1. Determine (all) values of $p \in \mathbb{R}$ for which the following series converges. Hint: Integral Test.

$$
\sum_{n=1}^{\infty} \frac{\ln n}{n^{p}}
$$

Answer: The series $\sum_{n=1}^{\infty} \frac{\ln n}{n^{p}}$ converges if and only if \qquad .
Fill in the line with some condition on p and then justify your answer below.
If $p \leq 0$, then $\lim _{n \rightarrow \infty} \frac{\ln n}{n^{p}}=\infty$ and so, by the $n^{\text {th }}$ term test, $\sum \frac{\ln n}{n^{p}}$ diverges. Thus

$$
\sum_{n=1}^{\infty} \frac{\ln n}{n^{p}} \quad \text { diverges when } \quad p \leq 0
$$

Now let $p>0$. Let's check the conditions of the Integral Test. So define $f:[1, \infty) \rightarrow \mathbb{R}$ by $f(x)=\frac{\ln x}{x^{p}}$.
(1) We were given $a_{n}=\frac{\ln n}{n^{p}}$ and so $f(n)=a_{n}$ for all $n \in \mathbb{N}$ (this was by design)
(2) $y=f(x)$ positive on $[1, \infty) ?$ yes - clear
(3) $y=f(x)$ continuous on $[1, \infty)$? yes - clear
(4) $y=f(x)$ decreasing on $[1, \infty)$? maybe - let's use the $1^{\text {st }}$-derivative test to check if it is decreasing.

Checking if f is decreasing on $[1, \infty)$: for $x \in[1, \infty)$

$$
f^{\prime}(x)=\frac{\frac{1}{x}\left(x^{p}\right)-(\ln x) p x^{p-1}}{\left(x^{p}\right)^{2}} \stackrel{\oplus}{=} \frac{x^{p-1}(1-p \ln x)}{x^{2 p}}<0 \Longleftrightarrow 1-p \ln x<0 \Longleftrightarrow e^{\frac{1}{p}}<x
$$

So f is decreasing on $\left[e^{1 / p}, \infty\right)$. So f satisfies the conditions of the integral test on the interval $\left[e^{1 / p}, \infty\right)$. So by the integral test, the improper integral $\int_{e^{1 / p}}^{\infty} \frac{\ln x}{x^{p}} d x$ and the infinite series $\sum \frac{\ln n}{n^{p}}$ do the same thing (i.e., either both converge or both diverge). So let's investiage this improper integral.

By basic calculus (which you should show)

$$
\int \frac{\ln x}{x^{p}} d x= \begin{cases}\frac{x^{1-p}[(1-p) \ln x-1]}{(1-p)^{2}} & p \neq 1 \text { (use integration by parts with } u=\ln x \text {) } \tag{1}\\ \frac{(\ln x)^{2}}{2} & p=1 \text { (use substitution with } u=\ln x)\end{cases}
$$

So if $p=1$, then

$$
\int_{e^{1 / p}}^{b} \frac{\ln x}{x^{p}} d x=\left.\int_{e^{1 / p}}^{b} \frac{\ln x}{x} d x \stackrel{\text { by }(1)}{=} \frac{(\ln x)^{2}}{2}\right|_{x=e^{1 / p}} ^{x=b}=\frac{(\ln b)^{2}}{2}-\frac{\left(\ln e^{1 / p}\right)^{2}}{2}=\frac{(\ln b)^{2}}{2}-\frac{1}{2 p^{2}} \xrightarrow{b \rightarrow \infty} \infty .
$$

If $p \neq 1$ (recall we still have $p>0$), then

$$
\left.\int_{e^{1 / p}}^{t} \frac{\ln x}{x^{p}} d x \stackrel{\text { by }(1)}{=} \frac{x^{1-p}[(1-p) \ln x-1]}{(1-p)^{2}}\right|_{x=e^{1 / p}} ^{x=t}=\frac{t^{1-p}[(1-p) \ln t-1]}{(1-p)^{2}}-\underbrace{\frac{\left(e^{1 / p}\right)^{1-p}\left[(1-p) \ln e^{1 / p}-1\right]}{(1-p)^{2}}}
$$

