Lecture 1

An Example Concerning
the Irreducibility of $x^n + g(x)$
1
1 + \(x^3 \)
1 + \(x^3 + x^{15} \)
1 + \(x^3 + x^{15} + x^{16} \)
1 + \(x^3 + x^{15} + x^{16} + x^{32} \)
1 + \(x^3 + x^{15} + x^{16} + x^{32} + x^{33} \)
1 + \(x^3 + x^{15} + x^{16} + x^{32} + x^{33} + x^{34} \)
1 + \(x^3 + x^{15} + x^{16} + x^{32} + x^{33} + x^{34} + x^{35} \)

QUESTION 1: Let \(f_0(x) = 1 \). For \(k \geq 1 \), define \(f_k(x) \) to be the *reducible* polynomial of the form \(f_{k-1}(x) + x^n \) with \(n \) as small as possible and \(n > \deg f_{k-1} \). Is the sequence \(\{ f_k(x) \} \) a finite sequence or an infinite sequence?
QUESTION 1: Let $f_0(x) = 1$. For $k \geq 1$, define $f_k(x)$ to be the reducible polynomial of the form $f_{k-1}(x) + x^n$ with n as small as possible and $n > \deg f_{k-1}$. Is the sequence $\{f_k(x)\}$ a finite sequence or an infinite sequence?

Answer: The sequence $\{f_k(x)\}$ is a finite sequence. The polynomial
$$1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33} + x^{34} + x^{35}$$
is the last polynomial in the sequence.

Problem: Find a proof.
Definitions and Notation: Let $f(x) \in \mathbb{C}[x]$ with $f \neq 0$. Then
\[\tilde{f}(x) = x^{\deg f} f(1/x) \] is the reciprocal of $f(x)$. If $f = \pm \tilde{f}$, then we say that f is reciprocal.

Comment: If f is reciprocal and α is a root of f, then $1/\alpha$ is a root of f.

Two-Steps For Establishing $\{f_k(x)\}$ is Finite:

1. Handle reciprocal factors (there are none).
2. Handle non-reciprocal factors (there is no more than one).
STEP 1: HANDLE RECIPROCAL FACTORS

Let
\[g(x) = 1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33} + x^{34} + x^{35}. \]

If \(f \) is an irreducible reciprocal factor of
\[F(x) = x^n + g(x), \]
then it divides
\[\tilde{F}(x) = \tilde{g}(x)x^{n-35} + 1. \]

So \(f \) divides
\[\tilde{g}(x)F(x) - x^{35}\tilde{F}(x) = g(x)\tilde{g}(x) - x^{35}. \]
\[g(x) = 1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33} + x^{34} + x^{35} \]

\[f \text{ divides } g(x)\tilde{g}(x) - x^{35} \]

\[f \text{ is either} \]

\[x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \]

or

\[x^{64} + x^{61} - x^{60} + x^{54} - \cdots - x^{43} + 2x^{42} + x^{41} - \cdots + x^{10} - x^4 + x^3 + 1. \]
\(f \) is either

\[x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \]

or

\[x^{64} + x^{61} - x^{60} + x^{54} - \cdots - x^{43} + 2x^{42} + x^{41} - \cdots + x^{10} - x^4 + x^3 + 1. \]

Thus, \(f \) divides \(F(x) = x^n + g(x) \). If \(f = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \), then \(f \) also divides \(x^7 - 1 \). If \(n \geq 7 \), then \(f \) must divide

\[x^{n-7} + g(x). \]

If \(n \geq 14 \), then \(f \) must divide

\[x^{n-14} + g(x). \]

If \(n \equiv r \pmod{7} \), then \(f \) must divide \(x^r + g(x) \).
If \(n \equiv r \pmod{7} \), then \(f \) must divide \(x^r + g(x) \).

Test if \(f = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \) divides \(x^r + g(x) \) for \(r \in \{0, 1, 2, 3, 4, 6\} \).

It doesn’t.

