ON THE FACTORIZATION OF $x^2 + x$ AND $x^2 + 7$

by Michael Filaseta

University of South Carolina

Joint Work with M. Bennett & O. Trifonov
Part I: On the factorization of $x^2 + x$
Part I: On the factorization of $x(x + 1)$
Part I: On the factorization of $n(n + 1)$
Part I: On the factorization of $n(n + 1)$

Well-Known: The largest prime factor of $n(n + 1)$ tends to infinity with n.
Part I: On the factorization of $n(n + 1)$

Well-Known: The largest prime factor of $n(n + 1)$ tends to infinity with n.

Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > 1$.
Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and
\[n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m \]
for some integer m, then $m > 1$.
Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and
\[
 n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m
\]
for some integer m, then $m > 1$.

Lehmer: Gave some explicit estimates:
Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > 1$.

Lehmer: Gave some explicit estimates:

$n(n+1)$ divisible only by primes $\leq 11 \implies n \leq \ldots$
Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and

$$n(n+1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > 1$.

Lehmer: Gave some explicit estimates:

$n(n+1)$ divisible only by primes $\leq 11 \implies n \leq$

... only by primes $\leq 41 \implies n \leq$
Let \(p_1, p_2, \ldots, p_r \) be primes. There is an \(N \) such that if \(n \geq N \) and

\[
n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m
\]

for some integer \(m \), then \(m > 1 \).

Lehmer: Gave some explicit estimates:

\(n(n + 1) \) divisible only by primes \(\leq 11 \) \(\implies \) \(n \leq 9800 \)

\[
\text{... only by primes } \leq 41 \implies n \leq \]

Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r}m$$

for some integer m, then $m > 1$.

Lehmer: Gave some explicit estimates:

$n(n + 1)$ divisible only by primes $\leq 11 \implies n \leq 9800$

... only by primes $\leq 41 \implies n \leq 63927525375$
Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > 1$.
Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and
\[n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m \]
for some integer m, then $m > 1$.
Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and
\[n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m \]
for some integer m, then $m > 1$.
Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^\theta$.
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^\theta$.
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and
\[n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m \]
for some integer m, then $m > n^\theta$.

abc-conjecture $\implies \theta =$
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^\theta$.

$$abc\text{-conjecture} \implies \theta = 1 - \varepsilon$$
Want: Let \(p_1, p_2, \ldots, p_r \) be primes. There is an \(N = N(\theta, p_1, \ldots, p_r) \) such that if \(n \geq N \) and

\[
n(n + 1) = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r}m
\]

for some integer \(m \), then \(m > n^{\theta} \).

\[\text{abc-conjecture} \implies \theta = 1 - \varepsilon\]

unconditionally one can obtain \(\theta = \)
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and
\[n(n + 1) = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r}m \]
for some integer m, then $m > n^\theta$.

\[abc\text{-conjecture} \implies \theta = 1 - \varepsilon \]

unconditionally one can obtain $\theta = 1 - \varepsilon$
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and $n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$ for some integer m, then $m > n^\theta$.

abc-conjecture $\implies \theta = 1 - \varepsilon$

unconditionally one can obtain $\theta = 1 - \varepsilon$

(ineffective)
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^\theta$.

Effective Approach:
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and
\[n(n + 1) = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r}m \]
for some integer m, then $m > n^\theta$.

Effective Approach: (Linear Forms of Logarithms)
Want: Let \(p_1, p_2, \ldots, p_r \) be primes. There is an \(N \) such that if \(n \geq N \) and \(n(n + 1) = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r}m \) for some integer \(m \), then \(m > n^\theta \).

Effective Approach: (Linear Forms of Logarithms)

\[
\theta = \frac{c}{\log \log n}
\]
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and
\[n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m \]
for some integer m, then $m > n^\theta$.

