Notes for Seminar:

The Odd Covering Problem and Its Relatives, Part II

Schinzel’s Theorem: If there is an \(f(x) \in \mathbb{Z}[x] \) with \(f(1) \neq -1 \) such that \(f(x)x^n + 1 \) is reducible for all \(n \geq 0 \), then there is an odd covering of the integers.

Notation: Let \(\zeta_n = e^{2\pi i/n} \) and \(\Phi_n(x) = \prod_{1 \leq k \leq n, \gcd(k,n)=1} (x - \zeta_n^k) \).

Lemma 1: \(\Phi_n(x) = \prod_{d|n} (x^{d - 1})^{\mu(n/d)} = \prod_{d|n} (x^{n/d} - 1)^{\mu(d)} \).

Proof: The factor \(x - \zeta_n^k \) is a factor of \(x^{n/d} - 1 \) precisely when \(n/d \) is a multiple of \(n/\gcd(n,k) \) (i.e., when \(d|\gcd(n,k) \)). Thus, \(x - \zeta_n^k \) appears in the right-most product above with exponent \(\sum_{d|\gcd(n,k)} \mu(d) \). The rest is clear.

Lemma 2: \(\Phi_{pm}(x) = \begin{cases} \Phi_n(x^p) & \text{if } p | n \\ \Phi_n(x^p)/\Phi_n(x) & \text{if } p \nmid n \end{cases} \).

Proof: Use Lemma 1. If \(p|n \), then \(\Phi_{pm}(x) = \prod_{pd|m} (x^{pd} - 1)^{\mu(pm/pd)} = \prod_{d|m} (x^{pd} - 1)^{\mu(n/d)} = \Phi_n(x^p) \). If \(p \nmid n \), then \(\Phi_{pm}(x) = \prod_{pd|m} (x^{pd} - 1)^{\mu(pm/pd)} \prod_{d|m} (x^d - 1)^{\mu(n/d)} = \Phi_n(x^p)/\Phi_n(x) \).

Lemma 3: Suppose \(m \) and \(n \) are integers with \(m/n = p^r \) for some prime \(p \) and some positive integer \(r \). Then \(\Phi_m(\zeta_n) = \alpha \Phi_n \) for some \(\alpha \in \mathbb{Z}[\zeta_n] \).

Proof: Consider three cases: (i) \(m = pn \) and \(p \nmid n \), (ii) \(m = p^r n \) with \(r > 1 \) and \(p \nmid n \), and (iii) \(m = p^r t \) and \(n = p^s t \) with \(u > v > 0 \). Let \(\xi \) denote an arbitrary primitive \(n \)th root of 1 (so \(\xi \in \mathbb{Z}[\zeta_n] \)). For (i), observe that Lemma 2 implies

\[
\Phi_m(x) = \frac{\Phi_n(x^p)}{\Phi_n(x)} = \prod_{1 \leq k \leq n, \gcd(k,n)=1} \left(\frac{x^p - \xi^{kp}}{x^p - \xi^k} \right) = \prod_{1 \leq k \leq n, \gcd(k,n)=1} (x^{p-1} + \xi^{k} x^{p-2} + \xi^{2k} x^{p-3} + \cdots + \xi^{(p-1)k})
\]

In particular, \(\Phi_m(\zeta_n) \) has the factor (take \(k = 1 \)) \(p^r \). For (ii), use Lemma 2 again to obtain \(\Phi_m(\zeta_n) = \Phi_n(\zeta_n^{p^{r-1}}) \) and apply the argument for (i) with \(\xi = \zeta_n^{p^{r-1}} \). For (iii), use Lemma 2 as before to obtain \(\Phi_m(\zeta_n) = \Phi_{p^{r-1}}(\zeta_n^{p^{r-1}}) = \Phi_{p^{r-1}}(\zeta) \). Now, cases (i) and (ii) imply \(\Phi_m(\zeta_n) = \alpha \Phi_n \) for some \(\alpha \in \mathbb{Z}[\zeta_n] \) (since \(\zeta_n = \zeta_n^{p^{r-1}} \)).

Lemma 4: Let \(p \) be a prime, and let \(m \) be a positive integer such that \(p \) divides \(m \). Then \(x^p = \zeta_m \) has no solutions \(x \in \mathbb{Q}(\zeta_m) \).

Proof: Let \(\zeta = \zeta_m \). The roots of \(x^p - \zeta = 0 \) are \(\zeta_m^{p^k} \) where \(0 \leq k \leq p - 1 \). Note that \(\zeta_p = \zeta_m^{p^p} \subseteq \mathbb{Q}(\zeta) \). Thus, \(x^p = \zeta \) and \(x \in \mathbb{Q}(\zeta) \) imply \(\zeta_m \in \mathbb{Q}(\zeta) \), a contradiction.

Lemma 5: Suppose \(f(x) = -g(x)p \) for some prime \(p \) and \(f(x)x^n + 1 \) is divisible by \(\Phi_m(x) \) where \(p|m \). Then \(n \equiv 0 \pmod{p} \).

Proof: Assume \(p \nmid n \). Then there are integers \(u \) and \(v \) such that \(-nu + pv = 1 \). Since also \(f(\zeta)^n + 1 = 0 \), we deduce that \(-f(\zeta) = \zeta^{-n} \). Hence, \((g(\zeta)^u \zeta^n)^p = \zeta^{-nu+pv} = \zeta \). Thus, \(x^p = \zeta \) has a solution \(x \in \mathbb{Q}(\zeta) \), contradicting Lemma 4.