Complete the below 3 charts, similarly to the Intro. to Taylor Polynomials worksheet, which is posted (along with solutions) on the course homepage under Selected Solutions. Write your solutions so that the patterns for the c_{n} 's are easily recognizable (so leave factorials and constants raised to a power in your chart).
Example 1. Given the function $f(x)=\frac{1}{1-x}$ with center at $x_{0}=0$.

Helpful Table for Example 1			
n	$f^{(n)}(x)$	$f^{(n)}\left(x_{0}\right) \stackrel{\text { here }}{=} f^{(n)}(0)$	$c_{n} \stackrel{\text { def }}{=} \frac{f^{(n)}\left(x_{0}\right)}{n!} \stackrel{\text { here }}{=} \frac{f^{(n)}(0)}{n!}$
0	$(1-x)^{-1}$	$(1-0)^{-1}=1$	$\frac{1}{0!} \stackrel{\text { note }}{=} \frac{0!}{0!}=1$
1	$-(1-x)^{-2}(-1)=(1-x)^{-2}$	$(1-0)^{-2}=1$	$\frac{1}{1!}=\frac{1!}{1!}=1$
2	$-2(1-x)^{-3}(-1)=2(1-x)^{-3}$	$2(1-0)^{-3}=2$	$\frac{2}{2!}=\frac{2!}{2!}=1$
3	$2(-3)(1-x)^{-4}(-1)=3!(1-x)^{-4}$	$3!(1-0)^{-4}=3!$	$\frac{3!}{3!}=1$
4	$3!(-4)(1-x)^{-5}(-1)=4!(1-x)^{-5}$	$4!(1-0)^{-5}=4!$	$\frac{4!}{4!}=1$
5	$4!(-5)(1-x)^{-6}(-1)=5!(1-x)^{-6}$	$5!(1-0)^{-6}=5!$	$\frac{5!}{5!}=1$
6	$5!(-6)(1-x)^{-7}(-1)=6!(1-x)^{-7}$	$6!(1-0)^{-7}=6!$	$\frac{6!}{6!}=1$

Example 2. Given the function $f(x)=\sin x$ with center at $x_{0}=\pi$.

Helpful Table for Example 2			
n	$f^{(n)}(x)$	$f^{(n)}\left(x_{0}\right) \stackrel{\text { here }}{=} f^{(n)}(\pi)$	$c_{n} \stackrel{\text { def }}{=} \frac{f^{(n)}\left(x_{0}\right)}{n!} \stackrel{\text { here }}{=} \frac{f^{(n)}(\pi)}{n!}$
0	$\sin x$	$\sin \pi=0$	$\frac{0}{0!}=\frac{0}{1}=0$
1	$\cos x$	$\cos \pi={ }^{-} 1$	$\frac{-1}{1!}=-\frac{1}{1}=-1$
2	$-\sin x$	$-\sin \pi=0$	$\frac{0}{2!}=0$
3	$-\cos x$	$-\cos \pi=-\left({ }^{-} 1\right)=1$	$\frac{1}{3!}=+\frac{1}{3!}$
4	$\sin x$	$\sin \pi=0$	$\frac{0}{4!}=0$

- Note $f^{(4)}(x)=f^{(0)}(x)$ so the derivatives $y=f^{(n)}(x)$ repeat/cycle in sets of 4 .

Example 3. Given the function $f(x)=\ln (1+x)$ with center $x_{0}=0$.

Helpful Table for Example 3

n	$f^{(n)}(x)$	$f^{(n)}\left(x_{0}\right) \stackrel{\text { here }}{=} f^{(n)}(0)$	$c_{n} \stackrel{\text { def }}{=} \frac{f^{(n)}\left(x_{0}\right)}{n!} \xlongequal{n \text { here }} \frac{f^{(n)}(0)}{n!}$
0	$\ln (1+x)$	$\ln (1+0)=0$	$\frac{0}{0!}=\frac{0}{1}=0$
1	$(1+x)^{-1}$	$(1+0)^{-1}=+1$	$\frac{1}{1!}=+1$
2	$-(1+x)^{-2}$	$-(1+0)^{-2}=-1$	$\frac{-1}{2!}=-\frac{1}{2}$
3	${ }^{+} 2(1+x)^{-3}$	$+2(1+0)^{-3}=+2$	$\frac{2}{3!}=+\frac{1}{3}$
4	$-3!(1+x)^{-4}$	$-3!(1+0)^{-4}=-3!$	$\frac{-3!}{4!}=-\frac{1}{4}$
5	$+4!(1+x)^{-5}$	$+4!(1+0)^{-5}=+4!$	$\frac{4!}{5!}=+\frac{1}{5}$
6	$-5!(1+x)^{-6}$	$-5!(1+0)^{-6}=-5!$	$\frac{-5!}{6!}=-\frac{1}{6}$

