APPLICATIONS OF PADÉ APPROXIMATIONS OF \((1 - z)^k\) TO NUMBER THEORY

by Michael Filaseta

University of South Carolina
General Areas of Applications:
General Areas of Applications:

- irrationality measures
General Areas of Applications:

- irrationality measures
- diophantine equations
General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring’s problem
General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring’s problem
- the factorization of $n(n + 1)$
General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring’s problem
- the factorization of $n(n + 1)$
- Galois groups associated with classical polynomials
General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring’s problem
- the factorization of $n(n + 1)$
- Galois groups associated with classical polynomials
- the Ramanujan-Nagell equation
General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring’s problem
- the factorization of $n(n + 1)$
- Galois groups associated with classical polynomials
- the Ramanujan-Nagell equation
- k-free numbers in short intervals
General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring’s problem
- the factorization of $n(n + 1)$
- Galois groups associated with classical polynomials
- the Ramanujan-Nagell equation
- k-free numbers in short intervals
- k-free values of polynomials and binary forms
General Areas of Applications:

- irrationality measures
- diophantine equations
- Waring’s problem
- the factorization of $n(n + 1)$
- Galois groups associated with classical polynomials
- the Ramanujan-Nagell equation
- k-free numbers in short intervals
- k-free values of polynomials and binary forms
- the abc-conjecture
What are the Padé approximations of \((1 - z)^k\)?
What are the Padé approximations of \((1 - z)^k\)?

Answer: Rational functions that give good approximations to \((1 - z)^k\) near the origin.
What are the Padé approximations of $(1 - z)^k$?

Answer: Rational functions that give good approximations to $(1 - z)^k$ near the origin.
What are the Padé approximations of e^z?

Answer: Rational functions that give good approximations to e^z near the origin.
What are the Padé approximations of \((1 - z)^k\)?

Answer: Rational functions that give good approximations to \((1 - z)^k\) near the origin.
What are the Padé approximations of \((1-z)^k\)?

Answer: Rational functions that give good approximations to \((1-z)^k\) near the origin.
What are the Padé approximations of \((1 - z)^k\)?

Answer: Rational functions that give good approximations to \((1 - z)^k\) near the origin.

Important Equation:
What are the Padé approximations of \((1 - z)^k\)?

Answer: Rational functions that give good approximations to \((1 - z)^k\) near the origin.

Important Equation:

\[
P - (1 - z)^k Q = z^m E
\]
What are the Padé approximations of \((1 - z)^k\)?

Answer: Rational functions that give good approximations to \((1 - z)^k\) near the origin.

Important Equation:

\[
P_r - (1 - z)^k Q_r = z^m E_r
\]
What are the Padé approximations of \((1 - z)^k\)?

Answer: Rational functions that give good approximations to \((1 - z)^k\) near the origin.

Important Equation:

\[P_r - (1 - z)^k Q_r = z^{2r+1} E_r \]
What are the Padé approximations of \((1 - z)^k\)?

Answer: Rational functions that give good approximations to \((1 - z)^k\) near the origin.

Important Equation:

\[P_r - (1 - z)^k Q_r = z^{2r+1} E_r \]
What are the Padé approximations of $(1 - z)^k$?

Answer: Rational functions that give good approximations to $(1 - z)^k$ near the origin.

Important Equation:

$$P_r - (1 - z)^k Q_r = z^{2r+1} E_r$$
What are the Padé approximations of \((1 - z)^k\)?

Answer: Rational functions that give good approximations to \((1 - z)^k\) near the origin.

Important Equation:

\[P_r - (1 - z)^k Q_r = z^{2r+1} E_r \]

\[\text{deg } P_r = \text{deg } Q_r = r < k, \quad \text{deg } E_r = k - r - 1 \]
Some Properties of the Polynomials:

(i) \(P_r(z), (-z)^k Q_r(z), \) and \(z^{2r+1} E_r(z) \) satisfy

\[
z(z-1)y'' + (2r(1-z) - (k-1)z)y' + r(k+r)y = 0.
\]

(ii) \(Q_r(z) = \sum_{j=0}^{r} \binom{2r-j}{r} \binom{k-r+j-1}{j} z^j \)

(iii) \(Q_r(x) = \frac{(k+r)!}{(k-r-1)! r! r!} \int_{0}^{1} (1-t)^r t^{k-r-1} (1-t+xt)^r \, dt \)

(iv) \(P_r(x) Q_{r+1}(x) - Q_r(x) P_{r+1}(x) = cx^{2r+1} \)
\[P_r - (1 - z)^k Q_r = z^{2r+1} E_r \]
\[
P_r - (1 - z)^k Q_r = z^{2r+1} E_r
\]

Warning: In the applications you are about to see, this identity is used to get a result of the type wanted. Typically, a closer analysis of these polynomials or even a variant of the polynomials is needed to obtain the currently best known results in these applications.
Irrationality measures:
Irrationality measures:

Theorem (Liouville): Fix $\alpha \in \mathbb{R} - \mathbb{Q}$ with α algebraic and of degree n. Then there is a constant $C = C(\alpha) > 0$ such that

$$\left| \alpha - \frac{a}{b} \right| > \frac{C}{b^n}$$

where a and b with $b > 0$ are arbitrary integers.
Irrationality measures:

Theorem (Liouville): Fix $\alpha \in \mathbb{R} - \mathbb{Q}$ with α algebraic and of degree n. Then there is a constant $C = C(\alpha) > 0$ such that

$$\left| \alpha - \frac{a}{b} \right| > \frac{C}{b^n}$$

where a and b with $b > 0$ are arbitrary integers.
Irrationality measures:

Theorem (Roth): Fix $\varepsilon > 0$ and $\alpha \in \mathbb{R} - \mathbb{Q}$ with α algebraic. Then there is a constant $C = C(\alpha, \varepsilon) > 0$ such that

$$\left| \alpha - \frac{a}{b} \right| > \frac{C}{b^{2+\varepsilon}}$$

where a and b with $b > 0$ are arbitrary integers.
Irrationality measures:

Theorem (Roth): Fix $\varepsilon > 0$ and $\alpha \in \mathbb{R} - \mathbb{Q}$ with α algebraic. Then there is a constant $C = C' (\alpha, \varepsilon) > 0$ such that

$$\left| \alpha - \frac{a}{b} \right| > \frac{C}{b^{2 + \varepsilon}}$$

where a and b with $b > 0$ are arbitrary integers.

Comment: Liouville’s result is effective; Roth’s is not.
Irrationality measures:

Theorem (Baker): For a and b integers with $b > 0$,

$$\left| \sqrt[3]{2} - \frac{a}{b} \right| > \frac{C}{b^{2.955}}$$

where $C = 10^{-6}$.
Irrationality measures:

Theorem (Baker): For \(a \) and \(b \) integers with \(b > 0 \),

\[
\left| \sqrt[3]{2} - \frac{a}{b} \right| > \frac{1}{10^6 b^{2.955}}.
\]
Irrationality measures:

Theorem (Chudnovsky): For a and b integers with $b > 0$,

$$\left| \sqrt[3]{2} - \frac{a}{b} \right| > \frac{1}{c \cdot b^{2.43}}.$$
Irrationality measures:

Theorem (Bennett): For a and b integers with $b > 0$,

$$\left| \sqrt[3]{2} - \frac{a}{b} \right| > \frac{1}{c \cdot b^{2.47}}.$$
Irrationality measures:

Theorem (Bennett): For a and b integers with $b > 0$,

\[
\left| \sqrt[3]{2} - \frac{a}{b} \right| > \frac{1}{4 \cdot b^{2.47}}.
\]
Irrationality measures:

Theorem (Bennett): For a and b integers with $b > 0$,

$$\left| \sqrt[3]{2} - \frac{a}{b} \right| > \frac{1}{4 \cdot b^{2.47}}.$$

Comment: Similar explicit estimates have also been made for certain other cube roots.
The Basic Approach:
The Basic Approach:

\[P_r - (1 - z)^k Q_r = z^{2r+1} E_r \]
The Basic Approach:

\[P_r - (1 - z)^{1/3}Q_r = z^{2r+1}E_r \]
The Basic Approach:

\[P_r - (1 - z)^{1/3} Q_r = z^{2r+1} E_r \]

\[\uparrow \]

\[3/128 \]
The Basic Approach:

\[P_r - (\frac{125}{128})^{1/3} Q_r = z^{2r+1} E_r \]
The Basic Approach:

\[P_r - \left(\frac{125}{128} \right)^{1/3} Q_r = z^{2r+1} E_r \]

Rearrange and Normalize to Integers
The Basic Approach:

\[P_r - (\frac{125}{128})^{1/3}Q_r = z^{2r+1}E_r \]

Rearrange and Normalize to Integers

\[\sqrt[3]{2} b_r - a_r = \text{small} \]
The Basic Approach:

\[P_r - (125/128)^{1/3}Q_r = z^{2r+1}E_r \]

Rearrange and Normalize to Integers

\[\sqrt[3]{2} b_r - a_r = \text{small}_r \]
The Basic Approach:

\[P_r - \left(\frac{125}{128} \right)^{1/3} Q_r = z^{2r+1} E_r \]

Rearrange and Normalize to Integers

\[\sqrt[3]{2} b_r - a_r = \text{small}_r \]

\[\left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| = \text{small}_r \]
The Basic Approach:

\[P_r - \left(\frac{125}{128} \right)^{1/3} Q_r = z^{2r+1} E_r \]

Rearrange and Normalize to Integers

\[3 \sqrt{2} b_r - a_r = \text{small}_r \]

\[\left| 3 \sqrt{2} - \frac{a_r}{b_r} \right| = \text{small}_r \]
The Basic Approach:

\[P_r - (125/128)^{1/3} Q_r = z^{2r+1} E_r \]

Rearrange and Normalize to Integers

\[3\sqrt{2} b_r - a_r = \text{small}_r \]

\[\left| \frac{3\sqrt{2} - a_r}{b_r} \right| = \text{small}_r \]

Wait!!
The Basic Approach:

\[P_r - \left(\frac{125}{128} \right)^{1/3} Q_r = z^{2r+1} E_r \]

Rearrange and Normalize to Integers

\[3\sqrt{2} b_r - a_r = \text{small}_r \]

\[\left| 3\sqrt{2} - \frac{a_r}{b_r} \right| = \text{small}_r \]

Wait!! I thought we wanted that LARGE!!
The Basic Approach:

\[\left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| = \text{small}_r \]
The Basic Approach:

\[\left| 3\sqrt{2} - \frac{a_r}{b_r} \right| = \text{small}_r. \]

