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1 Introduction

For f(z) € Clz] with f(z) # 0, we definef(z) = z%2/f(1/z). The polynomialf is called
the reciprocal of f(x). The constant term of is always non-zero. If the constant term pis
non-zero, thenleg f = deg f and the reciprocal of is f. If a # 0 is a root of f, then 1/ais
arootof f. If f(z) = g(z)h(z) with g(z) andh(z) in C[z], thenf = gh. If f = +f, thenf
is calledreciprocal If f is not reciprocal, we say thdtis non-reciprocal If f is reciprocal and
ais a root of f, thenl/« is a root of f. The product of reciprocal polynomials is reciprocal so
that a non-reciprocal polynomial must have a non-reciprocal irreducible factorf (Epre Z[z],
we refer to thenon-reciprocal part of f(x) as the polynomialf (xz) removed of its irreducible
reciprocal factors having a positive leading coefficient. For example, the non-reciprocal part of
3(—z + Dz(2? + 2) is —x(2? + 2) (the irreducible reciprocal factors andx — 1 have been
removed from the polynomial(—x + 1)z (2? + 2)).

In [2], Filaseta, Ford, and Konyagin established the following result.

Theorem 1. Let f(z) andg(x) be inZ[x] with f(0) # 0, g(0) # 0, andged,(f(x), g(z)) = 1. Let
r, andry denote the number of non-zero termsfix) and g(z), respectively. I > ng, where

1
no = no(f, g) = max {2 X 52N’1,2max{degf, deg g} <5N1 + Zl)}

and
N =2|fI”+2llgll> +2r1 +2r; — 7,

then the non-reciprocal part of (z)z" + g(z) is irreducible or identicallyl or —1 unless one of
the following holds:

(i) The polynomial-f(x)g(x) is apth power for some primg dividing n.

(i) Foreithere =1o0re = —1, one of=f(z) andeg(x) is a4th power, the other id times adth
power, and is divisible by4.

The work in [2] was motivated by work of Schinzeél [3, 4] where a similar result is obtained
without an explicit estimate on, (though the methods there do allow for such an estimate).

Theorenj [L is an assertion about the irreducibility of the non-reciprocal paKtQf= f(z)z"+
g(z). If the non-reciprocal part of (z) is irreducible anged(F, F) = 1, thenF(z) is irreducible.
Thus, the above result can be combined with an analysis&(fF, ) to determine information
about the irreducibility of’(z).

We remark that the bound, cannot be replaced by a bound that is independent of the size
of the coefficients off andg. To see this, consider an arbitrary integer- 1 and observe that
f(x) = 1andg(x) = x — 2% — 2 imply that the non-reciprocal part df(x) = f(z)z" + g(z) is
reducible fom = k (sincex—2 is a factor ofF'(x) and the quotient’(x) /(z—2) is non-reciprocal).
Sincek is arbitrary, the remark follows.

In this paper, we obtain a result similar to Theorfgm 1 but restricted tepolynomials f ()
andg(z), that is polynomialsf(x) andg(x) with each coefficient either or 1. In this case, it is
not difficult to check that neither (i) nor (ii) can hold.



Theorem 2. Let f(x) andg(z) be relatively prime), 1-polynomials withf (0) = ¢(0) = 1. If
n > deg g + 2max{deg f,deg g}, (1)

then the non-reciprocal part of(z)z" + g(x) is irreducible or identicallyl.

An interesting aspect of the proof given here is that Thegriem 1, even without an explicit value
for ng, will play a crucial role in establishing the bound given in Theofém 2.

2 Proof of Theorem[2

To prove Theorerf1]2, we make use of the following result that can be found in [1].

Lemma 1. Let f(x) be a0, 1-polynomial withf(0) = 1. Then the non-reciprocal part of(z) is
reducible if and only if there exists(z) satisfyinguw(z) # f(x), w(z) # f(z), ww = ff, and
w(x) is a0, 1-polynomial with the same number of non-zero termg @s.

Assume [(11) holds for some integerand that the non-reciprocal part ¢fz)z" + g(x) is
reducible. Letw(z) be the0, 1-polynomial that exists by Lemnjd 1 with(z) replaced there by
f(z)x™ + g(x). In particular,

w(z) # fz)a" +g(x) and w(x) # gla)z" B I48I 4 f(a) (2)

and

w(z)w(z) = (f(z)z" + g(x)) (§(w)a™ BI04 f(2)). ®3)
First, consider the case thatg f > degg. Write w(x) in the forma(z)x™ + b(z) wherea(x)
andb(z) are(, 1-polynomials withb(0) = 1 (by (3)) anddegb(z) < n. Also, (3) implies that
deg a(x) = deg f(z) (so thatw(z) and f(z)z" + g(x) have the same degree). Applying (3) again,
we obtain

f(@)g(a)arraesI=aees ¢ f(z) f(a)a" + g(a)g(x)a™ i8I0 4 f(2)g(x)
= (f(2)a" + g(x)) (g(a)a" eI =089 1 f(z)
= (a(z)2"™ + b(z)) (b(z)z Bl 4 G(x))

= a(x)b(x)a® B0 1 a(z)a(w)a” + b(a)b(x)z" T 4 a(x)b(x).