Conclusion: \(F(x) = x^n + g(x) \) is not divisible by \(f = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \) for any \(n \).

If \(f \) is an irreducible reciprocal factor of \(F \), then \(f \) is the polynomial
\[
x^{64} + x^{61} - x^{60} + x^{54} - \cdots - x^{43} + 2x^{42} + x^{41} - \cdots + x^{10} - x^4 + x^3 + 1.
\]
Suppose \(f \) is
\[
x^{64} + x^{61} - x^{60} + x^{54} - \cdots - x^{43} + 2x^{42} + x^{41} - \cdots + x^{10} - x^4 + x^3 + 1.
\]

Compute the roots of \(f \). In particular, \(f \) has a root
\[
\alpha \approx 0.58124854 - 0.96349774 i
\]
with
\[
1.125 < |\alpha| < 1.126.
\]

\[
|g(\alpha)| < g(1.126) < 231 < 1.125^{47} < |\alpha|^{47}
\]

\[
|F(\alpha)| \geq |\alpha|^n - |g(\alpha)| > 0 \text{ for } n \geq 47
\]

\(f \) does not divide \(F \) for any \(n \geq 0 \)
Step 2: Handle Non-Reciprocal Factors

Lemma 1: If the non-reciprocal part of a polynomial $F(x) \in \mathbb{Z}[x]$ is reducible, then there exist non-reciprocal polynomials $u(x)$ and $v(x)$ in $\mathbb{Z}[x]$ such that $F(x) = u(x)v(x)$.

Proof. Let $a(x)$ be an irreducible non-reciprocal factor of $F(x)$.

Case 1: $\tilde{a}(x)$ divides F

Write $F(x) = u(x)v(x)$ where

$$\tilde{a}(x) \nmid u(x) \quad \text{and} \quad a(x) \nmid v(x).$$

Case 2: $\tilde{a}(x)$ does not divide F

Consider an irreducible non-reciprocal $b(x)$ such that $a(x)b(x)$ divides F. If $\tilde{b}(x)$ divides F, appeal to Case 1 with $b(x)$ in place of $a(x)$. If $\tilde{b}(x)$ does not divide F, write $F(x) = u(x)v(x)$ where

$$a(x)|u(x) \quad \text{and} \quad b(x)|v(x).$$
Lemma 1: If the non-reciprocal part of a polynomial $F(x) \in \mathbb{Z}[x]$ is reducible, then there exist non-reciprocal polynomials $u(x)$ and $v(x)$ in $\mathbb{Z}[x]$ such that $F(x) = u(x)v(x)$.

Comment: In the case that $F(x)$ has a positive leading coefficient, both $u(x)$ and $v(x)$ can be taken to have a positive leading coefficient.
Lemma 1: If the non-reciprocal part of a polynomial $F(x) \in \mathbb{Z}[x]$ is reducible, then there exist non-reciprocal polynomials $u(x)$ and $v(x)$ in $\mathbb{Z}[x]$ such that $F(x) = u(x)v(x)$.

Assume the non-reciprocal part $F(x)$ is reducible. Let $u(x)$ and $v(x)$ be as in Lemma 1.

Lemma. The polynomial $w(x) = u(x)v(x)$ has the following properties:

(i) $w \neq \pm F$ and $w \neq \pm \tilde{F}$.
(ii) $w\tilde{w} = F\tilde{F}$.
(iii) $w(1) = F(1)$.
(iv) $\|w\| = \|F\|$.
(v) If F is a 0, 1-polynomial, then w is also and with the same number of non-zero terms as F.
\[F(x) = u(x)v(x), \quad w(x) = u(x)\tilde{v}(x) \]

\(u(x) \) and \(v(x) \) are non-reciprocal

(v) if \(F \) is a 0, 1-polynomial, then \(w \) is also and with the same number of non-zero terms as \(F \)

Proof.