What’s small\(_r\)?
The Basic Approach:

\[\left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| = \text{small}_r \]

What's small\(_r\)? Let \(b \) be a positive integer.
The Basic Approach:

$$\left| 3\sqrt{2} - \frac{a_r}{b_r} \right| = \text{small}_r.$$

What’s \text{small}_r? Let \(b\) be a positive integer. By choosing \(r\) right, one can obtain

$$\text{small}_r < \frac{1}{2b b_r} \quad \text{and} \quad b_r < cb^{1.47}.$$
The Basic Approach:

\[\left| 3\sqrt{2} - \frac{a_r}{b_r} \right| = \text{small}_r. \]

What's small}_r\text? Let \(b \) be a positive integer. By choosing \(r \) right, one can obtain

\[\text{small}_r < \frac{1}{2b \cdot b_r} \quad \text{and} \quad b_r < cb^{1.47}. \]

\[\left| 3\sqrt{2} - \frac{a}{b} \right| \geq \]
The Basic Approach:

\[\left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| = \text{small}_r. \]

What’s small\(_r\)? Let \(b \) be a positive integer. By choosing \(r \) right, one can obtain

\[\text{small}_r < \frac{1}{2b b_r} \quad \text{and} \quad b_r < cb^{1.47}. \]

\[\left| \sqrt[3]{2} - \frac{a}{b} \right| \geq \left| \frac{a_r}{b_r} - \frac{a}{b} \right| - \left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| > \]
The Basic Approach:

\[|\sqrt[3]{2} - \frac{a_r}{b_r}| = \text{small}_r. \]

What’s \text{small}_r? Let \(b \) be a positive integer. By choosing \(r \) right, one can obtain

\[\text{small}_r < \frac{1}{2b b_r} \quad \text{and} \quad b_r < cb^{1.47}. \]

\[|\sqrt[3]{2} - \frac{a}{b}| \geq |\frac{a_r}{b_r} - \frac{a}{b}| - |3\sqrt[3]{2} - \frac{a_r}{b_r}| > \]
The Basic Approach:

\[\left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| = \text{small}_r. \]

What’s small _r? Let \(b \) be a positive integer. By choosing \(r \) right, one can obtain

\[\text{small}_r < \frac{1}{2b b_r} \quad \text{and} \quad b_r < cb^{1.47}. \]

\[\left| \sqrt[3]{2} - \frac{a}{b} \right| \geq \left| \frac{a_r}{b_r} - \frac{a}{b} \right| - \left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| > \frac{1}{b b_r} \]
The Basic Approach:

\[\left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| = \text{small}_r. \]

What’s \(\text{small}_r \)? Let \(b \) be a positive integer. By choosing \(r \) right, one can obtain

\[\text{small}_r < \frac{1}{2b b_r} \quad \text{and} \quad b_r < cb^{1.47}. \]

\[\left| \sqrt[3]{2} - \frac{a}{b} \right| \geq \left| \frac{a_r}{b_r} - \frac{a}{b} \right| - \left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| > \frac{1}{b b_r} \]
The Basic Approach:

\[\left| 3\sqrt{2} - \frac{a_r}{b_r} \right| = \text{small}_r. \]

What's small}_r? Let \(b \) be a positive integer. By choosing \(r \) right, one can obtain

\[\text{small}_r < \frac{1}{2b b_r} \quad \text{and} \quad b_r < cb^{1.47}. \]

\[\left| \frac{3\sqrt{2} - a}{b} \right| \geq \left| \frac{a_r}{b_r} - \frac{a}{b} \right| - \left| 3\sqrt{2} - \frac{a_r}{b_r} \right| > \frac{1}{b b_r} \]
The Basic Approach:

\[\left| 3\sqrt{2} - \frac{a_r}{b_r} \right| = \text{small}_r \]

What’s small\(_r\)? Let \(b \) be a positive integer. By choosing \(r \) right, one can obtain

\[\text{small}_r < \frac{1}{2b \, b_r} \quad \text{and} \quad b_r < cb^{1.47}. \]

\[\left| 3\sqrt{2} - \frac{a}{b} \right| \geq \left| \frac{a_r}{b_r} - \frac{a}{b} \right| - \left| 3\sqrt{2} - \frac{a_r}{b_r} \right| > \frac{1}{b \, b_r} \]
The Basic Approach:

\[\left| 3\sqrt{2} - \frac{a_r}{b_r} \right| = \text{small}_r \]

What's small\(_r\)? Let \(b \) be a positive integer. By choosing \(r \) right, one can obtain

\[\text{small}_r < \frac{1}{2b \ b_r} \quad \text{and} \quad b_r < cb^{1.47}. \]

\[\left| 3\sqrt{2} - \frac{a}{b} \right| \geq \left| \frac{a_r}{b_r} - \frac{a}{b} \right| - \left| 3\sqrt{2} - \frac{a_r}{b_r} \right| > \frac{1}{b \ b_r} - \]
The Basic Approach:

\[\left| 3\sqrt{2} - \frac{a_r}{b_r} \right| = \text{small}_r. \]

What's small\(_r\)? Let \(b \) be a positive integer. By choosing \(r \) right, one can obtain

\[\text{small}_r < \frac{1}{2b b_r} \quad \text{and} \quad b_r < cb^{1.47}. \]

\[\left| 3\sqrt{2} - \frac{a}{b} \right| \geq \left| \frac{a_r}{b_r} - \frac{a}{b} \right| - \left| 3\sqrt{2} - \frac{a_r}{b_r} \right| > \frac{1}{b b_r} - \frac{1}{2b b_r}. \]
The Basic Approach:

\[\left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| = \text{small}_r. \]

What's small\(_r\)? Let \(b \) be a positive integer. By choosing \(r \) right, one can obtain

\[
\text{small}_r < \frac{1}{2b b_r} \quad \text{and} \quad b_r < cb^{1.47}.
\]

\[\left| \sqrt[3]{2} - \frac{a}{b} \right| \geq \left| \frac{a_r}{b_r} - \frac{a}{b} \right| - \left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| > \frac{1}{2b b_r} \]
The Basic Approach:

$$\left| 3\sqrt{2} - \frac{a_r}{b_r} \right| = \text{small}_r.$$

What’s small$_r$? Let b be a positive integer. By choosing r right, one can obtain

$$\text{small}_r < \frac{1}{2b b_r} \quad \text{and} \quad b_r < cb^{1.47}.$$

$$\left| \frac{3\sqrt{2} - a}{b} \right| \geq \left| \frac{a_r}{b_r} - \frac{a}{b} \right| - \left| 3\sqrt{2} - \frac{a_r}{b_r} \right| > \frac{1}{2b b_r}$$
The Basic Approach:

\[\left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| = \text{small}_r. \]

What’s small\(_r\)? Let \(b \) be a positive integer. By choosing \(r \) right, one can obtain

\[\text{small}_r < \frac{1}{2b b_r} \quad \text{and} \quad b_r < cb^{1.47}. \]

\[\left| \sqrt[3]{2} - \frac{a}{b} \right| \geq \left| \frac{a_r}{b_r} - \frac{a}{b} \right| - \left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| > \frac{1}{2cb^{2.47}}. \]
The Basic Approach:

\[\left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| = \text{small}_r. \]

What's small\(_r\)? Let \(b \) be a positive integer. By choosing \(r \) right, one can obtain

\[\text{small}_r < \frac{1}{2b b_r} \quad \text{and} \quad b_r < cb^{1.47}. \]

\[\left| \sqrt[3]{2} - \frac{a}{b} \right| \geq \left| \frac{a_r}{b_r} - \frac{a}{b} \right| - \left| \sqrt[3]{2} - \frac{a_r}{b_r} \right| > \frac{1}{4 \cdot b^{2.47}}. \]
Diophantine equations:
Diophantine equations:

Theorem (Bennett): For a and b integers with $b > 0$,

$$\left| \frac{3\sqrt{2} - \frac{a}{b}}{b} \right| > \frac{1}{4 \cdot b^{2.47}}.$$
Diophantine equations:

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$\left| \frac{3\sqrt{2} - a}{b} \right| > \frac{1}{4 \cdot b^{2.47}}.$$
Diophantine equations:

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$\left| 3\sqrt{2} - \frac{a}{b} \right| > \frac{1}{4 \cdot |b|^{2.47}}.$$
Diophantine equations:

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$\left| \sqrt[3]{2} - \frac{a}{b} \right| > \frac{1}{4 \cdot |b|^{2.5}}.$$
Diophantine equations:

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$\left|\frac{\sqrt[3]{2} - \frac{a}{b}}{b}\right| > \frac{1}{4 \cdot |b|^{2.5}}.$$

$$x^3 - 2y^3 = n$$
Diophantine equations:

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$\left| \frac{3\sqrt{2} - a}{b} \right| > \frac{1}{4 \cdot |b|^{2.5}}.$$

$$x^3 - 2y^3 = n, \quad y \neq 0$$
Diophantine equations:

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$\left| \frac{3\sqrt{2} - \frac{a}{b}}{\sqrt{2}} \right| > \frac{1}{4 \cdot |b|^{2.5}}.$$

$$x^3 - 2y^3 = n, \quad y \neq 0$$

$$\left| \frac{3\sqrt{2} - \frac{x}{y}}{\sqrt{2}} \right| \left| \frac{3\sqrt{2}e^{2\pi i/3} - \frac{x}{y}}{\sqrt{2}e^{2\pi i/3}} \right| \left| \frac{3\sqrt{2}e^{4\pi i/3} - \frac{x}{y}}{\sqrt{2}e^{4\pi i/3}} \right| = \frac{|n|}{|y|^3}$$
Diophantine equations:

Theorem (Bennett): For a and b integers with $b \neq 0$,

\[
\left| \frac{3\sqrt{2} - \frac{a}{b}}{b} \right| > \frac{1}{4 \cdot |b|^{2.5}}.
\]

\[
x^3 - 2y^3 = n, \quad y \neq 0
\]

\[
\left| \frac{3\sqrt{2} - \frac{x}{y}}{y} \right| \left| \frac{3\sqrt{2}e^{2\pi i/3} - \frac{x}{y}}{y} \right| \left| \frac{3\sqrt{2}e^{4\pi i/3} - \frac{x}{y}}{y} \right| = \frac{|n|}{|y|^3}
\]
Diophantine equations:

