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Abstract. P. Turán asked if there exists an absolute constant C such that

for every polynomial f ∈ Z[x] there exists an irreducible polynomial g ∈ Z[x]

with deg(g) ≤ deg(f) and L(f − g) ≤ C, where L(·) denotes the sum of the
absolute values of the coefficients. We show that C = 5 suffices for all integer

polynomials of degree at most 40 by investigating analogous questions in Fp[x]

for small primes p. We also prove that a positive proportion of the polynomials
in F2[x] have distance at least 4 to an arbitrary irreducible polynomial.

1. Introduction

For a polynomial f(x) =
∑n
k=0 akx

k, let L(f) denote its length, defined by

(1) L(f) =
n∑
k=0

|ak| .

More than 40 years ago, P. Turán [7] asked if every polynomial with integer coef-
ficients lies near an irreducible polynomial with the same degree or smaller, where
distance is measured by using the length. More precisely, he asked if there exists
an absolute constant C such that for every polynomial f ∈ Z[x] there exists an
irreducible polynomial g ∈ Z[x] with deg(g) ≤ deg(f) and L(f − g) ≤ C. Note
that if such a constant C exists, then certainly C ≥ 2, as this value is required for
f(x) = xn when n is odd and n ≥ 3, or for f(x) = xn−2(x2 +x− 1) when n is even
and n ≥ 4 .

While Turán’s problem remains open, a number of partial results are known.
In 1970, Schinzel [8] proved that C = 3 suffices if one removes the restriction on
the degree of g(x). He showed in fact that if f has degree n, then an irreducible
polynomial g exists with L(f − g) ≤ 3 and

deg(g) ≤ exp((5n+ 7)(‖f‖2 + 3)),

where ‖f‖2 denotes the sum of the squares of the coefficients of f . (Furthermore,
C = 2 suffices if f(0) 6= 0.) Recently, Banerjee and the first author [1] improved
this by showing that an irreducible polynomial g with L(f −g) ≤ 3 must exist with
the bound on the degree of the irreducible polynomial g depending only linearly
on that of f (though exponentially on ‖f‖2). More precisely, they showed that the
degree of g satisfies

deg(g) ≤ 8 max{n+ 3, n0}58‖f‖2+9,

where n0 is an effectively computable constant.
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Turán’s original problem has been verified for polynomials of small degree n
by using explicit computations. In 1997, Bérczes and Hajdu [2] showed in effect
that C = 5 suffices for polynomials of degree n ≤ 22, and extended this to n ≤
24 in a subsequent article in 1998 [3]. In 2008, Lee, Ruskey, and Williams [5]
established that C = 5 is sufficient for n ≤ 32. More recently, the second author
[6] demonstrated that this bound suffices for n ≤ 34.

In this article, we investigate Turán’s problem further. First, using a compu-
tational strategy we answer this question for all integer polynomials of degree at
most 40. We prove the following theorem.

Theorem 1. If f ∈ Z[x] has degree n ≤ 40, then there exists an irreducible poly-
nomial g ∈ Z[x] with deg(g) = n and L(f − g) ≤ 5.

Section 2 briefly reviews prior investigations of Turán’s problem, and Section 3
describes our current method and its results. Section 4 then discusses some heuristic
models for the distribution of distances in Turán’s problem, as additional evidence
toward a favorable resolution of this question. Throughout the article, Turán’s
problem is investigated in various local settings, especially in F2[x], and the main
results over Z[x] are derived from such settings.

Section 5 then proves our second principal result, that one cannot expect im-
proved results for larger degrees by working modulo 2. We show in this last section
that the set of polynomials in F2[x] having distance at least 4 to every irreducible
polynomial of any degree in this ring has positive density. More precisely, we
establish the following theorem.

Theorem 2. A positive proportion of polynomials in F2[x] has distance ≥ 4 to every
irreducible polynomial. More precisely, if D4(n) denotes the number of polynomials
of degree n that are a distance ≥ 4 to each irreducible polynomial in F2[x] and
n ≥ 246, then D4(n) ≥ 2n−246.