Effective Approach: (Linear Forms of Logarithms)

\[\theta = \frac{c}{\log \log n} \]

Problem: Can we narrow the gap between these ineffective and effective results?
Don’t Get Me Started:
What Got Us Started:
What Got Us Started:

Theorem (R. Gow, 1989): If $n > 2$ is even and

$$L_n^{(n)}(x) = \sum_{j=0}^{n} \binom{2n}{n-j} \frac{(-x)^j}{j!}$$

is irreducible, then the Galois group of $L_n^{(n)}(x)$ is A_n.

What Got Us Started:

Theorem (R. Gow, 1989): If $n > 2$ is even and

$$L_n^{(n)}(x) = \sum_{j=0}^{n} \binom{2n}{n-j} \frac{(-x)^j}{j!}$$

is irreducible, then the Galois group of $L_n^{(n)}(x)$ is A_n.

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_n^{(n)}(x)$ is irreducible (and, hence, has Galois group A_n for almost all even n).
What Got Us Started:

Theorem (R. Gow, 1989): If \(n > 2 \) is even and
\[
L_n^{(n)}(x) = \sum_{j=0}^{n} \binom{2n}{n-j} \frac{(-x)^j}{j!}
\]
is irreducible, then the Galois group of \(L_n^{(n)}(x) \) is \(A_n \).

Theorem (joint work with R. Williams): For almost all positive integers \(n \) the polynomial \(L_n^{(n)}(x) \) is irreducible (and, hence, has Galois group \(A_n \) for almost all even \(n \)).

Work in Progress with Trifonov: We’re attempting to show the irreducibility of \(L_n^{(n)}(x) \) for all \(n > 2 \).
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^\theta$.
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and
\[n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m \]
for some integer m, then $m > n^\theta$.

Theorem: If $n \geq 9$ and
\[n(n + 1) = 2^k 3^\ell m, \]
then
\[m \geq \]
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and
\[n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m \]
for some integer m, then $m > n^\theta$.

Theorem: If $n \geq 9$ and
\[n(n + 1) = 2^k 3^\ell m, \]
then
\[m \geq n^{1/4}. \]
Conjecture: For \(n > 512 \),

\[
n(n + 1) = 2^u 3^v m \implies m > \sqrt{n}.
\]
Conjecture: For $n > 512$,

$$n(n + 1) = 2^u 3^v m \implies m > \sqrt{n}.$$

Comment: The conclusion holds for

$$512 < n \leq$$
Conjecture: For $n > 512$,
\[n(n + 1) = 2^u3^vm \implies m > \sqrt{n}. \]

Comment: The conclusion holds for
\[512 < n \leq 10^{1000}. \]
Part II: On the non-factorization of $x^2 + 7$
Part II: On the non-factorization of $x^2 + 7$

Classical Ramanujan-Nagell Theorem: If x and n are integers satisfying

$$x^2 + 7 = 2^n,$$

then

$$x \in \{1, 3, 5, 11, 181\}.$$
Part II: On the non-factorization of $x^2 + 7$

Classical Ramanujan-Nagell Theorem: If x and n are integers satisfying

$$x^2 + 7 = 2^n,$$

then

$$x \in \{1, 3, 5, 11, 181\}.$$

Problem: If $x^2 + 7 = 2^n m$ and x is not in the set above, then can we say that m must be large?
Problem: If \(x^2 + 7 = 2^n m \) and \(x \) is not in the set above, then can we say that \(m \) must be large?

Connection with Part I:
Problem: If $x^2 + 7 = 2^n m$ and x is not in the set above, then can we say that m must be large?

Connection with Part I:

$$x^2 + 7 = 2^n m$$
Problem: If \(x^2 + 7 = 2^n m \) and \(x \) is not in the set above, then can we say that \(m \) must be large?