Theorem (Bennett): For a and b integers with $b \neq 0$,

$$\left| \frac{3\sqrt{2} - a}{b} \right| > \frac{1}{4 \cdot |b|^{2.5}}.$$

$$x^3 - 2y^3 = n, \quad y \neq 0$$

$$\left| \frac{3\sqrt{2} - x}{y} \right| \left| \frac{3\sqrt{2}e^{2\pi i/3} - x}{y} \right| \left| \frac{3\sqrt{2}e^{4\pi i/3} - x}{y} \right| = \frac{|n|}{|y|^3}$$

$$\left| \frac{3\sqrt{2} - x}{y} \right| < \frac{|n|}{|y|^3}$$
Diophantine equations:

Theorem (Bennett): For \(a\) and \(b\) integers with \(b \neq 0\),

\[
\left| \frac{3\sqrt{2} - a}{b} \right| > \frac{1}{4 \cdot |b|^{2.5}}.
\]

\[x^3 - 2y^3 = n, \quad y \neq 0 \]

\[
\left| \frac{3\sqrt{2}}{y} - \frac{x}{y} \right| \left| \frac{3\sqrt{2}e^{2\pi i/3}}{y} - \frac{x}{y} \right| \left| \frac{3\sqrt{2}e^{4\pi i/3}}{y} - \frac{x}{y} \right| = \frac{|n|}{|y|^3}.
\]

\[
\frac{1}{4 |y|^{2.5}} < \left| \frac{3\sqrt{2} - x}{y} \right| < \frac{|n|}{|y|^3}.
\]
Diophantine equations:

\[x^3 - 2y^3 = n, \quad y \neq 0 \]

\[
\left| \sqrt[3]{2} - \frac{x}{y} \right| \left| \sqrt[3]{2}e^{2\pi i/3} - \frac{x}{y} \right| \left| \sqrt[3]{2}e^{4\pi i/3} - \frac{x}{y} \right| = \frac{|n|}{|y|^3}
\]

\[
\frac{1}{4|y|^{2.5}} < \left| \sqrt[3]{2} - \frac{x}{y} \right| < \frac{|n|}{|y|^3}
\]
Diophantine equations:

\[x^3 - 2y^3 = n, \quad y \neq 0 \]

\[\left| \frac{\sqrt[3]{2}}{y} \right| = \frac{|n|}{|y|^3} \]

\[\frac{1}{4|y|^{2.5}} < \left| \frac{\sqrt[3]{2} - \frac{x}{y}}{y} \right| < \frac{|n|}{|y|^3} \]

\[|y|^{1/2} < 4|n| \]
Diophantine equations:

\[x^3 - 2y^3 = n, \quad y \neq 0 \]

\[
\left| 3\sqrt{2} - \frac{x}{y} \right| \leq \left| 3\sqrt{2}e^{2\pi i/3} - \frac{x}{y} \right| \leq \left| 3\sqrt{2}e^{4\pi i/3} - \frac{x}{y} \right| = \frac{|n|}{|y|^3}
\]

\[
\frac{1}{4|y|^{2.5}} < \left| 3\sqrt{2} - \frac{x}{y} \right| < \frac{|n|}{|y|^3}
\]

\[
|y|^{1/2} < 4|n| \implies |y| < 16n^2
\]
Diophantine equations:

\[x^3 - 2y^3 = n, \quad y \neq 0 \]

\[
\left| \frac{3\sqrt{2}}{y} - \frac{x}{y} \right| < \left| \frac{3\sqrt{2}e^{2\pi i/3}}{y} - \frac{x}{y} \right| < \left| \frac{3\sqrt{2}e^{4\pi i/3}}{y} - \frac{x}{y} \right| = \frac{|n|}{|y|^3}
\]

\[
\frac{1}{4|y|^{2.5}} < \left| \frac{3\sqrt{2}}{y} - \frac{x}{y} \right| < \frac{|n|}{|y|^3}
\]

\[
|y|^{1/2} < 4|n| \implies |y| < 16n^2
\]
Diophantine equations:

Theorem: Let n be a non-zero integer. If x and y are integers satisfying $x^3 - 2y^3 = n$, then $|y| < 16n^2$.

Diophantine equations:

Theorem (Bennett): If a, b, and n are integers with $ab \neq 0$ and $n \geq 3$, then the equation

$$|ax^n + by^n| = 1$$

has at most one solution in positive integers x and y.
Waring’s Problem:
Waring’s Problem: Let k be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of s k^{th} powers.
Waring’s Problem: Let k be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of s k^{th} powers. If $g(k)$ is the least such s, what is $g(k)$?
Waring’s Problem:

Waring’s Problem: Let k be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of s k^{th} powers. If $g(k)$ is the least such s, what is $g(k)$?

Known: (i) $g(k) = 2^k + \left\lfloor \left(\frac{3}{2}\right)^k \right\rfloor - 2$
Waring’s Problem:

Waring’s Problem: Let \(k \) be an integer \(\geq 2 \). Then there exists a number \(s \) such that every natural number is a sum of \(s \) \(k \)th powers. If \(g(k) \) is the least such \(s \), what is \(g(k) \)?

Known: (i) \(g(k) = 2^k + \left\lfloor \left(\frac{3}{2}\right)^k \right\rfloor - 2 \)

(ii) no one knows how to prove (i)
Waring’s Problem: Let \(k \) be an integer \(\geq 2 \). Then there exists a number \(s \) such that every natural number is a sum of \(s k^{\text{th}} \) powers. If \(g(k) \) is the least such \(s \), what is \(g(k) \)?

Known:
(i) \(g(k) = 2^k + \left\lfloor \left(\frac{3}{2} \right)^k \right\rfloor - 2 \)
(ii) no one knows how to prove (i)
(iii) (i) holds if \(\left\| \left(\frac{3}{2} \right)^k \right\| > 0.75^k \)
Waring’s Problem:

Let k be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of s kth powers. If $g(k)$ is the least such s, what is $g(k)$?

Known:
(i) $g(k) = 2^k + \left\lfloor \left(\frac{3}{2} \right)^k \right\rfloor - 2$

(ii) no one knows how to prove (i)

(iii) (i) holds if $\left\| \left(\frac{3}{2} \right)^k \right\| > 0.75^k$

(iv) (iii) holds if and only if $k > 8$
Waring’s Problem: Let k be an integer ≥ 2. Then there exists a number s such that every natural number is a sum of s k^{th} powers. If $g(k)$ is the least such s, what is $g(k)$?

Known:
(i) $g(k) = 2^k + \left\lfloor \left(\frac{3}{2}\right)^k \right\rfloor - 2$

(ii) no one knows how to prove (i)

(iii) (i) holds if $\left\lfloor \left(\frac{3}{2}\right)^k \right\rfloor > 0.75^k$

(iv) (iii) holds if and only if $k > 8$

(v) no one knows how to prove (iv)
Waring’s Problem:

Known:
(i) \(g(k) = 2^k + \left\lfloor \left(\frac{3}{2} \right)^k \right\rfloor - 2 \)

(ii) No one knows how to prove (i).

(iii) (i) holds if \(\left\| \left(\frac{3}{2} \right)^k \right\| > 0.75^k \)
Waring’s Problem:

Known:
(i) \(g(k) = 2^k + \left\lfloor \left(\frac{3}{2} \right)^k \right\rfloor - 2 \)

(ii) No one knows how to prove (i).

(iii) (i) holds if \(\| \left(\frac{3}{2} \right)^k \| > 0.75^k \)

Theorem (Beukers): If \(k > 4 \), then

\[\| \left(\frac{3}{2} \right)^k \| > 0.5358^k. \]
Waring’s Problem:

Known:

(i) $g(k) = 2^k + \left\lfloor \left(\frac{3}{2}\right)^k \right\rfloor - 2$

(ii) No one knows how to prove (i).

(iii) (i) holds if $\left\| \left(\frac{3}{2}\right)^k \right\| > 0.75^k$

Theorem (Dubitskas): If $k > 4$, then

$\left\| \left(\frac{3}{2}\right)^k \right\| > 0.5767^k$.
The factorization of $n(n + 1)$:
The factorization of $n(n + 1)$:

Well-Known: The largest prime factor of $n(n + 1)$ tends to infinity with n.
The factorization of $n(n + 1)$:

Well-Known: The largest prime factor of $n(n + 1)$ tends to infinity with n.

Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > 1$.
Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > 1$.
Let \(p_1, p_2, \ldots, p_r \) be primes. There is an \(N \) such that if \(n \geq N \) and
\[
n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m
\]
for some integer \(m \), then \(m > 1 \).

Lehmer: Gave some explicit estimates:
Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > 1$.

Lehmer: Gave some explicit estimates:

$n(n+1)$ divisible only by primes $\leq 11 \implies n \leq$
Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and
\[n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m \]
for some integer m, then $m > 1$.

Lehmer: Gave some explicit estimates:
\[n(n + 1) \] divisible only by primes $\leq 11 \implies n \leq \]
\[\ldots \text{only by primes } \leq 41 \implies n \leq \]
Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > 1$.

Lehmer: Gave some explicit estimates:

$n(n + 1)$ divisible only by primes $\leq 11 \implies n \leq 9800$

... only by primes $\leq 41 \implies n \leq \ldots$
Let \(p_1, p_2, \ldots, p_r \) be primes. There is an \(N \) such that if \(n \geq N \) and
\[
 n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m
\]
for some integer \(m \), then \(m > 1 \).

Lehmer: Gave some explicit estimates:

\(n(n+1) \) divisible only by primes \(\leq 11 \) \(\implies \) \(n \leq 9800 \)

... only by primes \(\leq 41 \) \(\implies \) \(n \leq 63927525375 \)
Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > 1$.
Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > 1$.
Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > 1$.
Let p_1, p_2, \ldots, p_r be primes. There is an N such that if $n \geq N$ and
\[n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m \]
for some integer m, then $m > n^\theta$.
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1}p_2^{e_2}\cdots p_r^{e_r}m$$

for some integer m, then $m > n^\theta$.
Want: Let \(p_1, p_2, \ldots, p_r \) be primes. There is an \(N = N(\theta, p_1, \ldots, p_r) \) such that if \(n \geq N \) and

\[
n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m
\]

for some integer \(m \), then \(m > n^\theta \).

\[\text{abc-conjecture} \implies \theta = \]
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r}m$$

for some integer m, then $m > n^\theta$.

abc-conjecture $\implies \theta = 1 - \varepsilon$
Want: Let \(p_1, p_2, \ldots, p_r \) be primes. There is an \(N = N(\theta, p_1, \ldots, p_r) \) such that if \(n \geq N \) and
\[
n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m
\]
for some integer \(m \), then \(m > n^\theta \).

