SOME POLYNOMIAL FACTORING

PROBLEMS FROM PAST

WEST COAST

NUMBER THEORY CONFERENCES

by Michael Filaseta

University of South Carolina
Joint Work with

A. Borisov, T.-Y. Lam, O. Trifonov

Conjecture (F., 1986):

Let n be an integer ≥ 2, and let

$$f(x) = 1 + x + x^2 + \cdots + x^n.$$

Then $f'(x)$ is irreducible over the rationals.

Examples:

$$n = 2 : f'(x) = 2x + 1$$
$$n = 3 : f'(x) = 3x^2 + 2x + 1$$
$$n = 4 : f'(x) = 4x^3 + 3x^2 + 2x + 1$$
$$\vdots \quad \vdots$$

1986: true if $n = p - 1 \geq 2$ or if $n = p^r$
Conjecture (T.-Y. Lam):

Let \(n \) and \(k \) be integers with \(n \geq 2 \) and \(1 \leq k \leq n - 1 \), and let

\[
f(x) = 1 + x + x^2 + \cdots + x^n.
\]

Then \(f^{(k)}(x) \) is irreducible over \(\mathbb{Q} \).

Examples:

\[
\frac{f^{(n-1)}(x)}{(n-1)!} = nx + 1 = \binom{n}{1}x + \binom{n-1}{0}
\]

\[
\frac{f^{(n-2)}(x)}{(n-2)!} = \binom{n}{2} x^2 + \binom{n-1}{1} x + \binom{n-2}{0}
\]

\[
\frac{f^{(n-3)}(x)}{(n-3)!} = \binom{n}{3} x^3 + \binom{n-1}{2} x^2 + \binom{n-2}{1} x + \binom{n-3}{0}
\]
Conjecture (J. Lagarias & E. Gutkin, 1991):

Let n be an integer ≥ 4, and let

$$p(x) = (n - 1)(x^{n+1} - 1) - (n + 1)(x^n - x).$$

Then

- $p(x)$ is $(x - 1)^3$ times an irreducible polynomial if n is even
- $p(x)$ is $(x - 1)^3(x + 1)$ times an irreducible polynomial over \mathbb{Q} if n is odd.

Comment: In connection to a problem concerning billiards, Eugene Gutkin was interested in showing that the polynomials $p(x)$ have no roots in common other than from the indicated cyclotomic factors.
Theorem 1. Let $\varepsilon > 0$. For all but $O(t^{1/3+\varepsilon})$ positive integers $n \leq t$, the derivative of the polynomial $1 + x + x^2 + \cdots + x^n$ is irreducible.

Theorem 2. Fix a positive integer k. For all but $o(t)$ positive integers $n \leq t$, the kth derivative of $1 + x + x^2 + \cdots + x^n$ is irreducible.

Theorem 3. Fix a positive integer m. If n is sufficiently large and $f(x) = 1 + x + x^2 + \cdots + x^n$, then the polynomial $f^{(n-m)}(x)$ is irreducible.

Theorem 4. Let $\varepsilon > 0$. For all but $O(t^{4/5+\varepsilon})$ positive integers $n \leq t$, the polynomial

$$p(x) = (n - 1)(x^{n+1} - 1) - (n + 1)(x^n - x),$$

is such that $p(x)$ is $(x - 1)^3$ times an irreducible polynomial if n is even and $p(x)$ is $(x - 1)^3(x + 1)$ times an irreducible polynomial if n is odd.
In 1951, Grosswald investigated the irreducibility over the rationals of the Bessel polynomials

\[y_n(x) = \sum_{j=0}^{n} \frac{(n + j)!}{2^j (n - j)! j!} x^j. \]

He conjectured that \(y_n(x) \) is irreducible for every positive integer \(n \). Establishing the irreducibility of \(y_n(x) \) for “all” \(n \) was also the last problem he posed at a West Coast Number Theory Conference.

