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1 Introduction

For f(x) ∈ C[x] with f(x) 6≡ 0, we definef̃(x) = xdeg ff(1/x). The polynomialf̃ is called
the reciprocal of f(x). The constant term of̃f is always non-zero. If the constant term off is
non-zero, thendeg f̃ = deg f and the reciprocal of̃f is f . If α 6= 0 is a root off , then1/α is
a root of f̃ . If f(x) = g(x)h(x) with g(x) andh(x) in C[x], thenf̃ = g̃h̃. If f = ±f̃ , thenf
is calledreciprocal. If f is not reciprocal, we say thatf is non-reciprocal. If f is reciprocal and
α is a root off , then1/α is a root off . The product of reciprocal polynomials is reciprocal so
that a non-reciprocal polynomial must have a non-reciprocal irreducible factor. Forf(x) ∈ Z[x],
we refer to thenon-reciprocal part off(x) as the polynomialf(x) removed of its irreducible
reciprocal factors having a positive leading coefficient. For example, the non-reciprocal part of
3(−x + 1)x(x2 + 2) is −x(x2 + 2) (the irreducible reciprocal factors3 and x − 1 have been
removed from the polynomial3(−x + 1)x(x2 + 2)).

In [2], Filaseta, Ford, and Konyagin established the following result.

Theorem 1. Letf(x) andg(x) be inZ[x] with f(0) 6= 0, g(0) 6= 0, andgcdZ(f(x), g(x)) = 1. Let
r1 andr2 denote the number of non-zero terms inf(x) andg(x), respectively. Ifn ≥ n0, where

n0 = n0(f, g) = max

{
2× 52N−1, 2 max

{
deg f, deg g

}(
5N−1 +

1

4

)}
and

N = 2 ‖f‖2 + 2 ‖g‖2 + 2r1 + 2r2 − 7,

then the non-reciprocal part off(x)xn + g(x) is irreducible or identically1 or −1 unless one of
the following holds:

(i) The polynomial−f(x)g(x) is apth power for some primep dividingn.

(ii) For either ε = 1 or ε = −1, one ofεf(x) andεg(x) is a4th power, the other is4 times a4th
power, andn is divisible by4.

The work in [2] was motivated by work of Schinzel [3, 4] where a similar result is obtained
without an explicit estimate onn0 (though the methods there do allow for such an estimate).

Theorem 1 is an assertion about the irreducibility of the non-reciprocal part ofF (x) = f(x)xn+

g(x). If the non-reciprocal part ofF (x) is irreducible andgcd(F, F̃ ) = 1, thenF (x) is irreducible.
Thus, the above result can be combined with an analysis ofgcd(F, F̃ ) to determine information
about the irreducibility ofF (x).

We remark that the boundn0 cannot be replaced by a bound that is independent of the size
of the coefficients off andg. To see this, consider an arbitrary integerk > 1 and observe that
f(x) = 1 andg(x) = x − 2k − 2 imply that the non-reciprocal part ofF (x) = f(x)xn + g(x) is
reducible forn = k (sincex−2 is a factor ofF (x) and the quotientF (x)/(x−2) is non-reciprocal).
Sincek is arbitrary, the remark follows.

In this paper, we obtain a result similar to Theorem 1 but restricted to0, 1-polynomialsf(x)
andg(x), that is polynomialsf(x) andg(x) with each coefficient either0 or 1. In this case, it is
not difficult to check that neither (i) nor (ii) can hold.
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Theorem 2. Letf(x) andg(x) be relatively prime0, 1-polynomials withf(0) = g(0) = 1. If

n > deg g + 2 max{deg f, deg g}, (1)

then the non-reciprocal part off(x)xn + g(x) is irreducible or identically1.

An interesting aspect of the proof given here is that Theorem 1, even without an explicit value
for n0, will play a crucial role in establishing the bound given in Theorem 2.

2 Proof of Theorem 2

To prove Theorem 2, we make use of the following result that can be found in [1].