\(abc \)-conjecture \(\implies \theta = 1 - \varepsilon \)

unconditionally one can obtain \(\theta = \)
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^\theta$.

$$abc\text{-conjecture} \implies \theta = 1 - \varepsilon$$

unconditionally one can obtain $\theta = 1 - \varepsilon$
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and
\[n(n + 1) = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r}m \]
for some integer m, then $m > n^\theta$.

abc-conjecture $\implies \theta = 1 - \varepsilon$

unconditionally one can obtain $\theta = 1 - \varepsilon$

(ineffective)
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and
\[n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m \]
for some integer m, then $m > n^\theta$.

Effective Approach:
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r}m$$

for some integer m, then $m > n^\theta$.

Effective Approach: (Linear Forms of Logarithms)
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r}m$$

for some integer m, then $m > n^\theta$.

Effective Approach: (Linear Forms of Logarithms)

$$\theta = \frac{c}{\log \log n}$$
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1}p_2^{e_2} \cdots p_r^{e_r}m$$

for some integer m, then $m > n^\theta$.

Effective Approach: (Linear Forms of Logarithms)

$$\theta = \frac{c}{\log \log n}$$

Problem: Can we narrow the gap between these ineffective and effective results?
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and

$$n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m$$

for some integer m, then $m > n^\theta$.
Want: Let \(p_1, p_2, \ldots, p_r \) be primes. There is an \(N = N(\theta, p_1, \ldots, p_r) \) such that if \(n \geq N \) and
\[
n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m
\]
for some integer \(m \), then \(m > n^\theta \).

Theorem (Bennett, F., Trifonov): If \(n \geq 9 \) and
\[
n(n + 1) = 2^k 3^\ell m,
\]
then
\[
m \geq \]
Want: Let p_1, p_2, \ldots, p_r be primes. There is an $N = N(\theta, p_1, \ldots, p_r)$ such that if $n \geq N$ and
\[n(n + 1) = p_1^{e_1} p_2^{e_2} \cdots p_r^{e_r} m \]
for some integer m, then $m > n^\theta$.

Theorem (Bennett, F., Trifonov): If $n \geq 9$ and
\[n(n + 1) = 2^k 3^\ell m, \]
then
\[m \geq n^{1/4}. \]
Conjecture: For \(n > 512 \),

\[
n(n + 1) = 2^u 3^v m \implies m > \sqrt{n}.
\]
Conjecture: For \(n > 512 \),
\[n(n + 1) = 2^u 3^v m \implies m > \sqrt{n}. \]

Comment: The conjecture has been verified for
\[512 < n \leq \]
Conjecture: For $n > 512$,

$$n(n + 1) = 2^u 3^v m \implies m > \sqrt{n}.$$

Comment: The conjecture has been verified for $512 < n \leq 10^{1000}$.
The Method:
The Method:

\[n(n + 1) = 3^k 2^\ell m \]
The Method:

\[n(n + 1) = 3^k 2^\ell m \]

\[3^k m_1 - 2^\ell m_2 = \pm 1 \]
The Method:

\[n(n + 1) = 3^k 2^\ell m \]

\[3^k m_1 - 2^\ell m_2 = \pm 1 \]

Main Idea: Find “small” integers \(P, Q, \) and \(E \) such that

\[3^k P - 2^\ell Q = E. \]
The Method:

\[n(n + 1) = 3^k 2^\ell m \]

\[3^k m_1 - 2^\ell m_2 = \pm 1 \]

Main Idea: Find “small” integers \(P, Q, \) and \(E \) such that
\[3^k P - 2^\ell Q = E. \]

Then
\[3^k (Qm_1 - Pm_2) = \pm Q - E m_2. \]
The Method:

\[n(n + 1) = 3^k 2^\ell m \]

\[3^k m_1 - 2^\ell m_2 = \pm 1 \]

Main Idea: Find “small” integers \(P, Q, \) and \(E \) such that \(3^k P - 2^\ell Q = E. \)

Then

\[3^k (Qm_1 - Pm_2) = \pm Q - Em_2. \]
Main Idea: Find “small” integers P, Q, and E such that

$$3^k P - 2^\ell Q = E$$

and

$$Qm_1 - Pm_2 \neq 0.$$

Then

$$3^k (Qm_1 - Pm_2) = \pm Q - Em_2.$$
Main Idea: Find “small” integers P, Q, and E such that

$$3^k P - 2^\ell Q = E$$

and

$$Qm_1 - Pm_2 \neq 0.$$

Then

$$3^k (Qm_1 - Pm_2) = \pm Q - Em_2.$$

Obtain an upper bound on 3^k.
Main Idea: Find “small” integers P, Q, and E such that

$$3^k P - 2^\ell Q = E$$

and

$$Qm_1 - Pm_2 \neq 0.$$

Then

$$3^k (Qm_1 - Pm_2) = \pm Q - Em_2.$$

Obtain an upper bound on 3^k. Since $3^k m_1 \geq n$, it follows that m_1 and, hence, $m = m_1 m_2$ are not small.
The “small” integers P, Q, and E are obtained through the use of Padé approximations for $(1 - x)^k$.
The “small” integers P, Q, and E are obtained through the use of Padé approximations for $(1 - x)^k$.

More precisely, one takes $z = 1/9$ in the equation

$$P_r(x) - (1 - x)^k Q_r(x) = x^{2r+1} E_r(x).$$
What’s Needed for the Method to Work:
What’s Needed for the Method to Work:

One largely needs to be dealing with two primes (like 2 and 3) with a difference of powers of these primes being small (like $3^2 - 2^3 = 1$).
Galois groups associated with classical polynomials:
There is polynomial \(f(x) \in \mathbb{Z}[x] \) such that the Galois group associated with \(f(x) \) is the symmetric group \(S_n \).

- D. Hilbert (1892) used his now classical Hilbert’s Irreducibility Theorem to show that for each integer \(n \geq 1 \), there is polynomial \(f(x) \in \mathbb{Z}[x] \) such that the Galois group associated with \(f(x) \) is the symmetric group \(S_n \).
D. Hilbert (1892) used his now classical Hilbert’s Irreducibility Theorem to show that for each integer $n \geq 1$, there is polynomial $f(x) \in \mathbb{Z}[x]$ such that the Galois group associated with $f(x)$ is the symmetric group S_n. He also showed the analogous result in the case of the alternating group A_n.
Galois groups associated with classical polynomials:

- D. Hilbert (1892) used his now classical Hilbert’s Irreducibility Theorem to show that for each integer $n \geq 1$, there is polynomial $f(x) \in \mathbb{Z}[x]$ such that the Galois group associated with $f(x)$ is the symmetric group S_n. He also showed the analogous result in the case of the alternating group A_n.

- Hilbert’s work and work of E. Noether (1918) began what has come to be known as Inverse Galois Theory.
Galois groups associated with classical polynomials:

- D. Hilbert (1892) used his now classical Hilbert’s Irreducibility Theorem to show that for each integer \(n \geq 1 \), there is polynomial \(f(x) \in \mathbb{Z}[x] \) such that the Galois group associated with \(f(x) \) is the symmetric group \(S_n \). He also showed the analogous result in the case of the alternating group \(A_n \).

- Hilbert’s work and work of E. Noether (1918) began what has come to be known as Inverse Galois Theory.

- Van der Waerden showed that for “almost all” polynomials \(f(x) \in \mathbb{Z}[x] \), the Galois group associated with \(f(x) \) is the symmetric group \(S_n \).
Galois groups associated with classical polynomials:

- Schur showed $L_n^{(0)}(x)$ has Galois group S_n.
Galois groups associated with classical polynomials:

- Schur showed $L_n^{(0)}(x)$ has Galois group S_n.
- Schur showed $L_n^{(1)}(x)$ has Galois group A_n (the alternating group) if n is odd.
Galois groups associated with classical polynomials:

- Schur showed $L_n^{(0)}(x)$ has Galois group S_n.

- Schur showed $L_n^{(1)}(x)$ has Galois group A_n (the alternating group) if n is odd.

- Schur showed $\sum_{j=0}^{n} \frac{x^j}{j!}$ has Galois group A_n if $4|n$.
Galois groups associated with classical polynomials:

- Schur showed $L_n^{(0)}(x)$ has Galois group S_n.

- Schur showed $L_n^{(1)}(x)$ has Galois group A_n (the alternating group) if n is odd.

- Schur showed $\sum_{j=0}^{n} \frac{x^j}{j!}$ has Galois group A_n if $4|n$.

- Schur did not find an explicit sequence of polynomials having Galois group A_n with $n \equiv 2 \pmod{4}$.
Galois groups associated with classical polynomials:

Theorem (R. Gow, 1989): If $n \geq 2$ is even and

$$L_n^{(n)}(x) = \sum_{j=0}^{n} \binom{2n}{n-j} \frac{(-x)^j}{j!}$$

is irreducible, then the Galois group of $L_n^{(n)}(x)$ is A_n.
Galois groups associated with classical polynomials:

Theorem (R. Gow, 1989): If \(n > 2 \) is even and

\[
L_n^{(n)}(x) = \sum_{j=0}^{n} \binom{2n}{n-j} \frac{(-x)^j}{j!}
\]

is irreducible, then the Galois group of \(L_n^{(n)}(x) \) is \(A_n \).

Theorem (joint work with R. Williams): For almost all positive integers \(n \) the polynomial \(L_n^{(n)}(x) \) is irreducible (and, hence, has Galois group \(A_n \) for almost all even \(n \)).
Galois groups associated with classical polynomials:

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_n^{(n)}(x)$ is irreducible (and, hence, has Galois group A_n for almost all even n).
Galois groups associated with classical polynomials:

Theorem (joint work with R. Williams): For almost all positive integers \(n \) the polynomial \(L_n^{(n)}(x) \) is irreducible (and, hence, has Galois group \(A_n \) for almost all even \(n \)).

Comment: The method had an ineffective component to it. We could show that if \(n \) is sufficiently large and \(L_n^{(n)}(x) \) is reducible, then \(L_n^{(n)}(x) \) has a linear factor. But we didn’t know what sufficiently large was.
Galois groups associated with classical polynomials:

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_n^{(n)}(x)$ is irreducible (and, hence, has Galois group A_n for almost all even n).

