10.6 and 10.8

TAKE HOME 17.-18.
17.\&18 Sections 10.7, 10.9, 10.10

INSTRUCTIONS for TAKE HOME PART, which is due at 2pm on December 15, 2006:
(1) Turn in all 5 pages of this exam.
(2) To receive credit you must:
(a) work in a logical fashion, show all your work, indicate your reasoning; no credit will be given for an answer that just appears;
such explanations help with partial credit
(b) if a line/box is provided, then:

- show you work BELOW the line/box
- put your answer on/in the line/box
(c) if no such line/box is provided, then box your answer
(3) You can use books and notes.
(4) You can not use a calculator. You can not use a computer. Thus you do not need to do lots of multiplication and may leave you answers as you would on previous exams (e.g. $\frac{(7)(17)}{5!}$ is acceptable).
(5) You can not receive help from other people.

SIGNATURE REQUIRED:

I hereby verify that I did NOT receive help from other people on this final exam take-home part.

Signature: \qquad

Nothing to fill in on this page - Prof. Girardi just included it to help you out.
Let $y=f(x)$ be a function with derivatives of all orders in an interval I containing x_{0}.
Let $y=P_{N}(x)$ be the $N^{\text {th }}$-order Taylor polynomial of $y=f(x)$ about x_{0}.
Let $y=R_{N}(x)$ be the $N^{\text {th }}$-order Taylor remainder of $y=f(x)$ about x_{0}.
Let $y=P_{\infty}(x)$ be the Taylor series of $y=f(x)$ about x_{0}.
Let c_{n} be the $n^{\text {th }}$ Taylor coefficient of $y=f(x)$ about x_{0}.
A. In open form (i.e., with \ldots and without a \sum-sign)

$$
P_{N}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{(2)}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\frac{f^{(3)}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3}+\cdots+\frac{f^{(N)}\left(x_{0}\right)}{N!}\left(x-x_{0}\right)^{N}
$$

B. In closed form (i.e., with a \sum-sign and without ...)

$$
P_{N}(x)=\sum_{n=0}^{N} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

C. In open form (i.e., with . . . and without a \sum-sign)

$$
P_{\infty}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{(2)}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\ldots
$$

D. In closed form (i.e., with a \sum-sign and without ...)

$$
P_{\infty}(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

E. We know that $f(x)=P_{N}(x)+R_{N}(x)$. Taylor's BIG Theorem tells us that, for each $x \in I$, $R_{N}(x)=\frac{f^{(N+1)}(c)}{(N+1)!}\left(x-x_{0}\right)^{(N+1)}$ for some c between \square and x_{0}.
F. The formula for c_{n} is
$c_{n}=\frac{f^{(n)}\left(x_{0}\right)}{n!}$
17. Do parts (a) - (f) for the following:

$$
f(x)=x e^{x} \quad x_{0}=0 \quad J=(-17,2)
$$

You might find it easier to do problems (a) - (f) in a different order. Just do what you find easiest.

Use only:

- the definition of Taylor polynominal
- the definition of Taylor series
- the theorem/error-estimate on the $N^{\text {th }}$-Remainder term for Taylor polynomials.

Do NOT use a known Taylor Series (i.e., do not use methods from section 10.10).
17 aFind the following. Note the $1^{\text {st }}$ column are functions of x and the $2^{\text {nd }}$ and $3^{\text {rd }}$ columns are numbers (do not get out a calculator and start pushing keys for the numbers).

$f^{(0)}(x)=$	$f^{(0)}\left(x_{0}\right)=$	$c_{0}=$
$f^{(1)}(x)=$	$f^{(1)}\left(x_{0}\right)=$	$c_{1}=$
$f^{(2)}(x)=$	$f^{(2)}\left(x_{0}\right)=$	$c_{2}=$
$f^{(3)}(x)=$	$f^{(3)}\left(x_{0}\right)=$	$c_{3}=$
$f^{(4)}(x)=$	$f^{(4)}\left(x_{0}\right)=$	$c_{4}=$
$f^{(5)}(x)=$	nothing for here	nothing for here

$\mathbf{1 7} \mathbf{b F i n d}$ the $N^{\text {th }}$-order Taylor polynomial of $y=f(x)$ about x_{0} in OPEN form for $N=0,1,2,3,4$.

$P_{0}(x)=$
$P_{1}(x)=$
$P_{2}(x)=$
$P_{3}(x)=$
$P_{4}(x)=$

17c.Find the Taylor series of $y=f(x)$ about x_{0} in OPEN form.
\square
17dFind the Taylor series of $y=f(x)$ about x_{0} in CLOSED form.
$P_{\infty}(x)=$

17e.Consider the given interval J. Find an upper bound for the maximum of $\left|f^{(5)}(x)\right|$ on the interval J. You answer should be a number (leave it as a fraction - do not get out a calculator and start pushing keys). You answer cannot have an: N, x, x_{0}, c.
$\max _{c \in J}\left|f^{(5)}(c)\right| \leq$
17f.Consider the given interval J. Using Taylor's Remainder Theorem (i.e., Taylor's Big Theorem), find an upper bound for the maximum of $\left|R_{4}(x)\right|$ on the interval J. You answer should be a number (leave it as a fraction - do not get out a calculator and start pushing keys). You answer cannot have an: N, x, x_{0}, c.

$$
\left|\max _{x \in J}\right| R_{4}(x) \mid \leq
$$

18. Using the fact that

$$
\begin{equation*}
\frac{1}{1-r}=\sum_{n=0}^{\infty} r^{n} \quad \text { when } \quad|r|<1 \tag{*}
\end{equation*}
$$

find a power series expansion of

$$
\frac{x}{4+100 x^{2}}
$$

and state when it is valid. Simplify your answer so that your power series has the form $\sum_{n=0}^{\infty} c_{n} x^{\text {some power }}$ for some constants c_{n}.

$$
\frac{x}{4+100 x^{2}}=\sum_{n=0}^{\infty}
$$

valid when $|x|<$

