Prof. Girardi	Math 142	Fall 2006	11.30.06	Exam 3 - Part 2

MARK BOX		
PROBLEM	POINTS	
$1 \mathrm{a}-\mathrm{j}$	30	
2	5	
3	10	
4	10	
5 ab	10	
6	10	
7	10	
8	5	
$9-$ Part 1	10	
$\%$	100	

NAME: \qquad
please check the box of your section

\square Section 005 (WF 8:00 am)

or
\square Section 006 (WF 9:05 am)

INSTRUCTIONS:

(1) To receive credit you must:
(a) work in a logical fashion, show all your work, indicate your reasoning; no credit will be given for an answer that just appears; such explanations help with partial credit
(b) if a line/box is provided, then:

- show you work BELOW the line/box
- put your answer on/in the line/box
(c) if no such line/box is provided, then box your answer
(2) The mark box indicates the problems along with their points. Check that your copy of the exam has all of the problems.
(3) You may not use a calculator, books, personal notes.
(4) During this exam, do not leave your seat. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down, and raise your hand.
(5) This exam covers (from Calculus by Anton, Bivens, Davis $8^{\text {th }}$ ed.):

Part 1: Sections 10.1, 10.2 and Part 2: Sections 10.3, 10.4, 10.5, 10.6 and 10.8.

Problem Inspiration:

1. you were warned, from class handouts and old exams
2. homework problem § Ch 10 Review \# 9, homework problem § 10.4 \# 28
3. Example from class lecture
4. Serious Series Problems \# 10
5. homework problem § 10.6 \# 29
6. homework problem § 10.8 \# 29
7. from textbook § 10.8 \# 49
8. homework problem § 10.8 \# 63
9. Fill-in-the blanks/boxes. All series \sum are understood to be $\sum_{n=1}^{\infty}$.

Hint: I do NOT want to see the words absolute nor conditional on this page!
1a. $n^{\text {th }}$-term test for an arbitrary series $\sum a_{n}$.
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or $\lim _{n \rightarrow \infty} a_{n}$ does not exist, then $\sum a_{n}$ \qquad .

1b. Geometric Series where $-\infty<r<\infty$. The series $\sum r^{n}$

- converges if and only if $|r|$ \qquad
- diverges if and only if $|r|$ \qquad
1c. p-series where $0<p<\infty$. The series $\sum \frac{1}{n^{p}}$
- converges if and only if p \qquad
- diverges if and only if p \qquad
1d. Integral Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $f:[1, \infty) \rightarrow \mathbb{R}$ be so that
- $a_{n}=f($ \qquad) for each $n \in \mathbb{N}$
- f is a \qquad function
- f is a \qquad function
- f is a \qquad function .
Then $\sum a_{n}$ converges if and only if \qquad converges.

1e. Comparison Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.

- If $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and $\sum b_{n}$ \qquad , then $\sum a_{n}$ \qquad .
- If $0 \leq b_{n} \leq a_{n}$ for all $n \in \mathbb{N}$ and $\sum b_{n}$ \qquad , then $\sum a_{n}$ \qquad .

1f. Limit Comparison Test for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $b_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$.
If \qquad $<L<$ \qquad , then $\sum a_{n}$ converges if and only if \qquad .

1g. Ratio and Root Tests for a positive-termed series $\sum a_{n}$ where $a_{n} \geq 0$.
Let $\rho=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} \quad$ or $\quad \rho=\lim _{n \rightarrow \infty}\left(a_{n}\right)^{\frac{1}{n}}$.

- If ρ \qquad then $\sum a_{n}$ converges.
- If ρ \qquad then $\sum a_{n}$ diverges.
- If ρ \qquad then the test is inconclusive.

1h. Alternating Series Test for an alternating series $\sum(-1)^{n} a_{n}$ where $a_{n}>0$ for each $n \in \mathbb{N}$. If

- a_{n} \qquad a_{n+1} for each $n \in \mathbb{N}$
- $\lim _{n \rightarrow \infty} a_{n}=$ \qquad then $\sum(-1)^{n} a_{n}$

1i. By definition, for an arbitrary series $\sum a_{n}$, (fill in the blanks with converges or diverges).

- $\sum a_{n}$ is absolutely convergent if and only if $\sum\left|a_{n}\right|$ \qquad
- $\sum a_{n}$ is conditionally convergent if and only if $\sum a_{n}$ \qquad and $\sum\left|a_{n}\right|$ \qquad
- $\sum a_{n}$ is divergent if and only if $\sum a_{n}$ \qquad
$\mathbf{1 j}$. Fill in the 3 blank lines (with absolutely convergent, conditional convergent, or divergent) on the following FLOW CHART for class used to determine if a series $\sum_{n=17}^{\infty} a_{n}$ is: absolutely convergent, conditional convergent, or divergent.

