1. Determine (all) values of $p \in \mathbb{R}$ for which the following series converges. HINT: Integral Test.

$$\sum_{n=1}^{\infty} \frac{\ln n}{n^p}$$

ANSWER: The series $\sum_{n=1}^{\infty} \frac{\ln n}{n^p}$ converges if and only if <u>p > 1</u> Fill in the line with some condition on p and then justify your answer below.

If $p \leq 0$, then $\lim_{n \to \infty} \frac{\ln n}{n^p} = \infty$ and so, by the n^{th} term test, $\sum \frac{\ln n}{n^p}$ diverges. Thus

$$\sum_{n=1}^{\infty} \frac{\ln n}{n^p} \quad \text{diverges when} \quad p \le 0 \quad .$$

Now let p > 0. Let's check the conditions of the Integral Test. So define $f: [1, \infty) \to \mathbb{R}$ by $f(x) = \frac{\ln x}{x^p}$.

- (1) We were given $a_n = \frac{\ln n}{n^p}$ and so $f(n) = a_n$ for all $n \in \mathbb{N}$ (this was by design)
- (2) y = f(x) positive on $[1, \infty)$? yes clear
- (3) y = f(x) continuous on $[1, \infty)$? yes clear
- (4) y = f(x) decreasing on $[1, \infty)$? maybe let's use the 1st-derivative test to check if it is decreasing. Checking if f is decreasing on $[1, \infty)$: for $x \in [1, \infty)$

$$f'(x) = \frac{\frac{1}{x} (x^p) - (\ln x) p x^{p-1}}{(x^p)^2} \stackrel{\text{(a)}}{=} \frac{x^{p-1} (1 - p \ln x)}{x^{2p}} < 0 \quad \Longleftrightarrow \quad 1 - p \ln x < 0 \quad \stackrel{\text{(b)}}{\Longleftrightarrow} \quad e^{\frac{1}{p}} < x \; .$$

So f is decreasing on $[e^{1/p}, \infty)$. So f satisfies the conditions of the integral test on the interval $[e^{1/p}, \infty)$. So by the integral test, the improper integral $\int_{e^{1/p}}^{\infty} \frac{\ln x}{x^p} dx$ and the infinite series $\sum \frac{\ln n}{n^p} do$ the same thing (i.e., either both converge or both diverge). So let's investige this improper integral. By basic calculus (which you should show)

$$\int \frac{\ln x}{x^p} dx = \begin{cases} \frac{x^{1-p}[(1-p)\ln x-1]}{(1-p)^2} & p \neq 1 \text{ (use integration by parts with } u = \ln x) \\ \frac{(\ln x)^2}{2} & p = 1 \text{ (use substitution with } u = \ln x) \end{cases}$$
(1)

So if p = 1, then

$$\int_{e^{1/p}}^{b} \frac{\ln x}{x^{p}} dx = \int_{e^{1/p}}^{b} \frac{\ln x}{x} dx \stackrel{\text{by (1)}}{=} \frac{(\ln x)^{2}}{2} \Big|_{x=e^{1/p}}^{x=b} = \frac{(\ln b)^{2}}{2} - \frac{(\ln e^{1/p})^{2}}{2} = \frac{(\ln b)^{2}}{2} - \frac{1}{2p^{2}} \xrightarrow{b \to \infty} \infty.$$

If $p \neq 1$ (recall we still have p > 0), then

$$\int_{e^{1/p}}^{t} \frac{\ln x}{x^{p}} dx \stackrel{\text{by (1)}}{=} \frac{x^{1-p} \left[(1-p) \ln x - 1 \right]}{(1-p)^{2}} \Big|_{x=e^{1/p}}^{x=t} = \frac{t^{1-p} \left[(1-p) \ln t - 1 \right]}{(1-p)^{2}} - \underbrace{\frac{\left(e^{1/p}\right)^{1-p} \left[(1-p) \ln e^{1/p} - 1 \right]}{(1-p)^{2}}}_{\text{some finite constant, all we care about is that this constant is finite.}}$$

So we need to evaluate the behavior of $\lim_{t\to\infty} t^{1-p} [(1-p)\ln t - 1]$, which depends on whether 1-p (i.e., the power to which t is raised) is positive or negative.

<u>Case p > 1</u>. So 1 - p < 0 and 0 .

$$\lim_{t \to \infty} t^{1-p} \left[(1-p) \ln t - 1 \right] \stackrel{\text{(I)}}{=} \lim_{t \to \infty} \frac{(1-p) \ln t - 1}{t^{p-1}} \stackrel{\text{(I)}}{=} \lim_{t \to \infty} \frac{(1-p) t^{-1}}{(p-1) t^{p-1-1}} \stackrel{\text{(I)}}{=} \lim_{t \to \infty} \frac{-1}{t^{p-1}} \stackrel{p-1>0}{=} 0$$

Case 0 . So <math>0 < 1 - p < 1. Then

$$\lim_{t \to \infty} t^{1-p} \stackrel{1-p>0}{=} \infty \quad \text{and} \quad \lim_{t \to \infty} \ln t = \infty$$

and so

$$\lim_{t \to \infty} t^{1-p} \left[(1-p) \ln t - 1 \right] = \infty \; .$$

Conclusion for p > 0. The improper integral

$$\int_{e^{1/p}}^{\infty} \frac{\ln x}{x^p} \, dx \quad \text{is} \quad \begin{cases} \text{divergent} & \text{if } 0 1 \end{cases}.$$

Thus we have shown

$$\sum_{n=1}^{\infty} \frac{\ln n}{n^p} dx \quad \text{ is } \quad \begin{cases} \text{divergent} & \text{ if } 0 1 \end{cases}.$$

2. Find the sum of the (telescoping) series

$$\sum_{n=1}^{\infty} \frac{2}{n^2 + 2n} \, \cdot \,$$

Hint: $\frac{2}{n^2+2n} = \frac{1}{n} - \frac{1}{n+2}$.

Let $a_n = \frac{2}{n^2 + 2n}$ and $s_n = \sum_{k=1}^n a_k$. Thus we want to consider $\lim_{n \to \infty} s_n$. The hint (thanks) gives us the the Partial Fractions Decomposition of a_n :

$$\frac{2}{n^2 + 2n} \; = \; \frac{1}{n} - \frac{1}{n+2} \; .$$

Since the denominators n and n+2 of the PFD differ by 2, we will write 2 terms per line

Thus we have

,

$$s_n = 1 + \frac{1}{2} + \frac{-1}{n+1} + \frac{-1}{n+2} \longrightarrow 1 + \frac{1}{2} + 0 + 0 = \frac{3}{2}.$$

Thus the answer is: The series $\sum_{n=1}^{\infty} \frac{2}{n^2+2n}$ converges to the sum $\frac{3}{2}$.