Prof. Girardi	Math $142.003 / 004$	Fall 2005	09.13 .05	Exam 1

MARK BOX		
PROBLEM	POINTS	
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
$\%$	100	

\qquad
NAME:

SSN: \qquad
please circle your section below

Section 003 (MW 9:05 pm)
or

Section 004 (MW 10:10 pm)

INSTRUCTIONS:

(1) To receive credit you must:
(a) work in a logical fashion, show all your work, indicate your reasoning
(b) when applicable put your answer on/in the line/box provided
(c) if no such line/box is provided, then box your answer
(2) The mark box indicates the problems along with their points.

Check that your copy of the exam has all of the problems.
(3) You may not use a calculator, books, personal notes. Give exact answers: for example, write $\ln 2$ instead of .6931 , write $\sqrt{2}$ instead of 1.414 , write π instead of 3.1415 , write $\frac{1}{3}$ instead of 0.3333 .
(4) During this exam, do not leave your seat. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down, and raise your hand.
(5) This exam covers (from Calculus by Anton, Bivens, Davis $8^{\text {th }}$ ed.): Section 6.6, 6.8, 6.9, 7.1-7.4, 7.6, 7.7 .

Problem Inspiration:

1. homework problem § 6.6 \# 55
2. homework problem $\S 6.9 \#$ an additional problem
3. homework problem § $6.8 \# 33$
4. homework problem § 6.8 \# 47
5. homework problem § 6.9 \# 3
6. homework problem § 7.1 \# 31, actually problem § 7.1 \# 32
7. homework problem § 7.2 \# 7, actually problem § 7.2 \# 10
8. homework problem § 7.3 \# 5 , actually problem § 7.3 \# 6
9. homework problem § 7.4 \# 7 , actually problem § 7.4 \# 8
10. combines ideas from $\S 7.2$ and 7.3
11. Use the Fundamental Theorem of Calculus to find:

$$
\frac{d}{d x} \int_{17}^{x} e^{\sqrt{t+5}} d t=\square
$$

2. Evaluate the below derivative.

$$
\frac{d}{d x} 7^{\left(x^{2}\right)}=\square .
$$

3. Evaluate the below integral. (Hint: factor $3 x+6$.)

$$
\int_{x=1}^{x=2} \frac{3 x+6}{\sqrt{x^{2}+4 x+7}} d x=\square
$$

4. Evaluate the below integral. Your answer should be a real number and should not involve any log, trig, etc, functions.

$$
\int_{x=\frac{-1}{\sqrt{3}}}^{x=0} \frac{d x}{1+9 x^{2}}=\square
$$

5. The Logarithmic Function Time.

5a. Fill in the one box. By definition, for $x>0$,

$$
\ln x=\int_{1} \square \frac{d t}{t}
$$

5b. Let $\ln a=3$ and $\ln c=6$. Then

$$
\int_{1}^{\frac{a}{c}} \frac{d t}{t}=\square
$$

Your answer should be a number and should not have a \ln , a, or c in it.
6. Find a vertical line $x=k$ that divides the area enclosed by

$$
x=\sqrt{y} \quad \text { and } \quad x=2 \quad \text { and } \quad y=0
$$

into two equal parts.
ANSWER: the vertical line is $x=$
7. Let R be the region enclosed by

$$
y=9-x^{2} \quad \text { and } \quad y=0 .
$$

Let V be the volume of the solid obtained by revolving the region R about the x-axis.
7a. Make a rough sketch of the region R, labeling the important points.

7b. Using the disk/washer method, express the volume V as an integral (or maybe 2 integrals). You do NOT have to evaluate the integral(s).
\square
8. Let R be the region enclosed by

$$
y=\sqrt{x} \quad \text { and } \quad x=4 \quad \text { and } \quad x=9 \quad \text { and } \quad y=0 .
$$

Let V be the volume of the solid obtained by revolving the region R about the y-axis.
8a. Make a rough sketch of the region R, labeling the important points.
$\mathbf{8 b}$. Using the cylindrical shell method, express the volume V as an integral (or maybe 2 integrals). You do NOT have to evaluate the integral(s).
\square
9. Let L be the arc length of the curve

$$
x=\frac{y^{4}}{8}+\frac{y^{-2}}{4} \quad \text { from } \quad y=1 \quad \text { to } \quad y=4 .
$$

Express L as an integral You do NOT have to evaluate the integral.

10. Let R be the region enclosed by

$$
y=\frac{x}{2} \quad \text { and } \quad x=2 \quad \text { and } \quad y=0
$$

Let V be the volume of the solid obtained by revolving the region R about the line $x=3$. 10a.Make a rough sketch of the region R, labeling the important points.

10bJsing the disk/washer method, express the volume V as an integral (or maybe 2 integrals). You will have to use IDEAS from the shell method for when we rotated about a line other then the x or y axis. But do not use the shell method itself.
You do NOT have to evaluate the integral(s).
\square

