This quiz, which you can do after $\S 8.2$, is DUE Tuesday February 5 at the beginning of class. First, read pages 504-509 from the Thomas textbook (covering Improper Integral); specifically, read from the start of $\S 8.8$ through the subsection Improper Integrals with a CAS. Recall below details of FTC.

The Fundamental Theorem of Calculus (FTC) gives that if f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any antiderivative of f, i.e., a function such that $F^{\prime}=f$. Note that to apply the FTC, one needs f to be continuous on the whole interval $[a, b]$. Thus one needs the following 3 conditions.
(1) If $a<c<b$ (in other words, if $c \in(a, b)$), then

$$
\lim _{x \rightarrow c} f(x)=f(c)
$$

(2) The limit of $y=f(x)$ as x approaches a from the right is $f(a)$, which can be expressed

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

(3) The limit of $y=f(x)$ as x approaches b from the left is $f(b)$, which can be expressed

$$
\lim _{x \rightarrow b^{-}} f(x)=f(b)
$$

Consider the function

$$
f(x)=\frac{1}{(x-17)^{3}}
$$

Note that the function $y=f(x)$ is not defined at $x=17$ and is continuous on $\mathbb{R} \backslash\{17\}$.
Recall $\mathbb{R} \backslash\{17\}$ denotes the whole real line take away the point 17 , so $\mathbb{R} \backslash\{17\}=(-\infty, 17) \cup(17, \infty)$. Below is a rough sketch of the graph of $y=f(x)$.

Next answer the questions on the next page.

Answer the following questions.

1. Fill in the 3 boxes as so to express the following integral as an appropriate limit of definite integrals $\int_{a}^{b} f(x) d x$ where $y=f(x)$ is continuous on $[a, b]$.

2. Fill in the 3 boxes as so to express the following integral as an appropriate limit of definite integrals $\int_{a}^{b} f(x) d x$ where $y=f(x)$ is continuous on $[a, b]$.

$$
\int_{17}^{18} \frac{1}{(x-17)^{3}} d x=\quad \lim
$$

3. Fill in the 3 boxes as so to express the following integral as an appropriate limit of definite integrals $\int_{a}^{b} f(x) d x$ where $y=f(x)$ is continuous on $[a, b]$.

$$
\int_{16}^{17} \frac{1}{(x-17)^{3}} d x=\quad \lim
$$

4. Fill in the 6 boxes as so to express the following integral as a sum of two limits of definite integrals $\int_{a}^{b} f(x) d x$ where $y=f(x)$ is continuous on $[a, b]$.

5. Express the following integral as a sum of appropriate limits of definite integrals $\int_{a}^{b} f(x) d x$ where $y=f(x)$ is continuous on $[a, b]$.

$$
\int_{16}^{\infty} \frac{1}{(x-17)^{3}} d x=
$$

