
PIN/Name: Solutions Hand-in Part: Intro. to Taylor Polynomials

Homework 2. Find the equation y = p1 (x) of the tangent line to the function f(x) = 1
x

at the
point x0 = 2. Express your answer in the form p1 (x) = d + m (x− 2) for some constants d & m.

Soln: p1 (x) =
1

2
+
−1

4
(x− 2) .

We have already had on the handout that the equation y = p1(x) of the tangent line to the graph
of y = f(x) at the point (x0, f(x0)) is

p1(x) = f(x0) + f ′(x0)(x− x0) . (1)

Helpful Table for Homework 2

n f (n)(x) f (n)(x0)
here
= f (n)(2)

0 f (0)(x)
def
= f(x) = x−1 f (0)(2) = 1

2

1 f (1)(x)
def
= f ′(x) = − x−2 f (1)(2) = −1

4

Using Helpful Table for Homework 2 and the equation (1), we get:

p1(x) =
1

2
+
−1

4
(x− 2) . (2)

Note that (2) is the the reqested form p1 (x) = d + m (x− 2) where the constants d = 1
2

and

m = −1
4

so WE ARE DONE.

Homework 4. Find the second order Taylor polynomial y = p2 (x) for f(x) = 1
x

at x0 = –2. First
fill in the Helpful Table for Homework 4. Then express your answer in the form

p2 (x) = c0 + c1(x−− 2) + c2(x−− 2)2 or p2 (x) = c0 + c1(x + 2) + c2(x + 2)2

for some constants c0, c1, c2.

We have from the handout that the second order Taylor polynomial of y = f(x) at x0 is

p2(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2!
(x− x0)

2 . (3)

Helpful Table for Homework 4

n f (n)(x) f (n)(x0)
here
= f (n)(−2) cn

def
= f (n)(x0)

n!

here
= f (n)(−2)

n!

0 f (0)(x)
def
= f(x) = x−1 f(−2) = −1

2
−1
2

1
0!

= −1
2

1 f (1)(x)
def
= f ′(x) = − x−2 f ′(−2) = −1

4
−1
4

1
1!

= −1
4

2 f (2)(x)
def
= f ′′(x) = 2x−3 f ′′(−2) = −2

8
−2
8

1
2!

= −1
8

Using equation (3) with the Helpful Table, we get

Soln: p2 (x) =
−1

2
+
−1

4
(x + 2) +

−1

8
(x + 2)2 .
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Homework 6. For the function f (x) = sin(3x) from Example 5, find the Maclaurin polynomials:

y = p1(x), y = p3(x), y = p5(x), y = p7(x), y = p9(x), y = p11(x), and y = p13(x) .

First fill out the Helpful Table and then indicate the Maclaurin polynomials in the Solution Table.
We are looking for patterns so you may leave/express, e.g., 35 as just 35 rather than 243 and 5! as just 5! rather than 120; in short, you

do not need a calculator.

The N th-order Taylor polynomial for y = f(x) centered at x0 is, as motivated on the handout,

pN(x) =
N∑

n=0

f (n)(x0)

n!
(x− x0)

n =
N∑

n=0

cn(x− x0)
n where cn =

f (n)(x0)

n!
.

The N th-order Maclaurin polynomial for y = f(x), which is just

the N th-order Taylor polynomial for y = f(x) centered at x0 = 0, is therefore

pN(x) =
N∑

n=0

cnx
n where cn =

f (n)(0)

n!
. (4)

Helpful Table for Homework 6

n f (n)(x) f (n)(x0)
here
= f (n)(0) cn

def
= f (n)(x0)

n!

here
= f (n)(0)

n!

0 sin(3x)
note
= +30 sin(3x) 0 0

1 3 cos(3x)
note
= +31 cos(3x) +31 +31

1!

2 −32 sin(3x) 0 0

3 −33 cos(3x) −33 −33

3!

4 +34 sin(3x) 0 0

5 +35 cos(3x) +35 +35

5!

6 −36 sin(3x) 0 0

7 −37 cos(3x) −37 −37

7!

8 +38 sin(3x) 0 0

9 +39 cos(3x) +39 +39

9!

10 −310 sin(3x) 0 0

11 −311 cos(3x) −311 − 311

(11)!

12 +312 sin(3x) 0 0

13 +313 cos(3x) +313 + 313

(13)!

Using equation (4) with the Helpful Table, we get:

Solution Table for Homework 6

n y = pn(x)

1 p1(x) = 31

1!
x1

3 p3(x) = 31

1!
x1 − 33

3!
x3

5 p5(x) = 31

1!
x1 − 33

3!
x3 + 35

5!
x5

7 p7(x) = 31

1!
x1 − 33

3!
x3 + 35

5!
x5 − 37

7!
x7

9 p9(x) = 31

1!
x1 − 33

3!
x3 + 35

5!
x5 − 37

7!
x7 + 39

9!
x9

11 p11(x) = 31

1!
x1 − 33

3!
x3 + 35

5!
x5 − 37

7!
x7 + 39

9!
x9 − 311

(11)!
x11

13 p13(x) = 31

1!
x1 − 33

3!
x3 + 35

5!
x5 − 37

7!
x7 + 39

9!
x9 − 311

(11)!
x11 + 313

(13)!
x13
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Bonus problem. In Homework 6, what is the 4th-order Maclaurin polynomial?