some finite constant, all we
care about is that this constant is finite
So we need to evaluate the behavior of $\lim _{t \rightarrow \infty} t^{1-p}[(1-p) \ln t-1]$, which depends on whether $1-p$ (i.e., the power to which t is raised) is positive or negative.
Case $p>1$. So $1-p<0$ and $0<p-1$.
$\underline{\text { Case } 0<p<1}$. So $0<1-p<1$. Then

$$
\lim _{t \rightarrow \infty} t^{1-p} \quad 1-\underline{p}>0 \quad \infty \quad \text { and } \quad \lim _{t \rightarrow \infty} \ln t=\infty
$$

and so

$$
\lim _{t \rightarrow \infty} t^{1-p}[(1-p) \ln t-1]=\infty
$$

Conclusion for $p>0$. The improper integral

$$
\int_{e^{1 / p}}^{\infty} \frac{\ln x}{x^{p}} d x \quad \text { is } \quad \begin{cases}\text { divergent } & \text { if } 0<p \leq 1 \\ \text { convergent } & \text { if } p>1\end{cases}
$$

Thus we have shown

$$
\sum_{n=1}^{\infty} \frac{\ln n}{n^{p}} d x \quad \text { is } \quad \begin{cases}\text { divergent } & \text { if } 0<p \leq 1 \\ \text { convergent } & \text { if } p>1\end{cases}
$$

2. Find the sum of the (telescoping) series

$$
\sum_{n=1}^{\infty} \frac{2}{n^{2}+2 n}
$$

Hint: $\frac{2}{n^{2}+2 n}=\frac{1}{n}-\frac{1}{n+2}$.
Let $a_{n}=\frac{2}{n^{2}+2 n}$ and $s_{n}=\sum_{k=1}^{n} a_{k}$. Thus we want to consider $\lim _{n \rightarrow \infty} s_{n}$. The hint (thanks) gives us the the Partial Fractions Decomposition of a_{n} :

$$
\frac{2}{n^{2}+2 n}=\frac{1}{n}-\frac{1}{n+2} .
$$

Since the denominators n and $n+2$ of the PFD differ by 2 , we will write 2 terms per line

$$
\begin{aligned}
& s_{n}=\frac{+1}{1}+\frac{-\not \chi}{3}+\frac{+1}{2}+\frac{-\not \chi}{4} \quad \quad \leadsto \rightsquigarrow k=1 \text { and } k=2 \text { terms } \\
& +\frac{+\chi}{3}+\frac{-\chi}{5}+\frac{+\chi}{4}+\frac{-\not \chi}{6} \quad \text { ぃ } \rightarrow k=3 \text { and } k=4 \text { terms } \\
& +\frac{+\not \chi}{5}+\frac{-\not \chi}{7}+\frac{+\not \chi}{6}+\frac{-\not \chi}{8} \quad \text { ~n } k=5 \text { and } k=6 \text { terms } \\
& +\frac{+\chi}{7}+\frac{-\not \chi}{9}+\frac{+\chi}{8}+\frac{-\not \chi}{10} \quad \leadsto \rightsquigarrow k=7 \text { and } k=8 \text { terms } \\
& \vdots \stackrel{9}{\swarrow} \stackrel{8}{\swarrow} \\
& +\frac{+y}{\not 2-3}+\frac{-y}{\not n-1}+\frac{+y}{\not 2-2}+\frac{-\not x}{n} \quad \quad \leftrightarrow m k=n-3 \text { and } k=n-2 \text { terms } \\
& +\frac{+y}{\not 2-1}+\frac{-1}{n+1}+\frac{+\chi}{n}+\frac{-1}{n+2} \quad \leftrightarrow \rightsquigarrow k=n-1 \text { and } k=n \text { terms } .
\end{aligned}
$$

Thus we have

$$
s_{n}=1+\frac{1}{2}+\frac{-1}{n+1}+\frac{-1}{n+2} \quad \xrightarrow{n \rightarrow \infty} \quad 1+\frac{1}{2}+0+0=\frac{3}{2} .
$$

Thus the answer is: The series $\sum_{n=1}^{\infty} \frac{2}{n^{2}+2 n}$ converges to the sum $\frac{3}{2}$.