Comment: The method had an ineffective component to it. We could show that if n is sufficiently large and $L_n^{(n)}(x)$ is reducible, then $L_n^{(n)}(x)$ has a linear factor. But we didn’t know what sufficiently large was.

Work in Progress with Trifonov: There is an effective bound N such that if $n \geq N$ and $n \equiv 2 \pmod{4}$, then $L_n^{(n)}(x)$ is irreducible.
Galois groups associated with classical polynomials:

Theorem (joint work with R. Williams): For almost all positive integers n the polynomial $L_n^{(n)}(x)$ is irreducible (and, hence, has Galois group A_n for almost all even n).

Comment: The method had an ineffective component to it. We could show that if n is sufficiently large and $L_n^{(n)}(x)$ is reducible, then $L_n^{(n)}(x)$ has a linear factor. But we didn’t know what sufficiently large was.

Work in Progress with Trifonov: There is an effective bound N such that if $n \geq N$ and $n \equiv 2 \pmod{4}$, then $L_n^{(n)}(x)$ has Galois group A_n.
The Ramanujan-Nagell equation:
The Ramanujan-Nagell equation:

Classical Ramanujan-Nagell Theorem: If \(x \) and \(n \) are integers satisfying

\[x^2 + 7 = 2^n, \]

then

\[x \in \{1, 3, 5, 11, 181\}. \]
The Ramanujan-Nagell equation:

Some Background: Beukers used a method “similar” to the approach for finding irrationality measures to show that $\sqrt{2}$ cannot be approximated too well by rationals a/b with b a power of 2. This implies bounds for solutions to the Diophantine equation $x^2 + D = 2^n$ with D fixed. This led to him showing that if $D \neq 7$, then the equation has at most 4 solutions. Related independent work by Apéry, Beukers, and Bennett establishes that for odd primes p not dividing D, the equation $x^2 + D = p^n$ has at most 3 solutions. All of these are in some sense best possible (though more can and has been said).
The Ramanujan-Nagell equation:

Classical Ramanujan-Nagell Theorem: If x and n are integers satisfying

\[x^2 + 7 = 2^n, \]

then

\[x \in \{1, 3, 5, 11, 181\}. \]
The Ramanujan-Nagell equation:

Classical Ramanujan-Nagell Theorem: If x and n are integers satisfying

$$x^2 + 7 = 2^n,$$

then

$$x \in \{1, 3, 5, 11, 181\}.$$

Problem: If $x^2 + 7 = 2^n m$ and x is not in the set above, then can we say that m must be large?
Problem: If \(x^2 + 7 = 2^n m \) and \(x \) is not in the set above, then can we say that \(m \) must be large?

Connection with \(n(n + 1) \) problem:
Problem: If $x^2 + 7 = 2^n m$ and x is not in the set above, then can we say that m must be large?

Connection with $n(n + 1)$ problem:

$$x^2 + 7 = 2^n m$$
Problem: If \(x^2 + 7 = 2^n m \) and \(x \) is not in the set above, then can we say that \(m \) must be large?

Connection with \(n(n + 1) \) problem:

\[
x^2 + 7 = 2^n m
\]

\[
\left(\frac{x + \sqrt{-7}}{2} \right) \left(\frac{x - \sqrt{-7}}{2} \right) = \left(\frac{1 + \sqrt{-7}}{2} \right)^{n-2} \left(\frac{1 - \sqrt{-7}}{2} \right)^{n-2} m
\]
Problem: If \(x^2 + 7 = 2^n m \) and \(x \) is not in the set above, then can we say that \(m \) must be large?

Connection with \(n(n+1) \) problem:

\[
x^2 + 7 = 2^n m
\]

\[
\left(\frac{x + \sqrt{-7}}{2} \right) \left(\frac{x - \sqrt{-7}}{2} \right) = \left(\frac{1 + \sqrt{-7}}{2} \right)^{n-2} \left(\frac{1 - \sqrt{-7}}{2} \right)^{n-2} m
\]

↑

linear

↑

linear
Problem: If \(x^2 + 7 = 2^n m \) and \(x \) is not in the set above, then can we say that \(m \) must be large?

Connection with \(n(n + 1) \) problem:

\[
x^2 + 7 = 2^n m
\]

\[
\left(\frac{x + \sqrt{-7}}{2} \right) \left(\frac{x - \sqrt{-7}}{2} \right) = \left(\frac{1 + \sqrt{-7}}{2} \right)^{n-2} \left(\frac{1 - \sqrt{-7}}{2} \right)^{n-2} m
\]

↑
linear
linear
prime
prime
Theorem (Bennett, F., Trifonov): If x, n and m are positive integers satisfying

$$x^2 + 7 = 2^n m \quad \text{and} \quad x \notin \{1, 3, 5, 11, 181\},$$

then

$$m \geq ???$$
Theorem (Bennett, F., Trifonov): If x, n and m are positive integers satisfying

$$x^2 + 7 = 2^nm \quad \text{and} \quad x \not\in \{1, 3, 5, 11, 181\},$$

then

$$m \geq x^{1/2}.$$
Theorem (Bennett, F., Trifonov): If x, n and m are positive integers satisfying

$$x^2 + 7 = 2^n m \quad \text{and} \quad x \not\in \{1, 3, 5, 11, 181\},$$

then

$$m \geq x^{1/2}.$$

Comment: In the case of $x^2 + 7 = 2^n m$, the difference of the primes $(1 + \sqrt{-7})/2$ and $(1 - \sqrt{-7})/2$ each raised to the 13^{th} power has absolute value ≈ 2.65 and the powers themselves have absolute value ≈ 90.51.
k-free numbers in short intervals:
k-free numbers in short intervals:

Problem: Find $\theta = \theta(k)$ as small as possible such that, for x sufficiently large, the interval $(x, x + x^\theta]$ contains a k-free number.
k-free numbers in short intervals:

Problem: Find $\theta = \theta(k)$ as small as possible such that, for x sufficiently large, the interval $(x, x + x^\theta]$ contains a k-free number.

Main Idea: Show that there are integers in $(x, x + x^\theta]$ not divisible by the k^{th} power of a prime. Consider primes in different size ranges. Deal with small primes and large primes separately.
Problem: Find $\theta = \theta(k)$ as small as possible such that, for x sufficiently large, the interval $(x, x + x^\theta]$ contains a k-free number.
Problem: Find $\theta = \theta(k)$ as small as possible such that, for x sufficiently large, the interval $(x, x + x^\theta]$ contains a k-free number.

Small Primes: $p \leq z$
Problem: Find $\theta = \theta(k)$ as small as possible such that, for x sufficiently large, the interval $(x, x + x^\theta]$ contains a k-free number.

Small Primes: $p \leq z$ where $z = x^\theta \sqrt{\log x}$
Problem: Find $\theta = \theta(k)$ as small as possible such that, for x sufficiently large, the interval $(x, x + x^\theta]$ contains a k-free number.

Small Primes: $p \leq z$ where $z = x^\theta \sqrt{\log x}$

The number of integers $n \in (x, x + x^\theta]$ divisible by such a p^k is bounded by
Problem: Find $\theta = \theta(k)$ as small as possible such that, for x sufficiently large, the interval $(x, x + x^\theta]$ contains a k-free number.

Small Primes: $p \leq z$ where $z = x^\theta \sqrt{\log x}$

The number of integers $n \in (x, x + x^\theta]$ divisible by such a p^k is bounded by

$$\sum_{p \leq z} \left(\frac{x^\theta}{p^k} + 1 \right)$$
Problem: Find $\theta = \theta(k)$ as small as possible such that, for x sufficiently large, the interval $(x, x + x^\theta]$ contains a k-free number.

Small Primes: $p \leq z$ where $z = x^\theta \sqrt{\log x}$

The number of integers $n \in (x, x + x^\theta]$ divisible by such a p^k is bounded by

$$
\sum_{p \leq z} \left(\frac{x^\theta}{p^k} + 1 \right) \leq \left(\sum_{p \text{ prime}} \frac{x^\theta}{p^2} \right) + \pi(z)
$$
Problem: Find $\theta = \theta(k)$ as small as possible such that, for x sufficiently large, the interval $(x, x + x^\theta]$ contains a k-free number.

Small Primes: $p \leq z$ where $z = x^\theta \sqrt{\log x}$

The number of integers $n \in (x, x + x^\theta]$ divisible by such a p^k is bounded by

$$\sum_{p \leq z} \left(\frac{x^\theta}{p^k} + 1 \right) \leq \left(\sum_{p \text{ prime}} \frac{x^\theta}{p^2} \right) + \pi(z)$$

$$\leq \left(\frac{\pi^2}{6} - 1 \right) x^\theta$$
Problem: Find \(\theta = \theta(k) \) as small as possible such that, for \(x \) sufficiently large, the interval \((x, x + x^\theta]\) contains a \(k \)-free number.

Small Primes: \(p \leq z \) where \(z = x^\theta \sqrt{\log x} \)

The number of integers \(n \in (x, x + x^\theta] \) divisible by such a \(p^k \) is bounded by

\[
\sum_{p \leq z} \left(\frac{x^\theta}{p^k} + 1 \right) \leq \left(\sum_{p \text{ prime}} \frac{x^\theta}{p^2} \right) + \pi(z) \\
\leq \left(\frac{\pi^2}{6} - 1 \right) x^\theta < \frac{2}{3} x^\theta.
\]
Large Primes: $p \in (N, 2N]$, $N \geq z = x^\theta \sqrt{\log x}$
Large Primes: \(p \in (N, 2N], \quad N \geq z = x^\theta \sqrt{\log x} \)

\[
x < p^k m \leq x + x^\theta
\]
Large Primes: $p \in (N, 2N]$, $N \geq z = x^\theta \sqrt{\log x}$

$$x < p^k m \leq x + x^\theta \implies \frac{x}{p^k} < m \leq \frac{x}{p^k} + \frac{x^\theta}{p^k}$$
Large Primes: \(p \in (N, 2N], \; N \geq z = x^\theta \sqrt{\log x} \)

\[x < p^k m \leq x + x^\theta \implies \frac{x}{p^k} < m \leq \frac{x}{p^k} + \frac{x^\theta}{p^k} \]

\[\implies \left\| \frac{x}{p^k} \right\| < \frac{x^\theta}{N^k} \]
Large Primes: \(p \in (N, 2N], \ N \geq z = x^\theta \sqrt{\log x} \)

\[
x < p^k m \leq x + x^\theta \implies \frac{x}{p^k} < m \leq \frac{x}{p^k} + \frac{x^\theta}{p^k}
\]

\[
\implies \left\| \frac{x}{p^k} \right\| < \frac{x^\theta}{N^k}
\]

where \(\|t\| = \min\{|t - \ell| : \ell \in \mathbb{Z}\} \)
Large Primes: \(p \in (N, 2N], \quad N \geq z = x^\theta \sqrt{\log x} \)

\[
x < p^k m \leq x + x^\theta \implies \frac{x}{p^k} < m \leq \frac{x}{p^k} + \frac{x^\theta}{p^k}
\]

\[
\implies \left\| \frac{x}{p^k} \right\| < \frac{x^\theta}{N^k}
\]

where \(\left\| t \right\| = \min\{|t - \ell| : \ell \in \mathbb{Z}\} \)

