Lecture 3: Factoring Lacunary Polynomials

Notation:
- irreducibility will be over the integers
- if \(f(x) = \sum_{j=0}^{n} a_j x^j \), then \(\|f\|^2 = \sum_{j=0}^{n} a_j^2 \)
- \(\hat{f}(x) = x^\deg f f(1/x) \)
- \(\hat{f}(x) \) will be called the reciprocal of \(f(x) \)
- \(f(x) \) reciprocal means \(\hat{f}(x) = \pm f(x) \)
- the non-reciprocal part of \(f(x) \) is \(f(x) \) removed of its irreducible reciprocal factors (sort of)

Lemma: Let \(F(x) \) be a 0,1-polynomial with \(F(0) = 1 \). Then the “non-reciprocal part” of \(F(x) \) is reducible if and only if \(w(x) \) exists satisfying:

(i) \(w \neq \pm F \) and \(w \neq \pm \tilde{F} \)
(ii) \(w \tilde{w} = F \tilde{F} \)
(iii) \(\|w\| = \|F\| \)
(iv) \(w \) is a 0, 1-polynomial with the same number of non-zero terms as \(F \)

Example: Demonstrate how the above can be used to factor
\[
 f(x) = 1 + x^{211} + x^{517} + x^{575} + x^{1245} + x^{1398}.
\]

Question 1: Are lacunary polynomials easier to factor than non-lacunary polynomials?

MAPLE Demonstration: Discuss comparisons of running times with MAPLE’s \texttt{irreduc} command. Mention the next theorem, and use MAPLE to demonstrate a general algorithm for factoring 0, 1-polynomials.

Theorem (F. & Schinzel): There is an algorithm with the following property: Given a non-reciprocal \(f(x) \in \mathbb{Z}[x] \) with \(N \) non-zero terms and height \(H \), the algorithm determines whether \(f(x) \) is irreducible in time \(c(N,H)(\log \deg f)^{c(N)} \) where \(c(N,H) \) depends only on \(N \) and \(H \) and \(c'(N) \) depends only on \(N \).

Question 2: Can we categorize the polynomials having small Euclidean norm that are reducible?

Theorem (Mills): Suppose \(f(x) = x^a \pm x^b \pm 1 \) with \(a > b > 0 \) or \(f(x) = x^a \pm x^b \pm x^c \pm 1 \) with \(a > b > c > 0 \). Then the non-cyclotomic part of \(f(x) \) is irreducible unless \(f(x) \) is a variation of \(x^{2k} + x^{7k} + x^k - 1 = (x^{2k} + 1)(x^{3k} + x^{2k} - 1)(x^{3k} - x^k + 1) \).

Theorem (Schinzel): Fix \(a_0, \ldots, a_r \in \mathbb{Z} \setminus \{0\} \). Then it is possible to classify the polynomials of the form \(a_r x^{dr} + \cdots + a_1 x^{d_1} + a_0 \) that have reducible non-reciprocal part.

Theorem (F. & Solan): If \(a > b > c > d > 0 \), then the non-reciprocal part of \(x^a + x^b + x^c + x^d + 1 \) is irreducible.
Theorem: If \(a > b > c > d > e > 0 \), then the non-reciprocal part of \(f(x) = x^a + x^b + x^c + x^d + x^e + 1 \) is irreducible unless \(f(x) \) is a variation of \(f(x) = x^5 + 3t + x^4 + 2t + x^3 + x^2 + 1 = (x^3 - x + t)(x^2 + x + 1) \).

Theorem (F. & Murphy): If \(n > c > b > a > 0 \), then the non-reciprocal part of \(f(x) = x^n \pm x^c \pm x^b \pm x^a \pm 1 \) is irreducible unless \(f(x) \) is a variation of . . .

Comment: Give some background concerning the proofs. More details of the proofs will be given in subsequent notes.