Lemma 1. Let f(x) be a0, 1-polynomial withf(0) = 1. Then the non-reciprocal part off(x) is
reducible if and only if there existsw(x) satisfyingw(x) 6= f(x), w(x) 6= f̃(x), ww̃ = ff̃ , and
w(x) is a0, 1-polynomial with the same number of non-zero terms asf(x).

Assume (1) holds for some integern and that the non-reciprocal part off(x)xn + g(x) is
reducible. Letw(x) be the0, 1-polynomial that exists by Lemma 1 withf(x) replaced there by
f(x)xn + g(x). In particular,

w(x) 6= f(x)xn + g(x) and w(x) 6= g̃(x)xn+deg f−deg g + f̃(x) (2)

and
w(x)w̃(x) =

(
f(x)xn + g(x)

)(
g̃(x)xn+deg f−deg g + f̃(x)

)
. (3)

First, consider the case thatdeg f ≥ deg g. Write w(x) in the forma(x)xn + b(x) wherea(x)
andb(x) are0, 1-polynomials withb(0) = 1 (by (3)) anddeg b(x) < n. Also, (3) implies that
deg a(x) = deg f(x) (so thatw(x) andf(x)xn + g(x) have the same degree). Applying (3) again,
we obtain

f(x)g̃(x)x2n+deg f−deg g + f(x)f̃(x)xn + g(x)g̃(x)xn+deg f−deg g + f̃(x)g(x)

=
(
f(x)xn + g(x)

)(
g̃(x)xn+deg f−deg g + f̃(x)

)
=

(
a(x)xn + b(x)

)(
b̃(x)xn+deg a−deg b + ã(x)

)
= a(x)b̃(x)x2n+deg a−deg b + a(x)ã(x)xn + b(x)b̃(x)xn+deg a−deg b + ã(x)b(x).

The significance of working with0, 1-polynomials here is that there is no cancellation of terms
above. In particular, the expressionã(x)b(x) on the right contains a term with degree equal to
deg b(x), which is< n, and every term of degree< n on the left also has degree≤ deg f + deg g.
Hence,deg b(x) ≤ deg f + deg g.

We now consider the case thatdeg f < deg g. The somewhat disguised idea will be to work
instead with the reciprocal off(x)xn + g(x) and proceed as in the case ofdeg f ≥ deg g. For this
purpose, we definek = n+deg f−deg g and writew(x) in the forma(x)xk+b(x) where nowa(x)
andb(x) are0, 1-polynomials withb(0) = 1, deg b(x) < k, anddeg a(x) = n+deg f−k = deg g.
Instead of the equations above, we use that

f(x)g̃(x)x2k+deg g−deg f + f(x)f̃(x)xk+deg g−deg f + g(x)g̃(x)xk + f̃(x)g(x)
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= f(x)g̃(x)x2n+deg f−deg g + f(x)f̃(x)xn + g(x)g̃(x)xn+deg f−deg g + f̃(x)g(x)

=
(
f(x)xn + g(x)

)(
g̃(x)xn+deg f−deg g + f̃(x)

)
=

(
a(x)xk + b(x)

)(
b̃(x)xk+deg a−deg b + ã(x)

)
= a(x)b̃(x)x2k+deg a−deg b + a(x)ã(x)xk + b(x)b̃(x)xk+deg a−deg b + ã(x)b(x).

Arguing as before, a term of degreedeg b(x) appears on the right and the only terms of degree< k
on the left have degree≤ deg f + deg g, sodeg b(x) ≤ deg f + deg g.

Thus, in both of the casesdeg f ≥ deg g anddeg f < deg g, we deduce thatw(x) is of the
form a(x)xm + b(x) wheredeg b(x) ≤ deg f + deg g and where eitherm = n anddeg a = deg f
or m = n+deg f−deg g anddeg a = deg g. In both cases,m+deg a = n+deg f . The inequality
(1) implies that the product̃a(x)b(x) consists of terms of degree< m (for either choice ofm) and,
hence, corresponds to terms iñf(x)g(x) on the left-hand sides above of degree≤ deg f + deg g.
Therefore,̃a(x)b(x) has degree≤ deg f + deg g. From (1), we deduce that each of the exponents
m andm + deg a− deg b is > deg f + deg g. It follows that

f̃(x)g(x) = ã(x)b(x).

