Prof. Girardi	Math $142.003 / 004$	Fall 2005	11.22 .05	Exam 3

MARK BOX		
PROBLEM	POINTS	
1	36	
2	6	
3	2	
4	8	
5	8	
6	8	
7	8	
8	8	
9	8	
10	8	
$\%$	100	

NAME: \qquad

SSN: \qquad
please check the box of your section below
\square Section 003 (MW 9:05 pm)
or
\square Section 004 (MW 10:10 pm)

INSTRUCTIONS:

(1) To receive credit you must:
(a) work in a logical fashion, show all your work, indicate your reasoning; no credit will be given for an answer that just appears; such explanations help with partial credit
(b) when applicable put your answer on/in the line/box provided
(c) if no such line/box is provided, then box your answer
(2) The mark box indicates the problems along with their points. Check that your copy of the exam has all of the problems.
(3) You may not use a calculator, books, personal notes.
(4) During this exam, do not leave your seat. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down, and raise your hand.
(5) This exam covers (from Calculus by Anton, Bivens, Davis $8^{\text {th }}$ ed.): Sections 10.1 - 10.6 .

Problem Inspiration:

1-3. a course handout - you were warned
4-6. homework from § 10.1
7. homework from § 10.3

8 -10. homework from § 10.6
Solutions will be available on the course homepage later this afternoon.

For problems 1, 2, and 3, fill in the blanks.
Hint: I do NOT want to see the words absolute nor conditional on this page!

1. For problem 1 , let $\sum a_{n}$ be a positive-termed series (i.e. $a_{n} \geq 0$ for each $n \in \mathbb{N}$).

1a. Integral Test Let $f:[1, \infty) \rightarrow \mathbb{R}$ be so that

- $a_{n}=f($ \qquad) for each $n \in \mathbb{N}$
- f is a \qquad function
- f is a \qquad function
- f is a \qquad function .

Then $\sum a_{n}$ converges if and only if \qquad converges.

1b. Comparison Test

- If $0 \leq a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$ and $\sum b_{n}$ \qquad , then $\sum a_{n}$ \qquad .
- If $0 \leq b_{n} \leq a_{n}$ for all $n \in \mathbb{N}$ and $\sum b_{n}$ \qquad then $\sum a_{n}$ \qquad .

1c. Limit Comparison Test Let $b_{n}>0$ and $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=L$. If \qquad $<L<$ \qquad , then $\sum a_{n}$ converges if and only if \qquad .

1d. Ratio Test Let $\rho=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}$.

- If $\rho<$ \qquad then $\sum a_{n}$ converges.
- If $\rho>$ \qquad then $\sum a_{n}$ diverges.
- If $\rho=$ \qquad then the test is inconclusive.
1e. Root Test Let $\rho=\lim _{n \rightarrow \infty}\left(a_{n}\right)^{\frac{1}{n}}$.
- If $\rho<$ \qquad then $\sum a_{n}$ converges.
- If $\rho>$ \qquad then $\sum a_{n}$ diverges.
- If $\rho=$ \qquad then the test is inconclusive.

2. For problem 2, we now have an alternating series, i.e., $\sum(-1)^{n} a_{n}$ where $a_{n}>0$ for each $n \in \mathbb{N}$. Alternating Series Test: If

- a_{n} \qquad a_{n+1} for each $n \in \mathbb{N}$
- $\lim _{n \rightarrow \infty} a_{n}=$ \qquad then $\sum(-1)^{n} a_{n}$ \qquad

3. For problem 3, we now have an arbitrary series $\sum a_{n}$ (some terms might be positive, some might be negative, all might be positive, etc ...).
$n^{\text {th }}$-term test If $\lim _{n \rightarrow \infty} a_{n} \neq 0$ or $\lim _{n \rightarrow \infty} a_{n}$ does not exist, then $\sum a_{n}$ \qquad .
4.

$\lim _{n \rightarrow \infty} \frac{4 n^{3}+6 n^{2}-17 n+9}{-5 n^{3}+7 n^{2}-9 n-18}=$
5.
$\lim _{n \rightarrow \infty} \frac{7 n^{2}+9}{-5 n+2}=$
Hint: watch your plus and minus.
6.
$\lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=$
Hint: L'Hopital

7. Geometric Series

7a. If $|r|<1$, then

$$
\sum_{n=0}^{\infty} r^{n}=
$$

Notice (a polite hint for problem 7b), if $|r|<$, then

$$
\sum_{\mathbf{n}=\mathbf{0}}^{\infty} r^{n}=\mathbf{1}+r+r^{2}+r^{3}+r^{4}+\ldots
$$

7b. Find the sum of the below series. (Note that the sum begins at $n=10$ instead of $n=0$.)

$$
\sum_{n=10}^{\infty}\left(\frac{1}{3}\right)^{n-2}=
$$

You only have to carry the algebra out as far as I indicated in class.

On problems 8-10, check the correct box and then indicte your reasoning below. A correctly checked box without appropriate explanation will receive no points.
8. $\sum_{n=1}^{\infty}(-1)^{n}\left(\frac{\pi}{e}\right)^{n}$ \square conditionally convergent

Hint: $\frac{\pi}{e} \approx \frac{3.14}{2.7} \approx 1.16$.
\square divergent

9. $\sum_{n=17}^{\infty}(-1)^{n} \frac{1}{n!}$

conditionally convergent

divergent
\square
absolutely convergent
10. $\sum_{n=2}^{\infty}(-1)^{n} \frac{n^{2}}{n^{3}+8}$

conditionally convergent
\square divergent

More space for problem 10