Does $\sum a_{n}$ satisfy the conditions of the Alternating Series Test?
if YES \Downarrow
$\sum a_{n}$ is \qquad
2. Circle T if the statement is TRUE. Circle F if the statement if FALSE.
T
F
If $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum a_{n}$ converges
T
F
If $\sum a_{n}$ converges, then $\lim _{n \rightarrow \infty} a_{n}=0$.
$\mathrm{T} \quad \mathrm{F} \quad$ If $\sum a_{n}$ converges and $\sum b_{n}$ converge, then $\sum\left(a_{n}+b_{n}\right)$ converges.
T F If $\sum\left(a_{n}+b_{n}\right)$ converges, then $\sum a_{n}$ converges and $\sum b_{n}$ converge.
T $\quad \mathrm{F} \quad$ If $S_{N}=\sum_{n=1}^{N} r^{n}$, then $S_{N}=\frac{r-r^{N+1}}{1-r}$.
3. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.
\square absolutely convergent

$$
\sum_{n=17}^{\infty} \frac{(-1)^{n}}{n}
$$

\square conditionally convergent
\square divergent
4. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.
\square absolutely convergent $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)(n+2)}}$ \square conditionally convergent
\square divergent
5. Let

$$
a_{n}=\frac{n!}{(2 n-1)!}
$$

5a. Find an expression for $\frac{a_{n+1}}{a_{n}}$ that does NOT have a fractorial sign (that is a ! sign) in it.

$$
\frac{a_{n+1}}{a_{n}}=
$$

5b. Check the correct box and then indicate your reasoning below. Specifically specify what test(s) you are using. A correctly checked box without appropriate explanation will receive no points.

$$
\begin{array}{lll}
\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{(2 n-1)!} & \square & \text { absolutely convergent } \\
& \square & \text { conditionally convergent } \\
& \square \text { divergent }
\end{array}
$$

6. Consider the formal power series

$$
\sum_{n=1}^{\infty} \frac{(5 x+10)^{n}}{n}
$$

Hint: $(5 x+10)^{n}=[5(x+2)]^{n}=5^{n}(x+2)^{n}=5^{n}(x-(-2))^{n}$
The center is $x_{0}=$ \qquad and the radius of convergence is $R=$ \qquad .

As we did in class, make a number line indicating where the power series is: absolutely convergent, conditionally convergent, and divergent. Indicate your reasoning and specifically specify what test(s) you are using. Don't forget to check the endpoints, if there are any.
7. Consider the formal power series

$$
\sum_{n=2}^{\infty} \frac{x^{n}}{(\ln n)^{n}}
$$

Hint 1: $\frac{x^{n}}{(\ln n)^{n}}=\left[\frac{x}{\ln n}\right]^{n}$ so would you rather use the root test or the ratio test?
Hint 2: $\ln \left(a^{r}\right)=r \ln (a)$ but $(\ln (a))^{r} \neq r \ln (a)+$
The center is $x_{0}=$ \qquad and the radius of convergence is $R=$ \qquad .
As we did in class, make a number line indicating where the power series is: absolutely convergent, conditionally convergent, and divergent. Indicate your reasoning and specifically specify what test(s) you are using. Don't forget to check the endpoints, if there are any.
8. Fill-in the 6 blanks.

Consider the power series

$$
\sum_{n=1}^{\infty}(-1)^{n} a_{n} x^{n}
$$

where all of the a_{n} 's are positive. Let's say that you know that

$$
\begin{array}{lll}
\text { if } & 0<x<17 & \text { then } \sum(-1)^{n} a_{n} x^{n} \text { converges } \\
\text { if } & x=17 & \text { then } \sum(-1)^{n} a_{n} x^{n} \text { conditionally converges } \\
\text { if } & 17<x & \text { then } \sum(-1)^{n} a_{n} x^{n} \text { diverges } .
\end{array}
$$

Then this power series has:
center at $x_{0}=$ \qquad and radius of convergence $R=$ \qquad .
Also, what can you say about the following interval? Fill in the blanks below with:

- is absolutely convergent
- is conditionally convergent
- is divergent
- inconclusive (not enough information given to decide in general).

$$
\text { if } \quad-17<x<0 \quad \text { then } \sum(-1)^{n} a_{n} x^{n}
$$

if $\quad x<-17 \quad$ then $\sum(-1)^{n} a_{n} x^{n}$
if $\quad x=0 \quad$ then $\sum(-1)^{n} a_{n} x^{n}$
if $\quad x=-17 \quad$ then $\sum(-1)^{n} a_{n} x^{n}$