The possibility thata(0) = 0 exists. We consider a non-negative integer` such thata(x) =
a0(x)x` wherea0(x) is a0, 1-polynomial witha0(0) = 1. Thenã = ã0 anddeg a = ` + deg ã.
Sinceã(x)b(x) has degreedeg f + deg g, we havedeg a − ` + deg b = deg f + deg g so that
deg b = ` − deg a + deg f + deg g. We use this to make further comparisons of exponents. For
example, to see that the terms ina(x)b̃(x)x2m+deg a−deg b have degrees exceeding the degrees of the
terms inb(x)b̃(x)xm+deg a−deg b, we can justify instead that

m + ` > 2
(
`− deg a + deg f + deg g

)
.

For the latter, we wantm > ` + 2
(
deg f + deg g− deg a

)
, which follows from (1). By comparing

coefficients in this manner, we deduce

f(x)g̃(x)x2n+deg f−deg g = a(x)b̃(x)x2m+deg a−deg b

and, consequently,

f(x)f̃(x)xn + g(x)g̃(x)xn+deg f−deg g = a(x)ã(x)xm + b(x)b̃(x)xm+deg a−deg b.

Recall thatn is a fixed integer satisfying (1) for which the non-reciprocal part off(x)xn +g(x)
is reducible. We now consider an arbitrary positive integern′ satisfying (1) and setm′ = n′ if
deg f ≥ deg g andm′ = n′ + deg f − deg g if deg f < deg g. Thus, ifn′ = n, thenm′ = m.
We use the polynomialsa(x) and b(x) constructed above (corresponding to the casen′ = n).
Multiplying both sides of the equations above by a suitable power ofx, we obtain

f(x)g̃(x)x2n′+deg f−deg g = a(x)b̃(x)x2m′+deg a−deg b

and

f(x)f̃(x)xn′
+ g(x)g̃(x)xn′+deg f−deg g = a(x)ã(x)xm′

+ b(x)b̃(x)xm′+deg a−deg b.
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Hence,(
f(x)xn′

+ g(x)
)(

g̃(x)xn′+deg f−deg g + f̃(x)
)

= f(x)g̃(x)x2n′+deg f−deg g + f(x)f̃(x)xn′
+ g(x)g̃(x)xn′+deg f−deg g + f̃(x)g(x)

= a(x)b̃(x)x2m′+deg a−deg b + a(x)ã(x)xm′
+ b(x)b̃(x)xm′+deg a−deg b + ã(x)b(x)

=
(
a(x)xm′

+ b(x)
)(

b̃(x)xm′+deg a−deg b + ã(x)
)
.

We considern′ sufficiently large with at leastn′ ≥ n0(f, g), wheren0(f, g) is defined in Theorem
1. Using thatF (x) = f(x)xn′

+ g(x) is a0, 1-polynomial, we deduce from Theorem 1 that the
non-reciprocal part ofF (x) is irreducible or identically1. On the other hand, the polynomial
W (x) = a(x)xm′

+ b(x) satisfiesWW̃ = FF̃ andW (x) is a0, 1-polynomial containing the same
number of non-zero terms asF (x). By Lemma 1, eitherW (x) = F (x) or W (x) = F̃ (x). If
W (x) = F (x), then

a(x)xm′
+ b(x) = f(x)xn′

+ g(x).

If m′ = n′, thena(x) = f(x) and b(x) = g(x), contradicting (2). Ifm′ 6= n′, thenm′ =
n′ + deg f − deg g, deg g > deg f , a(x) = f(x)xdeg g−deg f , andb(x) = g(x), contradicting (2).
Similarly,W (x) = F̃ (x) leads to a contradiction to (2). It follows that our assumption thatn exists
satisfying (1) and such that the non-reciprocal part off(x)xn + g(x) is reducible is incorrect. The
theorem follows.
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