MARK BOX		
PROBLEM	POINTS	
$1 \mathrm{a}-\mathrm{r}$	35	
2	5	
3	5	
4	5	
5	5	
6	5	
7	5	
8	5	
9	5	
10	5	
11	5	
12	5	
13	5	
14	5	
$\%$	100	

NAME:

\qquad

SSN: \qquad
please check the box of your section below
\square Section 003 (MW 9:05 pm)
or
\square Section 004 (MW 10:10 pm)

INSTRUCTIONS:

(1) To receive credit you must:
(a) work in a logical fashion, show all your work, indicate your reasoning; no credit will be given for an answer that just appears; such explanations help with partial credit
(b) when applicable put your answer on/in the line/box provided
(c) if no such line/box is provided, then box your answer
(2) The mark box indicates the problems along with their points. Check that your copy of the exam has all of the problems.
(3) You may not use a calculator, books, personal notes.
(4) During this exam, do not leave your seat. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down, and raise your hand.
(5) This exam covers (from Calculus by Anton, Bivens, Davis $8^{\text {th }}$ ed.):

Sections 6.6, 6.8, 6.9, 7.1-7.4, 7.6, 7.7, 8.1-8.8, 10.1-10.10. .
Problem Inspiration: homework and old exams.
Solutions will be available on the course homepage later this afternoon.

1. Fill in the blanks (each worth 1 point) and boxes (each worth 2 points).

1a. $\int \frac{d x}{x}=\longrightarrow|x|+C$
1b. $D_{x} e^{x}=$ \qquad

1c. If $a>0$ but $a \neq 1$, then $D_{x} a^{x}=$ \qquad
Hint: $a^{x}=e^{\ln \left(a^{x}\right)}=e^{x \ln (a)}$. Your answer should not have an " $e^{"}$ in it.

1d. $D_{x} \tan x=$ \qquad

1e. $\int \sec x \tan x=$ \qquad $+C$

1f. Integration by parts formula:
$\int u d v=$ \qquad
$\mathbf{1 g}$. Trig substitution: (recall that the integrand is the function you are integrating)
if the integrand involves $a^{2}-u^{2}$, then one makes the substitution $u=$ \qquad

1h. Trig substitution:
if the integrand involves $a^{2}+u^{2}$, then one makes the substitution $u=$ \qquad
1i. Partial Fraction Decomposition. If one wants to integrate $\frac{f(x)}{g(x)}$ where f and g are polyonomials and [degree of f] \geq degree of g], then one must first do \qquad

1j. Integral Test: $a_{n}>0$
Let $f:[1, \infty) \rightarrow \mathbb{R}$ be so that

- $a_{n}=f($ \qquad) for each $n \in \mathbb{N}$
- f is a \qquad function
- f is a \qquad function
- f is a \qquad function .

Then $\sum a_{n}$ converges if and only if \qquad converges.

1k. Comparison Test: $a_{n}>0$

- If $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and $\sum b_{n}$ \qquad , then $\sum a_{n}$ \qquad .
- If $0 \leq b_{n} \leq a_{n}$ for all $n \in \mathbb{N}$ and $\sum b_{n}$ \qquad , then $\sum a_{n}$ \qquad .

11. Limit Comparison Test: $a_{n}>0$

Let $b_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$.
If \qquad $<L<$ \qquad then $\sum a_{n}$ converges if and only if $\sum b_{n}$ \qquad .

1m.Ratio Test: $a_{n}>0$
Let $\rho=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$.

- If $\rho<$ \qquad then $\sum a_{n}$ converges.
- If $\rho>$ \qquad then $\sum a_{n}$ diverges.
- If $\rho=$ \qquad then the test is inconclusive.

1n. Root Test: $a_{n}>0$
Let $\rho=\lim _{n \rightarrow \infty}\left(a_{n}\right)^{\frac{1}{n}}$.

- If $\rho<$ \qquad then $\sum a_{n}$ converges.
- If $\rho>$ \qquad then $\sum a_{n}$ diverges.
- If $\rho=$ \qquad then the test is inconclusive.

1o. Alternating Series Test: $a_{n}>0$
If

- a_{n} \qquad a_{n+1} for each $n \in \mathbb{N}$
- $\lim _{n \rightarrow \infty} a_{n}=$ \qquad
then $\sum(-1)^{n} a_{n}$ \qquad

1p. $n^{\text {th }}$-term test: a_{n} 's are arbitrary
If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or $\lim _{n \rightarrow \infty} a_{n}$ does not exist, then $\sum a_{n}$ \qquad .