The significance of working witld, 1-polynomials here is that there is no cancellation of terms
above. In particular, the expressiafz)b(z) on the right contains a term with degree equal to
deg b(x), which is< n, and every term of degree n on the left also has degreedeg f + deg g.
Hencedegb(x) < deg f + deg g.

We now consider the case thatg f < deg g. The somewhat disguised idea will be to work
instead with the reciprocal of(x)z™ + g(z) and proceed as in the casedef; f > deg g. For this
purpose, we define = n+deg f —deg g and writew(x) in the forma(z)z*+b(z) where nowa(x)
andb(z) are0, 1-polynomials withb(0) = 1, deg b(x) < k, anddega(z) = n+deg f —k = degg.
Instead of the equations above, we use that

f(2)g(x)a® sl o f(a) f(a)a"tasomdel 4 g(2)g(x)2" + f(x)g(x)



2)g(w)z" T8I 4 f(a)g(x)

)

()g(w)arraee =0 o f(a) f(x)a" + g
= (f(2)2" + g(x)) (g(x)a" 8= 1 f(a)
= (a(z)z" + b(z)) (b(m) Frdega—desb 1 G(z))

)z*
(:l:)i)( ) 2k+deg a— degb+a( ) ( )x —l—b(l’) ( ) k+dega7degb+&<x)b($).

-

@/\/\

Arguing as before, a term of degréeg b(x) appears on the right and the only terms of degrge
on the left have degre€ deg f + deg g, sodeg b(z) < deg f + deg g.

Thus, in both of the casekg f > degg anddeg f < deg g, we deduce thai(x) is of the
form a(z)z™ + b(x) wheredeg b(z) < deg f + deg g and where eithem = n anddega = deg f
orm = n+deg f —deg g anddeg a = deg g. In both casesn+dega = n+deg f. The inequality
(@) implies that the produci(z)b(x) consists of terms of degreem (for either choice ofr) and,
hence, corresponds to termsjitr)g(z) on the left-hand sides above of degreeleg f + deg g.
Thereforea(x)b(x) has degree deg f + deg g. From [1), we deduce that each of the exponents
m andm + dega — degb is > deg f + deg g. It follows that

f(@)g(x) = a(z)b(x).

The possibility that:(0) = 0 exists. We consider a non-negative integasuch thatu(z) =
ao(x)x* whereag(z) is a0, 1-polynomial withay(0) = 1. Thena = a, anddega = ¢ + dega.
Sincea(z)b(z) has degreeleg f + degg, we havedega — ¢ + degb = deg f + degg so that
degb = ¢ — dega + deg f + deg g. We use this to make further comparisons of exponents. For
example, to see that the termsiifx:)b(x) 22" tdega—dezb have degrees exceeding the degrees of the
terms inb(z)b(z)x™Hdesa—degd we can justify instead that

m+€>2(€—dega+degf+degg).

For the latter, we want, > ¢+ 2(deg f+degg—deg a), which follows from @r)' By comparing
coefficients in this manner, we deduce

f(x)§($)$2n+degf—degg = CL(I')E(Z')QEQm-i-dega—degb
and, consequently,
f@) f(z)a" + g(z)g(z)a" eI~ = g(z)a(z)a™ + b(z)b(x)zmToesedeab,

Recall that is a fixed integer satisfying{(1) for which the non-reciprocal part(@f)z" + g(x)
is reducible. We now consider an arbitrary positive integesatisfying [(1) and set’ = »’ if
deg f > deggandm’ = n’ + deg f — degg if deg f < degg. Thus, ifn’ = n, thenm’ = m.
We use the polynomials(z) and b(x) constructed above (corresponding to the calse- n).
Multiplying both sides of the equations above by a suitable powet ofe obtain

f(m)g(x)xmurdeg f—degg _ a(x)g(x)me’ereg a—degb
and

f@)f(x)a" + g(z)g(a)a™ eI =489 = a(z)a(z)a™ + b(z)b(a)a™ Hdeeemde,



+9(2)) (g(a)a BT84 f(a))
()T 4 f(0) o+ gl () 4 F)g(r)
)b(x)a?m Hdegadest g ()a(z)a™ + b(x)b(x)z™ Tieedesb 4 g (2)b(x)

— (a(gj)xm/ + b(gj)) (E(w)xm/+dega7degb + &<x))_

We consider’ sufficiently large with at least’ > ny(f, g), whereny(f, g) is defined in Theorem
@. Using thatF(z) = f(x)z™ + g(x) is a0, 1-polynomial, we deduce from Theore[r’p 1 that the
non-reciprocal part of'(z) is irreducible or identicallyl. On the other hand, the polynomial
W(z) = a(z)z™ +b(z) satisfiesV W = FF andW (z) is a0, 1-polynomial containing the same
number of non-zero terms ds(x). By LemmaD., eitheiV (z) = F(x) or W(z) = F(z). If
W(x) = F(z), then

a(z)a™ +b(x) = f(x)2" + g(x).
If m" = n', thena(z) = f(z) andb(z) = g(x), contradicting [(R). Ifm’ # »/, thenm’ =
n' + deg f — degyg, degg > deg f, a(x) = f(x)xde9~%ef andb(r) = g(x), contradicting[(R).
Similarly, W (z) = F(z) leads to a contradiction ta(Z). It follows that our assumption thetists

satisfying (1) and such that the non-reciprocal parf @f)z" + g(z) is reducible is incorrect. The
theorem follows.
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