Soln: p4 (x) = 31

1!
x1 − 33

3!
x3 .

Helpful Thoughts

To be read before next class but was not be be handed in.

Just to think about. Take another look at Homework 6. Do you notice any pattern in the
Taylor coefficients? Why did we only use odd-order Taylor polynomials?

Let’s look at Table ?? for a pattern. Notice the pattern for the Maclaurin coefficients cn’s, i.e. for
{cn}13n=0, or better yet, for {cn}∞n=0? It looks as if

cn is

{
0 if n is even

+3n

n!
or − 3n

n!
if n is odd .

(5)

We just need to figure out the ± in the case that n is odd. What is causing the pattern? Well, it’s
the sinus function. To help find the pattern, let’s look at an related easier example, g(x) = sinx.

But first, some handy notation useful for splitting up subsets of integers into the (disjoint) union
of the even and odd ones. Recall that N0 = N ∪ {0} and that 4

⋃
denotes disjoint union.

N def
= {1, 2, 3, 4, 5, 6, . . .} = the natual numbers and N0

def
= {0, 1, 2, 3, 4, 5, . . .}

2N def
= {2, 4, 6, 8, 10, 12, . . .} = the even N’s and 2N0

def
= {0, 2, 4, 6, 8, 10, . . .}

2N− 1
def
= {1, 3, 5, 7, 9, 11, . . .} = the odd N’s and 2N0 + 1

def
= {1, 3, 5, 7, 9, 11, . . .}

N so
= (2N)4

⋃
(2N− 1) and N0

so
= (2N0)4

⋃
(2N0 + 1)

There are other (obvious) notations.1

Now back to pattern searching with g(x) = sinx. Recall, we want to spit N0 into (2N0)4
⋃

(2N0 + 1).

to split n into even and odds without k get k involved
2N0 2N0 + 1 N0

k 2k 2k + 1 n g(n)(x) g(n)(0) g(n)(x) g(n)(0)

0 0 0 sinx 0 (−1)k sinx 0
0 1 1 cosx 1 (−1)k cosx (−1)k

1 2 2 − sinx 0 (−1)k sinx 0
1 3 3 − cosx −1 (−1)k cosx (−1)k

notice a recycling pattern kicking in

2 4 4 sinx
notice

= g(0)(x) 0 (−1)k sinx 0

2 5 5 cosx
notice

= g(1)(x) 1 (−1)k cosx (−1)k

3 6 6 − sinx
notice

= g(2)(x) 0 (−1)k sinx 0

3 7 7 − cosx
notice

= g(3)(x) −1 (−1)k cosx (−1)k

the recycling pattern starts over again

Table 1

1To see if you are understanding, convince yourself that N = (3N)4
⋃

(3N− 1)4
⋃

(3N− 2) .
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We now see, from the recyling pattern and the the help of the split with the k’s, that for n ∈ N0,

g(n)(0) =

{
0 if n ∈ N0 is even

(−1)k is n ∈ N0 is odd and of the form n = 2k + 1 for some k ∈ N0 .

Note, this completely (i.e., covers all cases) gives {g(n)(0)}∞n=0.
Now back to the originial problem of pattern searching to find the Maclaurin coefficients {cn}∞n=0

for f(x) = sin(3x). We start by making a table similar to, and using ideas learned from, Table 1
for g(x) = sin x.

to split n into even and odds without k get k involved
2N0 2N0 + 1 N0

k 2k 2k + 1 n f (n)(x) f (n)(0) f (n)(0) cn = f (n)(0)
n!

0 0 0 sin(3x) 0 0 0

0 1 1 3 cos(3x) 3 (−1)k3 (−1)k 31

1!

1 2 2 −32 sin(3x) 0 0 0

1 3 3 −33 cos(3x) −33 (−1)k33 (−1)k 33

3!

notice a recycling pattern kicking in

2 4 4 34 sin(3x)
notice

= 34f (0)(x) 0 0 0

2 5 5 35 cos(3x)
notice

= 34f (1)(x) 35 (−1)k35 (−1)k 35

5!

3 6 6 −36 sin(3x)
notice

= 34f (2)(x) 0 0 0

3 7 7 −37 cos(3x)
notice

= 34f (3)(x) −37 (−1)k37 (−1)k 37

7!

the recycling pattern starts over again

At last, we see (and understand why it really works) the pattern. For each k ∈ N0 and N ∈ N0,

c2k
(∗)
= 0 and c2k+1

(**)
= (−1)k

32k+1

(2k + 1)!
.

p2N+1(x)
by (4)

=
2N+1∑
n=0

cnx
n =

N∑
k=0

c2kx
2k +

N∑
k=0

c2k+1x
2k+1 by (*)

=
N∑
k=0

c2k+1x
2k+1

by (**)
=

N∑
k=0

(−1)k
32k+1

(2k + 1)!
x2k+1 let m = k + 1

=
N+1∑
m=1

(−1)m−1
32m−1

(2m− 1)!
x2m−1 .

Since p2k(x)
by (4)

= p2k−1(x) + c2kx
2k by (*)

= p2k−1(x) for k ≥ 1, we only considered odd Taylor
polynomials.
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