Sequences

(with some Maple Commands/Examples needed for Series to come)

Douglas Meade, Ronda Sanders, and Xian Wu Department of Mathematics

Overview

Sequences and series are the objects of interest for the next few weeks. The intent of this lab is to provide additional practice determining the convergence or divergence of a sequence of numbers. Ways to generate sequences and series in Maple are also introduced.

Maple Essentials

• New Maple commands introduced in this lab:

Command/Example	Description
Sequence Part - For this Lab	
<pre>evalf(expression);</pre>	numerically evaluates expressions involving constants
Example:	
<pre>evalf(Pi);</pre>	
seq(f(n), n=ij);	creates a finite sequence of values
Example:	$f(i), f(i+1), \cdots f(j),$
seq(1/n,n=110);	where $f(n)$ is a maple function and $i \leq j$ are integers.
seq([n,f(n)],n=ij);	creates a finite sequence of points on the graph of
Example:	y = f(x).
f:=x->x^2;	
seq([n,f(n)],n=110);	
Series Part - For Labs To Come	
sum(f(n), n=ij)	creates and evaluates a finite or infinite sum, that is,
Example:	series $\sum_{n=i}^{j} f(n)$, where f(n) is a maple function or
<pre>sum(n^2, n=110);</pre>	expression and $i \leq j$ can be integers, variables, or
	infinity. For a finite or convergent infinite series, it
	automatically evaluates the sum and returns a value
	or formula. If you don't want the automatic evalua-
	tion, use Sum instead of sum.
for n from i to j doend do;	A typical for-loop (for and do statement) used in
Example:	general programming languages. It executes whatever
s[1]:=1; for n from 1 to 9 do	between ''do'' and ''end do'' repeatedly for a
s[n+1] := s[n]+n end do;	counted number of times (''for n from i to j'').
	It hence can be used to work with sequences in much
	more general ways than what the command seq could.

• A link to the *SequenceDrill* maplet can be found on the course website:

 $\texttt{http://www.math.sc.edu/~girardi/m142/11F/maple/maple.html} \rightarrow SequenceDrill$

Preparation

Sections 11.1 in Stewart. Sections 9.1 in CalcLabs. In addition, review the basic qualitative properties of logarithms, powers, exponentials, and so on. For example, exponentials grow faster (at ∞) than polynomials, factorials grow faster than exponentials, and so on.

Activities

For the given sequence $\{a_n\}_{n=1}^{\infty}$, do the following.

- (a) Generate the first 10 terms. I.e., find $a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9$, and a_{10} .
- (b) Graph enough points (n, a_n) to make a guess as to whether the sequence $\{a_n\}_{n=1}^{\infty}$ converges (in which case, what is $\lim_{n\to\infty} a_n$?) or diverges.
- (c) See if your guess in part (b) agrees with what Maple thinks the $\lim_{n\to\infty} a_n$ is.

(1) $a_n = \arctan(n)$ (2) $a_n = \cos(n\pi)$ (3) $a_n = \frac{(-1)^n}{n}$

Note: You may use the SequenceDrill maplet.

```
Example: Activity 1a,b,c.
```

```
> with(plots):
> f:= n-> arctan(n);
> evalf(seq(f(n), n=1..10));
> points:=evalf(seq([n,f(n)], n=1..10));
> P1:=plot([points], style=point):
> P2:=plot([-1/2*Pi, 1/2*Pi]):
> display([P1,P2]);
> limit(f(n), n=infinity);
```

Assignment: due Wed 9/21 at BEGINNING of recitation

For the given sequence $\{a_n\}_{n=1}^{\infty}$, do the following.

- (a) Generate the first 10 terms. I.e., find $a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_9$, and a_{10} .
- (b) Graph enough points (n, a_n) to make a guess as to whether the sequence $\{a_n\}_{n=1}^{\infty}$ converges (in which case, what is $\lim_{n\to\infty} a_n$?) or diverges.
- (c) Verify your guess in part (b) by hand using the Limit Laws and Theorems about sequences from Section 11.1 of our textbook.

(1)
$$\{1 - (0.2)^n\}_{n=1}^{\infty}$$
 (2) $\{\frac{3+5n^2}{n+n^2}\}_{n=1}^{\infty}$ (3) $\{e^{1/n}\}_{n=1}^{\infty}$
(4) $\{\frac{2n\pi}{1+8n}\}_{n=1}^{\infty}$ (5) $\{\left(1+\frac{2}{n}\right)^n\}_{n=1}^{\infty}$ (6) $\{\frac{n!}{2^n}\}_{n=1}^{\infty}$