Theorem 5. Let \(n \) be a positive integer, and let \(a_0, a_1, \ldots, a_n \) be arbitrary integers with

\[|a_0| = |a_n| = 1. \]

Then

\[\sum_{j=0}^{n} a_j \frac{(n + j)!}{2^j (n - j)! j!} x^j \]

is irreducible.
Theorem 1. Let $\varepsilon > 0$. For all but $O(t^{1/3+\varepsilon})$ positive integers $n \leq t$, the derivative of the polynomial

$$f(x) = 1 + x + x^2 + \cdots + x^n$$

is irreducible.

Basic Ideas of Proof:

• Write $f(x)$ and $f'(x)$ in a “nice” form.

$$f(x) = \frac{x^{n+1} - 1}{x - 1}$$

$$f'(x) = \frac{nx^{n+1} - (n + 1)x^n + 1}{(x - 1)^2}$$

• Work with $w(x) = x^{n+1} - (n + 1)x + n$.

We want to show that its non-cyclotomic part is irreducible.
\[w(x) = x^{n+1} - (n + 1)x + n \]

- Suppose \(w(x) = g(x)h(x) \) where \(g(x) \) and \(h(x) \) are monic in \(\mathbb{Z}[x] \) and \(g(1) \neq 0 \). We want to show \(h(x) \) must equal \((x - 1)^2\) for “most” \(n \).

- Define

\[
A = \sum_{g(\beta)=0} \left(\beta - \frac{1}{\beta} \right), \quad B = \sum_{h(\gamma)=0} \left(\gamma - \frac{1}{\gamma} \right)
\]

and observe that \(nAB \in \mathbb{Z} \).

The expression \(B \) has the property that \(B = 0 \) if and only if \(h(x) = (x - 1)^2 \). If \(B \neq 0 \), then \(nAB \) is a non-zero integer. We show that typically this does not happen by finding upper and lower bounds for \(n|AB| \) that are inconsistent for most \(n \).
Consider the complex roots of $w(x)$.

The complex roots α satisfy

$$1 \leq |\alpha| \leq 1 + \frac{5 \log n}{n}.$$

From

$$A = \sum_{g(\beta)=0} \left(\beta - \frac{1}{\beta} \right) = \sum_{g(\beta)=0} \left(\beta - \frac{1}{\beta} \right),$$

we deduce that

$$|A| \leq 10 \log n.$$

Similarly, $|B| \leq 10 \log n$. Therefore,

$$n|AB| \leq 100n(\log n)^2.$$
\[w(x) = x^{n+1} - (n+1)x + n \]

- If \(p \mid (n + 1) \), consider the \(p \)-adic roots of \(w(x) \).

\[n + 1 = p^\ell m \quad \implies \quad w(x) \equiv (x^m - 1)^p^\ell \pmod{p} \]

The \(p \)-adic roots of \(w(x) \) form clusters of roots around the \(p \)-adic \(m \)th roots of unity. Considering the Newton polygon of \(w(x + \zeta) \) where \(\zeta^m = 1 \), one shows that around each \(\zeta \neq 1 \), there are \(\ell \) clusters of roots satisfying:

(i) The roots in each cluster all belong to the same irreducible \(p \)-adic factor of \(w(x) \).

(ii) There are a multiple of \(p \) roots in each cluster.

One uses (i) and (ii) to show that \(\nu_p(A) \) and \(\nu_p(B) \) are positive. Hence, \(p^2 \mid nAB \).
• If $p|n$, consider the p-adic roots of $w(x)$.

In a similar fashion, one deduces here that at least one of $\nu_p(A)$ and $\nu_p(B)$ is positive so that $p|nAB$.

• Set up the inequalities on $n|AB|$ (if $B \neq 0$).

$$\left(\prod_{p|(n+1)} p \right)^2 \left(\prod_{p|n} p \right) \leq n|AB| \leq 100n(\log n)^2$$

• For most n the expression on the left is about n^3.