Prof. Girardi		Math 142.001/002		Spring 2003	03.10.03	Exam 3
MARK BOX			NAME:			
PROBLEM	POINTS					
1	10					
2	10					
3	10		SSN			
4	10					
5	10					
6	10					
7	10			9:05		
8	10			or		
9	10					
10	10		Sec	2 (MW 10:10)		
\%	100					

INSTRUCTIONS:

(1) To receive credit you must:
(a) work in a logical fashion, show all your work, indicate your reasoning
(b) when applicable put your answer on/in the line/box provided
(c) if no such line/box is provided, then box your answer
(2) The mark box indicates the problems along with their points. Check that your copy of the exam has all of the problems.
(3) You may not use a calculator, books, personal notes. Give exact answers: for example, write $\ln 2$ instead of .6931 , write $\sqrt{2}$ instead of 1.414 , write π instead of 3.1415 , write $\frac{1}{3}$ instead of 0.3333.
(4) During this exam, do not leave your seat. If you have a question, raise your hand. When you finish: turn your exam over, put your pencil down, and raise your hand.
(5) This exam covers (from Calculus by Varberg, Purcell, Rigdon, $8^{\text {th }}$ ed.): Sectionss 10.1-10.5

ADDITIONAL INSTRUCTIONS

In problems 1-5, find the limit of each sequence.

In problems 7-10, check the appropriate box of what that series is doing. Always justify your answer.

Problem Inspiration:

1-3. An idea we have gone over-and-over in class.
4 -5. examples from class
6. just changed numbers from an example from class

7-10. minor variations of problems from Serious Series Problems.
1.
$\lim _{n \rightarrow \infty} \frac{12 n^{2}-3 n+1}{3 n^{2}-17 n+100}=$
2.
$\lim _{n \rightarrow \infty} \frac{3 n^{2}+4}{n-1}=$

Warning: beware, the degree of the polynomial in the numerator does not equal the degree of the polynomial in the denominator. So divide through by the dominating power to see what happens towards infinity.
3.
$\lim _{n \rightarrow \infty} \frac{n-1}{3 n^{2}+4}=$

Warning: beware, the degree of the polynomial in the numerator does not equal the degree of the polynomial in the denominator. So divide through by the dominating power to see what happens towards infinity.
4.
$\lim _{n \rightarrow \infty}(0.9999)^{n}=$

Warning: do not confuse a sequence with a series. This is an example from class.
5.
$\lim _{n \rightarrow \infty} \quad \frac{n}{e^{n}}=$
6. Explicitly find the sum of the geometric series

$$
\sum_{n=3}^{\infty} 9\left(\frac{1}{10}\right)^{n}=\square
$$

Note that the above series starts at $n=3$. Recall that if $|r|<1$ then (starting at $n=0$)

$$
\sum_{n=0}^{\infty} r^{n}=1+r+r^{2}+r^{3}+\ldots=\frac{1}{1-r}
$$

> absolutely convergent
7. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n+1}{n!}$ \square conditionally convergent
divergent

absolutely convergent

8. $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}}$conditionally convergent
divergent
9. $\sum_{n=1}^{\infty}(-1)^{n} \frac{\sin n}{n^{2}+1}$
absolutely convergentconditionally convergent
divergent

> absolutely convergent
10. $\sum_{n=1}^{\infty}(-1)^{n} \frac{n^{2}+1}{3 n^{2}+n-1}$
\square conditionally convergent
divergent

Think before you dive in.

