**[1]** **97k:13005**
Richman,
David R. Explicit generators of the invariants of finite groups.
*Adv. Math.* ** 124 ** (1996), no. 1,
49--76. (Reviewer: Frank D. Grosshans) 13A50 (15A72)

**[2]** **97i:13005**
Richman,
David R. Invariants of finite groups over fields of characteristic $p$.
*Adv. Math.* ** 124 ** (1996), no. 1,
25--48. (Reviewer: Frank D. Grosshans) 13A50 (15A72)

**[3]** **91i:11004**
Filaseta,
Michael A.; Richman,
David R. Sets which contain a quadratic residue modulo $p$ for almost
all
$p$.
*Math. J. Okayama Univ.* ** 31 ** (1989),
1--8. (Reviewer: Klaus Burde) 11A15

**[4]** **91g:86010**
Richman,
David; Sharp,
W. E. A method for determining the reversibility of a Markov sequence.
*Math. Geol.* ** 22 ** (1990), no. 7, 749--761. 86A32 (60J99 62M99)

**[5]** **91g:15020**
Richman,
David R. On vector invariants over finite fields.
*Adv. Math.* ** 81 ** (1990), no. 1,
30--65. (Reviewer: Joseph Kung) 15A72 (13E15 20G40)

**[6]** **90d:20017**
Richman,
David R. The fundamental theorems of vector invariants.
*Adv. in Math.* ** 73 ** (1989), no. 1,
43--78. (Reviewer: Andrea Brini) 20C07 (05A99 15A72)

**[7]** **89f:11148**
Hardy,
Kenneth; Hudson,
Richard H.; Richman,
David; Williams,
Kenneth S. Determination of all imaginary cyclic quartic fields with
class number
$2$.
*Trans. Amer. Math. Soc.* ** 311 ** (1989), no. 1,
1--55. (Reviewer: Duncan A. Buell) 11R16 (11R29)

**[8]** **89d:15003**
Richman,
David R. A result about block Vandermonde matrices.
*Linear and Multilinear Algebra* ** 21 ** (1987),
no. 2, 181--189. (Reviewer: Robert M. McConnel) 15A33 (12E20)

**[9]** **89d:11087**
Richman,
David R. The Waring problem for matrices.
*Linear and Multilinear Algebra* ** 22 ** (1987),
no. 2, 171--192. (Reviewer: L. N. Vaserstein) 11P05 (15A33)

**[10]** **88m:11112**
Hardy,
Kenneth; Hudson,
R. H.; Richman,
D.; Williams,
Kenneth S.; Holtz,
N. M. Calculation of the class numbers of imaginary cyclic quartic
fields.
*Math. Comp.* ** 49 ** (1987), no. 180,
615--620. (Reviewer: Ken Nakamula) 11Y40 (11R16 11R29)

**[11]** **88j:15006**
Richman,
David R.; Wang,
Quan Long On generalized Vandermonde determinants.
* Current trends in matrix theory (Auburn, Ala., 1986), *
285--295, *North-Holland, New York-Amsterdam,* 1987. (Reviewer: Thomas H. Foregger) 15A15 (15A45)

**[12]** **88e:15007**
Richman,
David R. Addendum to: "Matrices as sums of squares: a conjecture of
Griffin
and Krusemeyer" [Linear and Multilinear Algebra {\bf 17} (1985), no. 3,
289--294; MR 87a:15022].
*Linear and Multilinear Algebra* ** 20 ** (1987),
no. 4, 389. 15A24
(11C20 12D15)

**[13]** **88d:12004**
Richman,
David R. On the computation of minimal polynomials.
*J. Algebra* ** 103 ** (1986), no. 1,
1--17. (Reviewer: Kevin S. McCurley) 12E12 (12-04 68Q40)

**[14]** **87a:15022**
Richman,
David R. Matrices as sums of squares: a conjecture of Griffin and
Krusemeyer.
*Linear and Multilinear Algebra* ** 17 ** (1985),
no. 3-4, 289--294. (Reviewer: John H. Hodges) 15A24 (11C20 12D15)

**[15]** **86k:12002**
Peskin,
Barbara R.; Richman,
David R. A method to compute minimal polynomials.
*SIAM J. Algebraic Discrete Methods* ** 6 **
(1985), no. 2, 292--299. (Reviewer: J. H. Davenport) 12-04 (12E05 68Q40)

**[16]** **86k:05009**
Richman,
David R. On balanced sets mod $p$.
*J. Combin. Theory Ser. A* ** 40 ** (1985), no. 1,
179--182. (Reviewer: Robert Girse) 05A17 (11T15)

**[17]** **86d:11100**
Richman,
David R. Some remarks on the number of solutions to the equation
$f(X\sb
1)+\cdots +f(X\sb n)=0$.
*Stud. Appl. Math.* ** 71 ** (1984), no. 3,
263--266. (Reviewer: S. W. Graham) 11T41

**[18]** **84h:10026**
Richman,
David R. Polynomial relations among the $n$th roots of one.
*J. Number Theory* ** 16 ** (1983), no. 1,
14--18. (Reviewer: Ming-Chit Liu) 10B30 (10B15)

**[19]** **84d:47035**
Richman,
David R. A new proof of a result about Hankel operators.
*Integral Equations Operator Theory* ** 5 **
(1982), no. 6, 892--900. (Reviewer: Jeffrey R. Butz) 47B35

**[20]** **83m:05004**
Ein,
Lawrence M. H.; Richman,
David Ross; Kleitman,
Daniel J.; Shearer,
James; Sturtevant,
Dean Some results on systems of finite sets that satisfy a certain
intersection condition.
*Stud. Appl. Math.* ** 65 ** (1981), no. 3,
269--274. (Reviewer: Peter Frankl) 05A05

**[21]** **83j:15015**
Richman,
David Ross Matrices which commute with their transposes over a field of
characteristic two.
*Linear and Multilinear Algebra* ** 10 ** (1981),
no. 2, 131--140. 15A33 (15A27)