	Prof. Girardi	Math 142.003/004	Fall 2005	10.20.05	Exam 2
--	---------------	------------------	-----------	----------	--------

N	IARK BO)X
PROBLEM	POINTS	
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
%	100	_

NAME:
SSN:
please check the box of your section below
Section 003 (MW 9:05 pm)
or
Section 004 (MW 10:10 pm)

INSTRUCTIONS:

- (1) To receive credit you must:
 - (a) work in a logical fashion, show all your work, indicate your reasoning
 - (b) when applicable put your answer on/in the line/box provided
 - (c) if no such line/box is provided, then box your answer
- (2) The MARK BOX indicates the problems along with their points.
 - Check that your copy of the exam has all of the problems.
- (3) You may **not** use a calculator, books, personal notes.
- (4) During this exam, do not leave your seat. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down, and raise your hand.
- (5) This exam covers (from *Calculus* by Anton, Bivens, Davis 8th ed.): Sections 8.1 - 8.5, 8.7, 8.8.

Problem Inspiration: see solution key (If I told you here, you wold know what method to use.)

Solutions will be available on the course homepage later this afternoon.

Hints:

- (1) You can check your answers to the integrals by differentiating.
- (2) + C
- (3) For more partial credit, box your u du substitutions.

1.

$$\int \sec^3 x \tan^3 x \, dx =$$

$$\int \ln(1+x) \, dx =$$

$$\int \cos^2(3x) \, dx =$$

$$4. \int \frac{dx}{\sqrt{x} (1+x)} =$$

Hint: $1 + x = 1 + (\sqrt{x})^2$

$$\int x^2 e^{(-2x)} dx =$$

6.
$$\int dx$$

Hint: complete the square.

$$\int \frac{x^2}{x^2 - 3x + 2} \, dx =$$

Hint: bigger bottoms?

8. Use the trapezoidal rule, with $n=6$ subintervals, to approximate the integral				
	$\int_2^5 \sqrt{x-1} \ dx \ .$			
	ANSWER: T_6 is equal to:			

You only have to do arithmetic as far as I indicated in class.

9. Recall the Trapezoidal Error Bound Theorem: If f'' is continuous on [a, b] and if K_2 is the maximun value of |f''(x)| on [a, b], then

$$\left| T_n - \int_a^b f(x) \, dx \right| \le \frac{(b-a)^3 K_2}{12n^2} \,.$$
 (11)

Use formula (11) to find an upper bound on the error in problem 8.

Answers:

$$K_2 =$$

$$\left| T_6 - \int_2^5 \sqrt{x - 1} \, dx \right| \le$$

You only have to do arithmetic as far as I indicated in class.

$$\int_{1}^{\infty} \frac{dx}{x} =$$

Work logically and clearly so that I can see that you see what is going on. Explain your answer.