Notes for Seminar:
The Odd Covering Problem and Its Relatives, Part III

Lemma 6: Suppose \(f(x)x^n+1 \) is divisible by \(\Phi_m(x) \) for some positive integer \(m \). Then \(f(x)x^n+1 \) is divisible by \(\Phi_m(x) \) if and only if \(n \equiv a \pmod{m} \).

Proof: Let \(F(x) = f(x)x^n+1 \). If \(n \equiv a \pmod{m} \), then clearly \(F(\zeta_m) = 0 \) so that \(F(x) \) is divisible by \(\Phi_m(x) \). If \(F(x) \) is divisible by \(\Phi_m(x) \), the equality

\[
0 = \zeta_m^{-a}(f(\zeta_m)\zeta_m^a + 1) - F(\zeta_m) = \zeta_m^{-a} - 1
\]

implies \(n \equiv a \pmod{m} \).

Comment: Note that if \(f(x)x^n+1 \) is divisible by \(g(x) \) for some irreducible \(g(x) \in \mathbb{Z}[x] \) and for at least two different nonnegative integers \(n \), then \(g(x) = \Phi_m(x) \) for some \(m \).

Lemma 7: Let \(m \) be an integer \(> 1 \). Then \(\Phi_m(1) = \begin{cases} p & \text{if } m = p^r \text{ for some } r \in \mathbb{Z}^+ \\ 1 & \text{otherwise} \end{cases} \).

Proof: Clearly, \(\Phi_p(1) = p \). If \(m = p^r k \) with \(k \) and \(r \) positive integers such that \(p \nmid k \), then Lemma 2 implies \(\Phi_m(1) = \Phi_p(1)^r \Phi_k(1) \). The lemma follows if \(k = 1 \). If \(k > 1 \), then applying Lemma 2 again we obtain \(\Phi_m(1) = \Phi_p(1) = \Phi_k(1)^r/\Phi_k(1) = 1 \).

Lemma 8: Let \(m \) and \(\ell \) be integers with \(m \geq 1 \) and \(\ell \geq 0 \). For \(\alpha \in \mathbb{Q}(\zeta_m) \), let \(N(\alpha) = N_{\mathbb{Q}(\zeta_m)/\mathbb{Q}}(\alpha) \) denote the norm of \(\alpha \). Then \(N(\zeta_m^\ell - 1) \) is divisible by a prime \(p \) if and only if \(m/\gcd(\ell, m) \) is a power of \(p \).

Proof: Apply Lemma 7 and use that \(N(\zeta_m^\ell - 1) = \pm \Phi_{m/\gcd(\ell, m)}(1)^{\phi(m/\gcd(\ell, m))} \).

Comment: We only need the “only if” part of Lemma 8 which follows from \(N(\zeta_m^\ell - 1) \) dividing a power of \(\Phi_{m/\gcd(\ell, m)}(1) \).

Main Lemma: Let \(f(x) \in \mathbb{Z}[x] \), and suppose \(n \) is sufficiently large (depending on \(f \)). Then the non-reciprocal part of \(f(x)x^n+1 \) is irreducible or identically \(\pm 1 \) unless one of the following holds:

(i) \(-f(x) \) is a \(p \)th power for some prime \(p \) dividing \(n \).

(ii) \(f(x) \) is 4 times a 4th power and \(n \) is divisible by 4.

Proof of Theorem Assuming Main Lemma: We suppose (as we may) that \(f(0) \neq 0 \). Since \(x^{2^t} + 1 = \Phi_{2^t+1}(x) \) is irreducible for every \(t \in \mathbb{Z}^+ \), we deduce \(f(x) \neq 1 \). Let \(\tilde{f}(x) = x^{\deg f}f(1/x) \). Then each reciprocal factor \(g(x) \) of \(F(x) = f(x)x^n+1 \) divides

\[
f(x)\tilde{F}(x) - x^{\deg f} F(x) = f(x)(x^{n+\deg f} + \tilde{f}(x)) - x^{\deg f}f(x)x^n + 1 = f(x)\tilde{f}(x) - x^{\deg f}f.
\]

In particular, there is a finite list of irreducible reciprocal factors that can divide \(f(x)x^n+1 \) as \(n \) varies. Each reciprocal non-cyclotomic irreducible factor divides at most one polynomial of the form \(f(x)x^n+1 \). By the Main Lemma, we deduce that there are \(\Phi_{m_1}(x), \ldots, \Phi_{m_s}(x) \) such that if \(n \) is sufficiently large and both (i) and (ii) do not hold, then \(\Phi_{m_j}(x)(f(x)x^n+1) \) for some \(j \). Note that (ii) does not hold since otherwise \(f(x)x^n+1 \) could not be divisible by a cyclotomic polynomial (if \(\Phi_m(x) \) were a factor, then \(f(\zeta_m)\zeta_m^a = -1 \), contradicting that the left side has even norm and the right side has odd norm) so that \(f(x)x^n+1 \) is irreducible whenever \(4 \nmid n \) and \(n \) is sufficiently
large. We may suppose that there is an \(a_j \) such that \(\Phi_{m_j}(x) | (f(x)x^{a_j} + 1) \). Let \(\mathcal{P} \) denote the set of primes \(p \) for which \(f(x) \) is minus a \(p \)th power. We remove from consideration any \(m_j \) divisible by a \(p \in \mathcal{P} \) (but abusing notation we keep the range of subscripts). Then Lemmas 5 and 6 imply that the congruences
\[
x \equiv 0 \pmod{p} \quad \text{for } p \in \mathcal{P} \quad \text{and} \quad x \equiv a_j \pmod{m_j} \quad \text{for } j \in \{1, 2, \ldots, r\}
\]
cover the integers.

Claim: Suppose \(m_{j_t} = p^t m_0 \) and \(m_i = p^s m_0 \), where \(p \) is prime, \(m_0 \) is an integer \(> 1 \) such that \(p \nmid m_0 \), and \(t \) and \(s \) are integers with \(t > s \geq 0 \). Then \(a_j \equiv a_i \pmod{m_0} \).

Take \(p = 2 \) in the Claim. We replace \(x \equiv a_j \pmod{m_j} \) and \(x \equiv a_i \pmod{m_i} \) with \(x \equiv a_i \pmod{m_0} \). If for some \(j \) there is no \(i \) as above, we still replace \(x \equiv a_j \pmod{m_j} \) with \(x \equiv a_j \pmod{m_0} \). Then we are left with a covering with moduli that are distinct odd numbers together with possibly powers of 2. Observe that \(\sum_{j=1}^{\infty} 1/2^j = 1 \) implies that there is an \(a \in \mathbb{Z} \) and a \(k \in \mathbb{Z}^+ \) such that no integer satisfying \(x \equiv a \pmod{2^k} \) satisfies one of the congruences in our covering with moduli a power of 2.

Denote by \(x \equiv a_j' \pmod{m_j'} \) the congruences with \(m_j' \) odd. Let \(u \) and \(v \) be integers such that
\[
2^k u + v \left(\prod m_j' \right) = 1.
\]
For any \(n \in \mathbb{Z} \), consider the number \(m = a + 2^k u (n - a) \). Then \(m \equiv n \pmod{m_j'} \) for every \(m_j' \) and \(m \equiv a \pmod{2^k} \). It follows that \(n \equiv m \equiv a_j' \pmod{m_j'} \) for some \(m_j' \). Therefore, every \(n \in \mathbb{Z} \) satisfies one of the congruences \(x \equiv a_j' \pmod{m_j'} \). So these congruences form an odd covering of the integers.