\[F(x) = \sum_{j=1}^{r} a_j x^{d_j}, \quad w(x) = \sum_{j=1}^{s} b_j x^{e_j} \]

\[
\left(\sum_{j=1}^{s} b_j \right)^2 \leq \left(\sum_{j=1}^{s} b_j^2 \right)^2 = \left(\sum_{j=1}^{s} a_j^2 \right)^2 \\
= \left(\sum_{j=1}^{s} a_j \right)^2 = \left(\sum_{j=1}^{s} b_j \right)^2
\]

(v) follows
Assume (the non-reciprocal part of)

\[F(x) = x^n + g(x) \]

is reducible.

\[g(x) = 1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33} + x^{34} + x^{35} \]

Then there is a \(w(x) \) satisfying:

(i) \(w \neq \pm F \) and \(w \neq \pm \tilde{F} \)
(ii) \(w\tilde{w} = F\tilde{F} \)
(iii) \(w(1) = F(1) \)
(iv) \(\|w\| = \|F\| \)
(v) \(w \) is a 0, 1-polynomial with the same number of non-zero terms as \(F \)
(i) \(w \neq \pm F \) and \(w \neq \pm \widetilde{F} \)
(ii) \(w \widetilde{w} = F \widetilde{F} \)
(iii) \(w(1) = F(1) \)
(iv) \(\|w\| = \|F\| \)
(v) \(w \) is a 0, 1-polynomial with the same number of non-zero terms as \(F \)

If \(n \geq 83 \), then

\[
F \widetilde{F} = 1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33} + x^{34} + x^{35} + \cdots
\]

where all subsequent terms have degree \(\geq 48 \).

\[
\begin{align*}
 w(x) &= 1 + \cdots + x^n \\
 \widetilde{w}(x) &= 1 + \cdots + x^n
\end{align*}
\]

\[
\begin{align*}
 w(x) &= 1 + x^3 + \cdots + x^n \\
 \widetilde{w}(x) &= 1 + \cdots + x^{n-3} + x^n
\end{align*}
\]
(i) \(w \neq \pm F \) and \(w \neq \pm \tilde{F} \)
(ii) \(w\tilde{w} = F\tilde{F} \)

(iii) \(w(1) = F(1) \)
(iv) \(\|w\| = \|F\| \)

(v) \(w \) is a 0, 1-polynomial with the same number of non-zero terms as \(F \)

\[
F\tilde{F} = 1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33} + x^{34} + x^{35} + \cdots
\]

\[
w(x) = 1 + x^3 + \cdots + x^n
\]
\[
\tilde{w}(x) = 1 + \cdots + x^{n-3} + x^n
\]

\[
w(x) = 1 + x^3 + x^{15} + \cdots + x^n
\]
\[
\tilde{w}(x) = 1 + \cdots + x^{n-15} + x^{n-3} + x^n
\]

\[
w(x) = 1 + x^3 + x^{15} + x^{16} + \cdots + x^n
\]
\[
\tilde{w}(x) = 1 + \cdots + x^{n-16} + x^{n-15} + x^{n-3} + x^n
\]

So \(w = F!! \)
Summary:
I. $x^n + g(x)$ has no reciprocal irreducible factors
II. the non-reciprocal part of $x^n + g(x)$ is irreducible

The first of these was shown for all $n \geq 0$, and the second of these was shown for $n \geq 83$. Checking directly for $35 < n \leq 83$, we deduce the original claim.

1

$1 + x^3$

$1 + x^3 + x^{15}$

$1 + x^3 + x^{15} + x^{16}$

$1 + x^3 + x^{15} + x^{16} + x^{32}$

$1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33}$

$1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33} + x^{34}$

$1 + x^3 + x^{15} + x^{16} + x^{32} + x^{33} + x^{34} + x^{35}$
Theorem: Let $g(x)$ be a 0, 1-polynomial with the property that $g(x)$ is irreducible over the set of 0, 1-polynomials (that is, $g(x)$ is not the product of two 0, 1-polynomials of degree ≥ 0). Then the non-reciprocal part of $F(x) = x^n + g(x)$ is irreducible if $n > 3 \deg g$.