1q. Consider the interval $I=(a-R, a+R)$ center about $x=a$ and of radius R.
Let $y=f(x)$ be a function that can be differentiated N times $x=a$. Then the $N^{\text {th }}$-order Taylor polynomial $y=P_{N}(x)$ of f about a is (your answer should have a summation sign \sum in it)
$P_{N}(x)=$

1r. Consider the interval $I=(a-R, a+R)$ center about $x=a$ and of radius R.
Let $y=f(x)$ be a function that can be differentieated $N+1$ times for each $x \in I$.
Consider the the $N^{\text {th }}$-order Taylor Reminder term $R_{N}(x)$, where $f(x)=P_{N}(x)+R_{N}(x)$.
Then an upper bound for $\left|R_{N}(x)\right|$ for an $x \in I$ is:
2.
$D_{x}(\cos (\ln x))=$
3.
$D_{x} 7^{\left(x^{2}\right)}=$
4.
$\int(\tan x)\left(\sec ^{7} x\right) d x=$

Remark: box your substitution box for more partial credit.
5.
$\int x^{2} \arctan x d x=$
Remark: box your substitution box for more partial credit.
6.

$$
\int \frac{x^{2}}{\sqrt{4-x^{2}}} d x=
$$

Remark: box your substitution box for more partial credit.
7. Let R be the region enclosed by

$$
y=x^{2} \quad \text { and } \quad x=2 \quad \text { and } \quad y=0 .
$$

Let V be the volume of the solid obtained by revolving the region R about the line $x=3$.
7a. Make a rough sketch below of the region R, labeling the important points.
7b. Using the disk/washer method, express the volume V as an integral (or maybe 2 integrals). You do NOT have to evaluate the integral(s).
$\mathrm{V}=$
8.
$\lim _{n \rightarrow \infty} \frac{3 n^{5 / 2}+7 n^{2}+9}{-17 n^{5 / 2}+3 n^{2}-9 n-18}=$
9.
$\lim _{n \rightarrow \infty} \frac{8 n^{15}-7 n^{10}+19}{-5 n^{13}+6 n^{8}-6 n^{5}+9}=$

On problems 10 and 11b, check the correct box and then indicte your reasoning below. A correctly checked box without appropriate explanation will receive no points.
\square absolutely convergent
10. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln n}{n} \quad \square$ conditionally convergent
\square divergent

11aLet $a_{n}=\frac{n^{3}(n!)}{(2 n)!}$ Find $\frac{a_{n+1}}{a_{n}}$. Simplify your answer so that no factorial sign (i.e., !) appears.

$$
\text { answer: } \frac{a_{n+1}}{a_{n}}=
$$

\square absolutely convergent
11b. $\sum_{n=17}^{\infty}(-1)^{n} \frac{n^{3}(n!)}{(2 n)!}$ \square conditionally convergent
\square divergent
12. Consider the formal power series

$$
\sum_{n=1}^{\infty} \frac{(2 x+8)^{n}}{n}
$$

As we did in class, in the box below draw a diagram indicating for which x 's this series is: absolutely convergent, conditionally convergent, and divergent. Of course, indicate your reasoning.
\square
13. Let

$$
f(x)=(1+x)^{3 / 2}
$$

and $a=0$.
Find the $3^{\text {rd }}$-order Taylor polynomial of $y=f(x)$ about (or at) $a=0$.

$$
P_{3}(x)=
$$

14. As in problem 13, let

$$
f(x)=(1+x)^{3 / 2}
$$

and $a=0$.
Let $f(x)=P_{3}(x)+R_{3}(x)$, where $y=P_{3}(x)$ is the $3^{\text {rd }}$-order Taylor polynomial of $y=f(x)$ about $a=0$ and $y=R_{3}(x)$ is the corresponding remainder (i.e., error) term.
Consider the interval $I=(-0.5,0.5)$ center about $a=0$. Fix an $x \in I$. Find a good upper bound for $\left|R_{3}(x)\right|$.

$$
\left|R_{3}(x)\right| \leq
$$

Remark: you only have to carry out the algebra as far as I indicated in class.

