Seminar Notes: On Nicol’s sequence of reducible polynomials

Problem: Does this ever end?

\[1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33} + x^{34} + x^{35} + \cdots \]

Goal: Justify the answer (whatever it is).

Definitions and Notation: Given \(f(x) \in \mathbb{C}[x] \) with \(f \neq 0 \), \(\tilde{f}(x) = x^{\deg f} f(1/x) \) is the reciprocal of \(f(x) \). If \(f = \pm \tilde{f} \), then \(f \) is called reciprocal.

Comment: If \(f \) is reciprocal and \(\alpha \) is a root of \(f \), then \(1/\alpha \) is a root of \(f \).

Two-Step Approach:

1. Handle reciprocal factors (there are none).
2. Handle non-reciprocal factors (there is no more than one).

Step 1: Take \(g(x) = 1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33} + x^{34} + x^{35} \).
 - If \(f \) is an irreducible reciprocal factor of \(F(x) = x^n + g(x) \), then it divides \(\tilde{F}(x) \).
 - So it divides \(g(x)\tilde{g}(x) - x^{\deg g} \).
 - So it is either \(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \) or \(x^{64} + x^{61} - x^{60} + x^{54} - \cdots - x^{43} + 2x^{42} + x^{41} - \cdots + x^{10} - x^4 + x^3 + 1 \).
 - In the first case, check \(0 \leq n \leq 6 \). Done.
 - In the second case, \(f \) has a root \(\alpha = 0.58124854 - 0.96349774i \) with \(1.25 < |\alpha| < 1.126 \). Observe that \(|g(\alpha)| < g(1.126) < 231 < 1.125^{17} < |\alpha|^{47} \). So \(F(\alpha) \neq 0 \) for all \(n \geq 1 \).

Step 2: Assume \(F(x) = x^n + g(x) \) is reducible. Let \(a(x) \) be an irreducible non-reciprocal factor. If \(\tilde{a}(x) \) divides \(F \), write \(F(x) = u(x)v(x) \) where \(\tilde{a}(x) \nmid u(x) \) and \(a(x) \nmid v(x) \). If \(\tilde{a}(x) \) does not divide \(F \), consider an irreducible non-reciprocal \(b(x) \) such that \(a(x)b(x) \) divides \(F \). If \(\tilde{b}(x) \) divides \(F \), write \(F(x) = u(x)v(x) \) where \(\tilde{b}(x) \nmid u(x) \) and \(b(x) \nmid v(x) \). If \(\tilde{a}(x) \) and \(\tilde{b}(x) \) do not divide \(F \), write \(F(x) = u(x)v(x) \) where \(a(x)|u(x) \) and \(b(x)|v(x) \). In all cases, we may take both \(u \) and \(v \) to have a positive leading coefficient.
 - Can \(F \) have a reciprocal factor? Maybe, but \(u \) and \(v \) are non-reciprocal.
 - **Lemma.** The polynomial \(w(x) = u(x)\tilde{v}(x) \) has the following properties:
 (i) \(w \neq \pm F \) and \(w \neq \pm \tilde{F} \).
 (ii) \(w\tilde{w} = F\tilde{F} \).
 (iii) \(w(1) = \pm F(1) \).
 (iv) \(||w|| = ||F|| \).
 (v) \(w \) is a 0, 1-polynomial with the same number of non-zero terms as \(F \).
Proof of (v). If \(F(x) = \sum_{j=1}^{r} a_j x^{d_j} \) and \(w(x) = \sum_{j=1}^{s} b_j x^{e_j} \), then

\[
\left(\sum_{j=1}^{s} b_j \right)^2 \leq \left(\sum_{j=1}^{s} b_j^2 \right)^2 = \left(\sum_{j=1}^{s} a_j^2 \right)^2 = \left(\sum_{j=1}^{s} a_j \right)^2 = \left(\sum_{j=1}^{s} b_j \right)^2.
\]

\[\blacksquare\]

- If \(n \geq 83 \), then \(\tilde{F} = 1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33} + x^{34} + x^{35} + x^m + \cdots \) where \(m \geq 48 \).

- What can \(w \) and \(\tilde{w} \) be given (v), (ii), and \(n \geq 83 \)?

\[
\begin{align*}
w(x) &= 1 + x^3 + \cdots + x^n \\
\tilde{w}(x) &= 1 + \cdots + x^{n-3} + x^n \\
w(x) &= 1 + x^3 + x^{15} + \cdots + x^n \\
\tilde{w}(x) &= 1 + \cdots + x^{n-15} + x^{n-3} + x^n \\
w(x) &= 1 + x^3 + x^{15} + x^{16} + \cdots + x^n \\
\tilde{w}(x) &= 1 + \cdots + x^{n-16} + x^{n-15} + x^{n-3} + x^n \\
&\vdots
\end{align*}
\]

- Given (i), “the non-reciprocal part is irreducible”.

Comment: In general, consider a 0, 1-polynomial \(g(x) \) with the property that \(g(x) \) is irreducible over the set of 0, 1-polynomials (that is, \(g(x) \) is not the product of two 0, 1-polynomials of degree > 0). Then the non-reciprocal part of \(F(x) = x^n + g(x) \) is irreducible if \(n > 3 \deg g \).