Idea: Show that there are few primes \(p \in (N, 2N] \) with \(x/p^k \) that close to an integer.
Large Primes: \(p \in (N, 2N], \ N \geq z = x^\theta \sqrt{\log x} \)

\[
x < p^km \leq x + x^\theta \implies \frac{x}{p^k} < m \leq \frac{x}{p^k} + \frac{x^\theta}{p^k}
\]

\[
\implies \left\| \frac{x}{p^k} \right\| < \frac{x^\theta}{N^k}
\]

where \(\|t\| = \min\{|t - \ell| : \ell \in \mathbb{Z}\} \)

Idea: Show that there are few integers \(p \in (N, 2N] \) with \(x/p^k \) that close to an integer.
Large Primes: \(p \in (N, 2N], \; N \geq z = x^\theta \sqrt{\log x} \)

\[
x < p^k m \leq x + x^\theta \implies \frac{x}{p^k} < m \leq \frac{x}{p^k} + \frac{x^\theta}{p^k}
\]

\[
\implies \left\| \frac{x}{p^k} \right\| < \frac{x^\theta}{N^k}
\]

where \(\| t \| = \min \{|t - \ell| : \ell \in \mathbb{Z}\} \)

Idea: Show that there are few integers \(u \in (N, 2N] \) with \(x/u^k \) that close to an integer.
\[\frac{x}{u^k} < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x}\]

Exponential Sums:
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

Exponential Sums: Let \(\delta \in (0, 1/2) \). Let \(f : \mathbb{R} \to \mathbb{R} \) be any function. Let \(S \) be a set of positive integers. Then for any positive integer \(J \leq 1/(4\delta) \), we get

\[
|\{u \in S : \|f(u)\| < \delta\}| \\
\leq \frac{\pi^2}{2(J + 1)} \sum_{1 \leq j \leq J} \left| \sum_{u \in S} e^{2\pi ij f(u)} \right| \\
+ \frac{\pi^2}{4(J + 1)}|S|.
\]
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

Differences:
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

Differences:

\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad \left\| \frac{x}{(u + a)^k} \right\| < \frac{x^\theta}{N^k} \]
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

Differences:

\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad \left\| \frac{x}{(u + a)^k} \right\| < \frac{x^\theta}{N^k} \]

\[\frac{x}{u^k} - \frac{x}{(u + a)^k} \]
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

Differences:

\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad \left\| \frac{x}{(u + a)^k} \right\| < \frac{x^\theta}{N^k} \]

\[\frac{x}{u^k} - \frac{x}{(u + a)^k} \sim \frac{ax}{u^{k+1}} \]
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

Differences:

\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad \left\| \frac{x}{(u + a)^k} \right\| < \frac{x^\theta}{N^k} \]

\[\frac{x}{u^k} - \frac{x}{(u + a)^k} \simeq \frac{ax}{u^{k+1}} \simeq \frac{ax}{N^{k+1}} \]
$$\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x}$$

Differences:

$$\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad \left\| \frac{x}{(u + a)^k} \right\| < \frac{x^\theta}{N^k}$$

$$\frac{x}{u^k} - \frac{x}{(u + a)^k} \asymp \frac{ax}{u^{k+1}} \asymp \frac{ax}{N^{k+1}}$$
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

Differences:

\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad \left\| \frac{x}{(u + a)^k} \right\| < \frac{x^\theta}{N^k} \]

\[
\frac{x}{u^k} - \frac{x}{(u + a)^k} \asymp \frac{ax}{u^{k+1}} \asymp \frac{ax}{N^{k+1}}
\]

consider \(N = x^{1/k} \)
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

Differences:
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad \left\| \frac{x}{(u + a)^k} \right\| < \frac{x^\theta}{N^k} \]
\[\frac{x}{u^k} - \frac{x}{(u + a)^k} \approx \frac{ax}{u^{k+1}} \approx \frac{a}{x^{1/k}} \]

consider \(N = x^{1/k} \)
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

Differences:

\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad \left\| \frac{x}{(u + a)^k} \right\| < \frac{x^\theta}{N^k} \]
\[\frac{x}{u^k} - \frac{x}{(u + a)^k} \asymp \frac{ax}{u^{k+1}} \asymp \frac{a}{x^{1/k}} \]

consider \(N = x^{1/k}, \ a < x^{1/(2k)} \)
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

Differences:

\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad \left\| \frac{x}{(u + a)^k} \right\| < \frac{x^\theta}{N^k} \]

\[
\frac{x}{u^k} - \frac{x}{(u + a)^k} \approx \frac{ax}{u^{k+1}} \approx \frac{a}{x^{1/k}}
\]

consider \(N = x^{1/k}, \ a < x^{1/(2k)}, \ \theta \approx 1/k \)
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

Differences:

\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad \left\| \frac{x}{(u + a)^k} \right\| < \frac{x^\theta}{N^k} \]

\[
\frac{x}{u^k} - \frac{x}{(u + a)^k} \approx \frac{ax}{u^{k+1}} \approx \frac{a}{x^{1/k}}
\]

consider \(N = x^{1/k}, \ a < x^{1/(2k)}, \ \theta \approx 1/k \)

LHS small compared to RHS
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

“Modified” Differences:
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k} , \quad u \in (N, 2N] , \quad N \geq x^\theta \sqrt{\log x} \]

“Modified” Differences:

\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k} , \quad \left\| \frac{x}{(u + a)^k} \right\| < \frac{x^\theta}{N^k} \]
\[\| \frac{x}{u^k} \| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

“Modified” Differences:

\[\| \frac{x}{u^k} \| < \frac{x^\theta}{N^k}, \quad \| \frac{x}{(u + a)^k} \| < \frac{x^\theta}{N^k} \]

\[\frac{x}{u^k} P - \frac{x}{(u + a)^k} Q \quad \text{small} \]
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

“Modified” Differences:

\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad \left\| \frac{x}{(u+a)^k} \right\| < \frac{x^\theta}{N^k} \]

\[\frac{x}{u^k} P - \frac{x}{(u+a)^k} Q \quad \text{small (but not too small)} \]
\[\frac{x}{u^k} < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

“Modified” Differences:
\[\frac{x}{u^k} < \frac{x^\theta}{N^k}, \quad \frac{x}{(u + a)^k} < \frac{x^\theta}{N^k} \]
\[\frac{x}{u^k} P - \frac{x}{(u + a)^k} Q \quad \text{small (but not too small)} \]
\[(u + a)^k P - u^k Q \quad \text{small (but not too small)} \]
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

"Modified" Differences:

\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad \left\| \frac{x}{(u + a)^k} \right\| < \frac{x^\theta}{N^k} \]

\[\frac{x}{u^k} P - \frac{x}{(u + a)^k} Q \quad \text{small (but not too small)} \]

\[(u + a)^k P - u^k Q \quad \text{small (but not too small)} \]

consider \(P_r(z) - (1 - z)^k Q_r(z) \) with \(z = \frac{a}{u + a} \)
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

“Modified” Differences:

Theorem (Halberstam & Roth):
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

“Modified” Differences:

Theorem (Halberstam & Roth & Nair):
Theorem (Halberstam & Roth & Nair):
For x sufficiently large, there is a k-free number in the interval $(x, x + x^{1/(2k)}].$
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

Modified Differences plus Divided Differences:
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

Modified Differences plus Divided Differences:

Theorem (F. & Trifonov): For \(x \) sufficiently large, there is a squarefree number in \((x, x + cx^{1/5} \log x] \).
\[\left\| \frac{x}{u^k} \right\| < \frac{x^\theta}{N^k}, \quad u \in (N, 2N], \quad N \geq x^\theta \sqrt{\log x} \]

Modified Differences plus Divided Differences:

Theorem (F. & Trifonov): For \(x \) sufficiently large, there is a squarefree number in \((x, x + cx^{1/5} \log x]\).

Theorem (Trifonov): For \(x \) sufficiently large, there is a \(k \)-free number in \((x, x + cx^{1/(2k+1)} \log x]\).
More General Theorem (F. & Trifonov): Let k be an integer ≥ 2, and let
\[s \in \mathbb{Q} - \{-(k-1), -(k-2), \ldots, k-2, k-1\}. \]
Let $f(u) = X/u^s$. Suppose that
\[N^s \leq X \quad \text{and} \quad \delta \leq cN^{-(k-1)}, \]
where $c > 0$ is small. Set
\[S = \{ u \in \mathbb{Z} \cap (N, 2N] : \| f(u) \| < \delta \}. \]
Then
\[|S| \ll_{k, s} X^{1/(2k+1)} N^{(k-s)/(2k+1)} \]
\[+ \delta X^{1/(6k+3)} N^{(6k^2+2k-s-1)/(6k+3)}. \]
More General Theorem (F. & Trifonov): Let k be an integer ≥ 2, and let

$$s \in \mathbb{Q} - \{-(k-1), -(k-2), \ldots, k-2, k-1\}.$$

Let $f(u) = X/u^s$. Suppose that

$$N^s \leq X$$

and

$$\delta \leq cN^{-(k-1)},$$

where $c > 0$ is small. Set

$$S = \{u \in \mathbb{Z} \cap (N, 2N] : \|f(u)\| < \delta\}.$$

Then

$$|S| \ll_{k,s} X^{1/(2k+1)} N^{(k-s)/(2k+1)}$$

$$+ \delta X^{1/(6k+3)} N^{(6k^2+2k-s-1)/(6k+3)}.$$
More General Theorem (F. & Trifonov): Let \(k \) be an integer \(\geq 2 \), and let

\[
s \in \mathbb{Q} - \{-(k-1), -(k-2), \ldots, k-2, k-1\}.
\]

Let \(f(u) = X/u^s \). Suppose that

\[
N^s \leq X \quad \text{and} \quad \delta \leq cN^{-(k-1)},
\]

where \(c > 0 \) is small. Set

\[
S = \{u \in \mathbb{Z} \cap (N, 2N] : \|f(u)\| < \delta\}.
\]

Then

\[
|S| \ll_{k,s} X^{1/(2k+1)} N^{(k-s)/(2k+1)} + \delta X^{1/(6k+3)} N^{(6k^2+2k-s-1)/(6k+3)}.
\]
More General Theorem (F. & Trifonov): Let k be an integer ≥ 2, and let

$s \in \mathbb{Q} - \{-(k - 1), -(k - 2), \ldots, k - 2, k - 1\}$.

