Lecture 6: The Density of Squarefree 0, 1-Polynomials

Conjecture (Odlyzko & Poonen): Almost all 0, 1-polynomials are irreducible.

Theorem 1 (Konyagin): The number of irreducible 0, 1-polynomials of degree \(\leq n \) is \(\gg 2^n / \log n \).

Theorem 2 (F. & Konyagin): Almost all 0, 1-polynomials are squarefree.

Consequence of the Approach (see Lemmas 2 and 3 below): There are infinitely many square-free numbers having only the digits 0 and 1 in base 3.

Notation: • \(m, n, \) and \(b \) are positive integers with \(b \geq 3 \)
 • \(S_n = \{ f(x) = \sum_{j=0}^{n} \varepsilon_j x^j : \varepsilon_j \in \{0, 1\} \text{ for each } j \text{ and } \varepsilon_0 = 1 \} \)
 • \(t(n) = t(n, m, b) \) is the number of \(f(x) \in S_n \) for which \(m \) divides \(f(b) \)

Lemma 1: Let \(m \) and \(b \) be relatively prime integers with \(m \geq 2 \). Then \(t(n) = \frac{2^n}{m} (1 + o(1)) \).

Main Ideas of Proof:

\[\sum_{j=0}^{m-1} e^{2\pi i aj/m} = \begin{cases} m & \text{if } m \mid a \\ 0 & \text{otherwise} \end{cases} \]

\[t(n) = \frac{1}{m} \sum_{f(x) \in S_n} \sum_{j=0}^{m-1} e^{2\pi i f(b)j/m} = \frac{1}{m} \sum_{f(x) \in S_n} e^{2\pi i f(b)/m} \]

\[\sum_{f(x) \in S_n} e^{2\pi i f(b)/m} = e^{2\pi i j/m} \prod_{k=1}^{n} \left(1 + e^{2\pi i b^k j/m} \right) \]

\[t(n) = \frac{2^n}{m} + E \quad \text{where} \quad E = \frac{1}{m} \sum_{j=1}^{m-1} e^{2\pi i j/m} \prod_{k=1}^{n} \left(1 + e^{2\pi i b^k j/m} \right) \]

\[\left| \prod_{k=1}^{n} \left(1 + e^{2\pi i b^k j/m} \right) \right| = \left| \prod_{k=1}^{n} e^{\pi i b^k j/m} \right| \left| \prod_{k=1}^{n} \left(e^{\pi i b^k j/m} + e^{-\pi i b^k j/m} \right) \right| = 2^n \prod_{k=1}^{n} |\cos(\pi b^k j/m)|. \]

\[|\cos(\pi b^k j/m)| \leq |\cos(\pi/m)| \implies |E| \leq 2^n |\cos(\pi/m)|^n \implies |E| = o(2^n) \]

Lemma 2: Let \(b \) be a positive integer, and let \(B \) be a real number \(> 0 \). Denote by \(S(B, n) \) the number of \(f(x) \in S_n \) such that \(f(b) \) is not divisible by \(p^2 \) for every prime \(p \leq B \). Then

\[S(B, n) = 2^n \prod_{p \leq B, p \nmid b} \left(1 - \frac{1}{p^2} \right) + o(2^n). \]
Lemma 3: Let \(\varepsilon > 0 \), and let \(B \) be sufficiently large. Then there are \(\leq \varepsilon 2^n \) polynomials \(f(x) \in S_n \) for which there exists an integer \(d > B \) such that \(d^2 | f(3) \).

Main Ideas of Proof:

- Fix \(d > B \), and define \(r \in \mathbb{Z} \) by \(3^{r/2} < d \leq 3^{(r+1)/2} \) (so \(r \) is large).
- Fix \(\varepsilon_r, \varepsilon_{r+1}, \ldots, \varepsilon_n \in \{0, 1\} \) arbitrarily and consider \(f(x) = \sum_{j=0}^{n} \varepsilon_j x^j \in S_n \).
- Distinct choices of the \(r \)-tuple \((\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_{r-1})\) give distinct sums \(\sum_{j=0}^{r-1} \varepsilon_j 3^j \) in \([0, d^2]\).
- For fixed \(\varepsilon_r, \varepsilon_{r+1}, \ldots, \varepsilon_n \in \{0, 1\} \), there is at most one choice of \((\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_{r-1})\) such that \(f(3) \) is divisible by \(d^2 \).
- There are at most \(2^{n-r+1} \) choices for \(f(x) \in S_n \) such that \(f(3) \) is divisible by \(d^2 \).
- Since \(d \leq 3^{(r+1)/2} \), we obtain \(2^{-r} = (3^{r/2})^{-2} \log 2 / \log 3 < (3^{(r+1)/2})^{-5/4} \leq d^{-5/4} \).
- The number of \(f(x) \in S_n \) such that \(d^2 | f(3) \) for some integer \(d > B \) is \(\leq 2^{n+1} \sum_{d>B} d^{-5/4} \).

Main Ideas for Proof of Theorem 2:

- Fix \(R \geq 1 \), and consider \(g(x) \in \mathbb{Z}[x] \) of degree \(r \in [1, R] \). We estimate the number of 0, 1-polynomials \(f(x) = \sum_{j=0}^{n} \varepsilon_j x^j \), with \(\varepsilon_0 = 1 \), that are divisible by some such \(g(x)^2 \).
- Each coefficient of \(g(x) \) has absolute value \(\leq 2^R \) (a bound on the product of any \(k \) roots of \(g(x) \) with \(k \leq r \)) times \(2^R \) (a bound on the number of combinations of \(r \) items taken \(k \) at a time). Thus, there are \(\leq (2 \cdot 4^R + 1)^{R+1} \) different possible \(g(x) \) (independent of \(n \)).
- Define \(T_n(f(x)) \) as the set of polynomials \(w(x) = \sum_{j=0}^{n} \varepsilon'_j x^j \), with \(\varepsilon'_0 = 1 \), that differ from \(f(x) \) in exactly one term. Since \(f(x) - w(x) = \pm x^k \) for some \(k \in [0, n] \), if \(g(x)^2 | f(x) \), then \(g(x)^2 \nmid w(x) \) for every \(w(x) \in T_n(f(x)) \).
- If \(f_1(x) \) and \(f_2(x) \) are different \(f(x) \) as above both divisible by \(g(x)^2 \), then \(T_n(f_1(x)) \) and \(T_n(f_2(x)) \) are disjoint (otherwise, their difference being divisible by \(g(x)^2 \) would imply \(x^k \) is).
- There are \(o(2^n) \) different \(f(x) \) divisible by the square of a polynomial of degree \(\leq R \).
- If \(f(x) \) is divisible by some \(g(x)^2 \) with \(\deg g > R \), then since the roots of \(g(x) \) have real part \(< 1.5 \), we deduce \(f(3) \) is divisible by \(d^2 \) where \(d = |g(3)| \geq 1.5^R \). Apply Lemma 3.