Connection with Part I:

\[
x^2 + 7 = 2^n m
\]

\[
\left(\frac{x + \sqrt{-7}}{2} \right) \left(\frac{x - \sqrt{-7}}{2} \right) = \left(\frac{1 + \sqrt{-7}}{2} \right)^{n-2} \left(\frac{1 - \sqrt{-7}}{2} \right)^{n-2} m
\]
Theorem: If x, n and m are positive integers satisfying

\[x^2 + 7 = 2^n m \quad \text{and} \quad x \notin \{1, 3, 5, 11, 181\}, \]

then

\[m \geq ??? \]
Theorem: If x, n and m are positive integers satisfying
\[x^2 + 7 = 2^n m \quad \text{and} \quad x \not\in \{1, 3, 5, 11, 181\}, \]
then
\[m \geq x^{1/2}. \]
Part III: The Method
Part III: Beukers’ Method
Part III: Beukers’ Method

\[n(n + 1) = 3^k 2^\ell m \]
Part III: Beukers’ Method

\[n(n + 1) = 3^k 2^\ell m \]

\[3^k m_1 - 2^\ell m_2 = \pm 1 \]
Part III: Beukers’ Method

\[n(n + 1) = 3^k 2^\ell m \]
\[3^k m_1 - 2^\ell m_2 = \pm 1 \]

Main Idea: Find “small” integers \(P, Q, \) and \(E \) such that
\[3^k P - 2^\ell Q = E. \]
Part III: Beukers’ Method

\[n(n + 1) = 3^k 2^\ell m \]
\[3^k m_1 - 2^\ell m_2 = \pm 1 \]

Main Idea: Find “small” integers \(P, Q, \) and \(E \) such that
\[3^k P - 2^\ell Q = E. \]

Then
\[3^k (Qm_1 - Pm_2) = \pm Q - Em_2. \]
Part III: Beukers’ Method

\[n(n + 1) = 3^k 2^\ell m \]
\[3^k m_1 - 2^\ell m_2 = \pm 1 \]

Main Idea: Find “small” integers \(P, Q, \) and \(E \) such that
\[3^k P - 2^\ell Q = E. \]

Then
\[3^k (Q m_1 - P m_2) = \pm Q - E m_2. \]
Main Idea: Find “small” integers P, Q, and E such that

$$3^k P - 2^\ell Q = E$$

and

$$Q m_1 - P m_2 \neq 0.$$

Then

$$3^k (Q m_1 - P m_2) = \pm Q - E m_2.$$
Main Idea: Find “small” integers P, Q, and E such that

\[3^k P - 2^\ell Q = E \]

and

\[Qm_1 - Pm_2 \neq 0. \]

Then

\[3^k (Qm_1 - Pm_2) = \pm Q - Em_2. \]

Obtain an upper bound on 3^k.

Main Idea: Find “small” integers P, Q, and E such that

$$3^k P - 2^\ell Q = E$$

and

$$Qm_1 - Pm_2 \neq 0.$$

Then

$$3^k (Qm_1 - Pm_2) = \pm Q - Em_2.$$

Obtain an upper bound on 3^k. Since $3^k m_1 \geq n$, it follows that m_1 and, hence, $m = m_1 m_2$ are not small.
The “small” integers P, Q, and E are obtained through the use of Padé approximations for $(1 - x)^k$.
The “small” integers P, Q, and E are obtained through the use of Padé approximations for $(1 - x)^k$.

More precisely, there exist P, Q, and E in $\mathbb{Z}[x]$ with \(\deg P = \deg Q = r \) and \(\deg E = k - r - 1 \) such that

\[
P_r(x) - (1 - x)^k Q_r(x) = x^{2r+1} E_r(x).
\]
What’s Needed for the Method to Work:
What’s Needed for the Method to Work:

One largely needs to be dealing with two primes (like 2 and 3) with a difference of powers of these primes being small (like $3^2 - 2^3 = 1$).
What’s Needed for the Method to Work:

One largely needs to be dealing with two primes (like 2 and 3) with a difference of powers of these primes being small (like $3^2 - 2^3 = 1$).

In the case of $x^2 + 7 = 2^n m$, the difference of the primes $(1 + \sqrt{-7})/2$ and $(1 - \sqrt{-7})/2$ each raised to the 13th power has absolute value ≈ 2.65 and the prime powers themselves have absolute value ≈ 90.51.