Let $f(u) = X/u^s$. Suppose that

$N^s \leq X$ and $\delta \leq cN^{-(k-1)}$,

where $c > 0$ is small. Set

$S = \{u \in \mathbb{Z} \cap (N, 2N] : \|f(u)\| < \delta\}$.

Then

$|S| \ll_{k,s} X^{1/(2k+1)} N^{(k-s)/(2k+1)} + \delta X^{1/(6k+3)} N^{(6k^2+2k-s-1)/(6k+3)}$.
k-free values of polynomials and binary forms:
\textit{k}-free values of polynomials and binary forms:

The method for obtaining results about gaps between \textit{k}-free numbers generalizes to \textit{k}-free values of polynomials.
k-free values of polynomials and binary forms:

The method for obtaining results about gaps between k-free numbers generalizes to k-free values of polynomials. Suppose $f(x) \in \mathbb{Z}[x]$ is irreducible and $\deg f = n$.
The method for obtaining results about gaps between k-free numbers generalizes to k-free values of polynomials. Suppose $f(x) \in \mathbb{Z}[x]$ is irreducible and $\deg f = n$. In what follows, we suppose further that f has no fixed k^{th} power divisors.
The method for obtaining results about gaps between \(k \)-free numbers generalizes to \(k \)-free values of polynomials. Suppose \(f(x) \in \mathbb{Z}[x] \) is irreducible and \(\deg f = n \). In what follows, we suppose further that \(f \) has no fixed \(k \)-th power divisors.

Theorem (Nair): Let \(k \geq n + 1 \). For \(x \) sufficiently large, there is an integer \(m \) such that \(f(m) \) is \(k \)-free with

\[
x < m \leq x + cx^{\frac{n}{2k-n+1}}.
\]
Theorem (Nair): Let $k \geq n + 1$. For x sufficiently large, there is an integer m such that $f(m)$ is k-free with

$$x < m \leq x + cx^{\frac{n}{2k-n+1}}.$$
Theorem (Nair): Let $k \geq n + 1$. For x sufficiently large, there is an integer m such that $f(m)$ is k-free with

$$x < m \leq x + cx^{\frac{n}{2k-n+1}}.$$

Theorem: Let $k \geq n + 1$. For x sufficiently large, there is an integer m such that $f(m)$ is k-free with

$$x < m \leq x + cx^{\frac{n}{2k-n+r}},$$

where $r =$
Theorem (Nair): Let $k \geq n + 1$. For x sufficiently large, there is an integer m such that $f(m)$ is k-free with
\[x < m \leq x + cx^{2k-n+1}. \]

Theorem: Let $k \geq n + 1$. For x sufficiently large, there is an integer m such that $f(m)$ is k-free with
\[x < m \leq x + cx^{2k-n+r}, \]
where $r = \sqrt{2n} - \frac{1}{2}$.
Basic Idea: One works in a number field where $f(x)$ has a linear factor. As in the case $f(x) = x$, one wants to show certain u (in the ring of algebraic integers in the field) are not close by considering

$$(u + a)^k P - u^k Q$$

arising from Padé approximations. One uses that this expression is an integer and, hence, either 0 or ≥ 1.
Basic Idea: One works in a number field where \(f(x) \) has a linear factor. As in the case \(f(x) = x \), one wants to show certain \(u \) (in the ring of algebraic integers in the field) are not close by considering

\[(u + a)^kP - u^kQ\]

arising from Padé approximations. One uses that this expression is an integer and, hence, either 0 or \(\geq 1 \).

Difficulty: An “integer” in this context can be small without being 0.
Basic Idea: One works in a number field where $f(x)$ has a linear factor. As in the case $f(x) = x$, one wants to show certain u (in the ring of algebraic integers in the field) are not close by considering

$$(u + a)^k P - u^k Q$$

arising from Padé approximations. One uses that this expression is an integer and, hence, either 0 or ≥ 1.

Difficulty: An “integer” in this context can be small without being 0.

Solution: If it’s small, work with a conjugate instead.
Comment: In the case that $k \leq n$, one can try the same methods.
Comment: In the case that $k \leq n$, one can try the same methods. The gap size becomes “bad” in the sense that one obtains $m \in (x, x + h]$ where $f(m)$ is k-free but h increases as k decreases.
Comment: In the case that $k \leq n$, one can try the same methods. The gap size becomes “bad” in the sense that one obtains $m \in (x, x + h]$ where $f(m)$ is k-free but h increases as k decreases. There is a point where h exceeds x itself and the method fails (the size of $f(m)$ is no longer of order x^n).
Comment: In the case that \(k \leq n \), one can try the same methods. The gap size becomes “bad” in the sense that one obtains \(m \in (x, x + h] \) where \(f(m) \) is \(k \)-free but \(h \) increases as \(k \) decreases. There is a point where \(h \) exceeds \(x \) itself and the method fails (the size of \(f(m) \) is no longer of order \(x^n \)). Nair took the limit of what can be done with \(k \leq n \) and obtained
Comment: In the case that $k \leq n$, one can try the same methods. The gap size becomes “bad” in the sense that one obtains $m \in (x, x + h]$ where $f(m)$ is k-free but h increases as k decreases. There is a point where h exceeds x itself and the method fails (the size of $f(m)$ is no longer of order x^n). Nair took the limit of what can be done with $k \leq n$ and obtained

Theorem (Nair): If $f(x)$ is an irreducible polynomial of degree n and $k \geq (2\sqrt{2} - 1)n/2$, then there are infinitely many integers m for which $f(m)$ is k-free.
Theorem (Nair): If $f(x)$ is an irreducible polynomial of degree n and $k \geq (2\sqrt{2} - 1)n/2$, then there are infinitely many integers m for which $f(m)$ is k-free.
Theorem (Nair): If $f(x)$ is an irreducible polynomial of degree n and $k \geq (2\sqrt{2} - 1)n/2$, then there are infinitely many integers m for which $f(m)$ is k-free.

Theorem: If $f(x, y)$ is an irreducible binary form of degree n and $k \geq (2\sqrt{2} - 1)n/4$, then there are infinitely many integer pairs (a, b) for which $f(a, b)$ is k-free.
The abc-conjecture:
The abc-conjecture:

Notation: $Q(n) = \prod_{p|n} p$
The abc-conjecture:

Notation: $Q(n) = \prod_{p|n} p$

The abc-Conjecture: For a and b in \mathbb{Z}^+, define

$$L_{a,b} = \frac{\log(a + b)}{\log Q(ab(a + b))}$$

and

$$\mathcal{L} = \{ L_{a,b} : a \geq 1, b \geq 1, \gcd(a, b) = 1 \}.$$

The set of limit points of \mathcal{L} is the interval $[1/3, 1]$.
\[L_{a,b} = \frac{\log(a + b)}{\log Q(ab(a + b))} \]

\[\mathcal{L} = \{ L_{a,b} : a \geq 1, b \geq 1, \gcd(a, b) = 1 \} \]
\[L_{a,b} = \frac{\log(a + b)}{\log Q(ab(a + b))} \]

\[\mathcal{L} = \{L_{a,b} : a \geq 1, b \geq 1, \gcd(a, b) = 1\} \]

Theorem: The set of limit points of \(\mathcal{L} \) includes the interval \([1/3, 36/37]\).
\[L_{a,b} = \frac{\log(a + b)}{\log Q(ab(a + b))} \]

\[\mathcal{L} = \{ L_{a,b} : a \geq 1, b \geq 1, \gcd(a, b) = 1 \} \]

Theorem: The set of limit points of \(\mathcal{L} \) includes the interval \([1/3, 36/37]\).

(work of Browkin, Greaves, F., Nitaj, Schinzel)
Approach: Makes use of a preliminary result about square-free values of binary forms.

Approach: Makes use of a preliminary result about square-free values of binary forms. In particular, for

\[
f(x, y) = x y (x + y) (x - y) (x^2 + y^2) (2x^2 + y^2) (x^2 + 2y^2) \\
\times (x^4 - x^2 y^2 + y^4) (3x^4 + 3x^2 y^2 + y^4) (x^4 + 3x^2 y^2 + 3y^4)
\]

the number \(f(x, y)/6 \) takes on the right proportion of squarefree values for

\[
X < x \leq 2X, \quad Y < y \leq 2Y, \quad X = Y^\alpha,
\]

where \(\alpha \in (1, 3) \).
Polynomial Identity:
Polynomial Identity:

\[P_3(z) - (1 - z)^7 Q_3(z) = z^7 E_3(z) \]

where

\[P_3(z) = (2z - 1)(3z^2 - 3z + 1), \]
\[Q_3(z) = -(z + 1)(z^2 + z + 1), \]

and

\[E_3(z) = -(z - 2)(z^2 - 3z + 3) \]
Polynomial Identity:

\[P_3(z) - (1 - z)^7 Q_3(z) = z^7 E_3(z) \]
Polynomial Identity:

\[P_3(z) - (1 - z)^7 Q_3(z) = z^7 E_3(z) \]

\[z = \frac{x}{x + y} \]
Polynomial Identity:

\[P_3(z) - (1 - z)^7 Q_3(z) = z^7 E_3(z) \]

\[z = \frac{x}{x + y} \implies \left\{ \begin{array}{l}
(x + y)^7 (x - y) (x^2 - xy + y^2) \\
+ y^7 (2x + y) (3x^2 + 3xy + y^2) \\
= x^7 (x + 2y) (x^2 + 3xy + 3y^2)
\end{array} \right. \]
\[(x + y)^7(x - y)(x^2 - xy + y^2) + y^7(2x + y)(3x^2 + 3xy + y^2) = x^7(x + 2y)(x^2 + 3xy + 3y^2)\]
\[(x + y)^7(x - y)(x^2 - xy + y^2) + y^7(2x + y)(3x^2 + 3xy + y^2) = x^7(x + 2y)(x^2 + 3xy + 3y^2)\]

\[(x^2 + y^2)^7(x^2 - y^2)(x^4 - x^2y^2 + y^4) + y^{14}(2x^2 + y^2)(3x^4 + 3x^2y^2 + y^4) = x^{14}(x^2 + 2y^2)(x^4 + 3x^2y^2 + 3y^4)\]
\[(x + y)^7(x - y)(x^2 - xy + y^2) + y^7(2x + y)(3x^2 + 3xy + y^2) = x^7(x + 2y)(x^2 + 3xy + 3y^2)\]

\[(x^2 + y^2)^7(x^2 - y^2)(x^4 - x^2y^2 + y^4) + y^{14}(2x^2 + y^2)(3x^4 + 3x^2y^2 + y^4) = x^{14}(x^2 + 2y^2)(x^4 + 3x^2y^2 + 3y^4)\]

\[f(x, y) = xy(x + y)(x - y)(x^2 + y^2)(2x^2 + y^2)(x^2 + 2y^2) \times (x^4 - x^2y^2 + y^4)(3x^4 + 3x^2y^2 + y^4)(x^4 + 3x^2y^2 + 3y^4)\]
$$(x + y)^7(x - y)(x^2 - xy + y^2)$$

$$+ y^7(2x + y)(3x^2 + 3xy + y^2)$$

$$= x^7(x + 2y)(x^2 + 3xy + 3y^2)$$

$$(x^2 + y^2)^7(x^2 - y^2)(x^4 - x^2y^2 + y^4)$$

$$+ y^{14}(2x^2 + y^2)(3x^4 + 3x^2y^2 + y^4)$$

$$= x^{14}(x^2 + 2y^2)(x^4 + 3x^2y^2 + 3y^4)$$

$$f(x, y) = xy(x + y)(x - y)(x^2 + y^2)(2x^2 + y^2)(x^2 + 2y^2)$$

$$\times (x^4 - x^2y^2 + y^4)(3x^4 + 3x^2y^2 + y^4)(x^4 + 3x^2y^2 + 3y^4)$$
\[(x + y)^7(x - y)(x^2 - xy + y^2)\]
\[+ y^7(2x + y)(3x^2 + 3xy + y^2)\]
\[= x^7(x + 2y)(x^2 + 3xy + 3y^2)\]

\[(x^2 + y^2)^7(x^2 - y^2)(x^4 - x^2y^2 + y^4)\]
\[+ y^{14}(2x^2 + y^2)(3x^4 + 3x^2y^2 + y^4)\]
\[= x^{14}(x^2 + 2y^2)(x^4 + 3x^2y^2 + 3y^4)\]

\[f(x, y) = xy(x + y)(x - y)(x^2 + y^2)(2x^2 + y^2)(x^2 + 2y^2)\]
\[\times (x^4 - x^2y^2 + y^4)(3x^4 + 3x^2y^2 + y^4)(x^4 + 3x^2y^2 + 3y^4)\]
\[a = (x^2 + y^2)^7(x^2 - y^2)(x^4 - x^2y^2 + y^4) \]
\[b = y^{14}(2x^2 + y^2)(3x^4 + 3x^2y^2 + y^4) \]
\[X = Y^\alpha, \quad 1 < \alpha < 3 \]
\[a + b = x^{14}(x^2 + 2y^2)(x^4 + 3x^2y^2 + 3y^4) \]
\[a = (x^2 + y^2)^7(x^2 - y^2)(x^4 - x^2y^2 + y^4) \]
\[b = y^{14}(2x^2 + y^2)(3x^4 + 3x^2y^2 + y^4) \]
\[X = Y^\alpha, \quad 1 < \alpha < 3 \]
\[a + b = x^{14}(x^2 + 2y^2)(x^4 + 3x^2y^2 + 3y^4) \]

\[f(x, y) = xy(x + y)(x - y)(x^2 + y^2)(2x^2 + y^2)(x^2 + 2y^2) \times (x^4 - x^2y^2 + y^4)(3x^4 + 3x^2y^2 + y^4)(x^4 + 3x^2y^2 + 3y^4) \]
\[a = (x^2 + y^2)^7(x^2 - y^2)(x^4 - x^2y^2 + y^4) \]
\[b = y^{14}(2x^2 + y^2)(3x^4 + 3x^2y^2 + y^4) \]
\[X = Y^\alpha, \quad 1 < \alpha < 3 \]
\[a + b = x^{14}(x^2 + 2y^2)(x^4 + 3x^2y^2 + 3y^4) \]

\[f(x, y) = xy(x + y)(x - y)(x^2 + y^2)(2x^2 + y^2)(x^2 + 2y^2) \]
\[\times (x^4 - x^2y^2 + y^4)(3x^4 + 3x^2y^2 + y^4)(x^4 + 3x^2y^2 + 3y^4) \]

\[L_{a,b} = \frac{\log(a + b)}{\log Q(ab(a + b))} \]
\[a = (x^2 + y^2)^7(x^2 - y^2)(x^4 - x^2y^2 + y^4) \]
\[b = y^{14}(2x^2 + y^2)(3x^4 + 3x^2y^2 + y^4) \]
\[X = Y^\alpha, \quad 1 < \alpha < 3 \]
\[a + b = x^{14}(x^2 + 2y^2)(x^4 + 3x^2y^2 + 3y^4) \]

\[f(x, y) = xy(x + y)(x - y)(x^2 + y^2)(2x^2 + y^2)(x^2 + 2y^2) \]
\[\times (x^4 - x^2y^2 + y^4)(3x^4 + 3x^2y^2 + y^4)(x^4 + 3x^2y^2 + 3y^4) \]

\[L_{a,b} = \frac{\log(a + b)}{\log Q(ab(a + b))} \]
\[a = (x^2 + y^2)^7(x^2 - y^2)(x^4 - x^2y^2 + y^4) \]
\[b = y^{14}(2x^2 + y^2)(3x^4 + 3x^2y^2 + y^4) \]
\[X = Y^\alpha, \quad 1 < \alpha < 3 \]
\[a + b = x^{14}(x^2 + 2y^2)(x^4 + 3x^2y^2 + 3y^4) \]

\[f(x, y) = xy(x + y)(x - y)(x^2 + y^2)(2x^2 + y^2)(x^2 + 2y^2) \times (x^4 - x^2y^2 + y^4)(3x^4 + 3x^2y^2 + y^4)(x^4 + 3x^2y^2 + 3y^4) \]

\[L_{a,b} = \frac{\log(a + b)}{\log Q(ab(a + b))} \approx \frac{20\alpha \log Y}{\log 20} \]
\[a = (x^2 + y^2)^7(x^2 - y^2)(x^4 - x^2y^2 + y^4) \]

\[b = y^{14}(2x^2 + y^2)(3x^4 + 3x^2y^2 + y^4) \]

\[X = Y^\alpha, \quad 1 < \alpha < 3 \]

\[a + b = x^{14}(x^2 + 2y^2)(x^4 + 3x^2y^2 + 3y^4) \]

\[f(x, y) = xy(x + y)(x - y)(x^2 + y^2)(2x^2 + y^2)(x^2 + 2y^2) \]
\[\times (x^4 - x^2y^2 + y^4)(3x^4 + 3x^2y^2 + y^4)(x^4 + 3x^2y^2 + 3y^4) \]

\[L_{a,b} = \frac{\log(a + b)}{\log Q(ab(a + b))} \approx \frac{20\alpha \log Y}{\log Q(ab(a + b))} \]
\[a = (x^2 + y^2)^7(x^2 - y^2)(x^4 - x^2y^2 + y^4) \]
\[b = y^{14}(2x^2 + y^2)(3x^4 + 3x^2y^2 + y^4) \]
\[X = Y^\alpha, \quad 1 < \alpha < 3 \]
\[a + b = x^{14}(x^2 + 2y^2)(x^4 + 3x^2y^2 + 3y^4) \]

\[f(x, y) = xy(x + y)(x - y)(x^2 + y^2)(2x^2 + y^2)(x^2 + 2y^2) \]
\[\times (x^4 - x^2y^2 + y^4)(3x^4 + 3x^2y^2 + y^4)(x^4 + 3x^2y^2 + 3y^4) \]

\[L_{a,b} = \frac{\log(a + b)}{\log Q(ab(a + b))} \approx \frac{20\alpha \log Y}{(21\alpha + 1) \log Y} \]
\[a = (x^2 + y^2)^7(x^2 - y^2)(x^4 - x^2y^2 + y^4)\]
\[b = y^{14}(2x^2 + y^2)(3x^4 + 3x^2y^2 + y^4)\]
\[X = Y^\alpha, \quad 1 < \alpha < 3\]
\[a + b = x^{14}(x^2 + 2y^2)(x^4 + 3x^2y^2 + 3y^4)\]

\[f(x, y) = xy(x + y)(x - y)(x^2 + y^2)(2x^2 + y^2)(x^2 + 2y^2) \times (x^4 - x^2y^2 + y^4)(3x^4 + 3x^2y^2 + y^4)(x^4 + 3x^2y^2 + 3y^4)\]

\[L_{a,b} = \frac{\log(a + b)}{\log Q(ab(a + b))} \approx \frac{20\alpha}{21\alpha + 1}\]
\[L_{a,b} = \frac{\log(a + b)}{\log Q(ab(a + b))} \approx \frac{20\alpha}{21\alpha + 1} \]
$L_{a,b} = \frac{\log(a + b)}{\log Q(ab(a + b))} \approx \frac{20\alpha}{21\alpha + 1}$

$1 < \alpha < 3 \implies$
\[L_{a,b} = \frac{\log(a + b)}{\log Q(ab(a + b))} \approx \frac{20\alpha}{21\alpha + 1} \]

\[1 < \alpha < 3 \implies ?? < L_{a,b} < ?? \]
\[L_{a,b} = \frac{\log(a + b)}{\log Q(ab(a + b))} \approx \frac{20\alpha}{21\alpha + 1} \]

\[1 < \alpha < 3 \implies \frac{10}{11} < L_{a,b} < \frac{15}{16} \]
\[L_{a,b} = \frac{\log(a + b)}{\log Q(ab(a + b))} \approx \frac{20\alpha}{21\alpha + 1} \]

\[1 < \alpha < 3 \implies \frac{10}{11} < L_{a,b} < \frac{15}{16} \]

Comment: This shows \([10/11, 15/16]\) is contained in the set of limit points of \(L_{a,b}\). A similar argument is given for other subintervals of \([1/3, 36/37]\) (not all involving Padé approximations).