2. Prior computations

In order to prove Theorem 1, it suffices to show that distance C = 3 suffices
for polynomials whose leading and constant terms are both odd. For any such
polynomial f with degree n, by Eisenstein’s criterion with prime p = 2, there
certainly exists an irreducible polynomial g(x) with deg(g) = n and L(f − g) ≤
n. For any positive integer n, let cn denote the smallest positive integer having
the property that for every f ∈ Z[x] with degree n and odd leading and trailing
terms, there exists an irreducible polynomial g ∈ Z[x] with deg(g) ≤ deg(f) and
L(f − g) ≤ cn.

Next, consider a local version of Turán’s problem. For a polynomial f ∈ F2[x],
define its length L2(f) as its number of monomials. Let cn(2) be the smallest
positive integer with the property that for every f ∈ F2[x] with degree n and
constant term 1, there exists an irreducible polynomial g ∈ F2[x] with the same
degree and L2(f − g) ≤ cn(2). Since any polynomial g ∈ Z[x] with odd leading
coefficient is necessarily irreducible in Z[x] if its reduction modulo 2 is irreducible
in F2[x], it follows that cn ≤ cn(2). Thus, to establish Theorem 1, it suffices to
prove that cn(2) ≤ 3 for n ≤ 40.

Bérczes and Hajdu [2, 3] used this strategy to establish their result for n ≤ 24.
They used Maple for testing irreducibility mod 2, and kept a large table recording
the result of each irreducibility test performed in order to avoid testing the same
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polynomial more than once. They also employed a pair of tables to facilitate the
computation of the parity of L2(f), and used this information to simplify the search
for nearby irreducible polynomials, since one need only test polynomials with an
odd number of terms. The space requirement in their method was substantial, at
O(2n) for degree n.

Lee, Ruskey, and Williams [5] also used a local strategy to verify that cn(2) ≤ 3
for n ≤ 32, again working modulo 2. More recently, the second author [6] proved
that cn(2) ≤ 3 for n ≤ 34. We briefly describe method of the latter paper, as a
similar strategy is employed in the present research. This method has two principal
phases. First, one determines all the irreducible polynomials of a given degree n.
Second, for each f ∈ F2[x] of degree n, and using the list from the first part, one
computes the distance from f to an irreducible polynomial. A polynomial f ∈ F2[x]
was represented in this method by using a single 32-bit word that recorded its
sequence of coefficients. (For degrees 32 and 33, the leading or constant bit or both
were omitted; degree 34 required a further adjustment.) This way, many operations
on coefficients could be performed in parallel. For example, two polynomials could
be added very quickly by simply computing the exclusive or (xor) of their respective
binary representations. Other operations on polynomials were likewise simplified,
including division and testing for equality.

In the first phase of the algorithm, approximately half of the polynomials f ∈
F2[x] with f(0) = 1 and deg(f) = n were tested for irreducibility. This test was
expedited by using a Gray code ordering on the set of polynomials of fixed degree,
and packing the values of remainders modulo irreducible polynomials of small degree
into long bit vectors. This way, many remainders for one polynomial could be
computed from those of the prior polynomial with just a few xor operations. Larger
factors were tested by using trial division, although half the tests were avoided
by maintaining along with f(x) =

∑n
k=0 akx

k its reciprocal polynomial f∗(x) =∑n
k=0 an−kx

k. Since f(0) = 1, clearly f∗ is irreducible if and only if f is irreducible,
so the method avoided trial division on f if it exceeded f∗ in the lexicographic
ordering.

For the second phase of the algorithm, the irreducible polynomials of degree n
were stored in a hash table (in fact, just one of f and f∗ was stored), using a double
hashing strategy to resolve collisions. Define the load factor α of a hash table as the
proportion of filled entries in the table. It is well known that the expected number
of probes in such a table on a successful search is 1

α log( 1
1−α ), and 1/(1−α) for an

unsuccessful search. Using α = 2/3 allowed the second phase of the algorithm to
run on a single computer with two gigabytes of memory up to degree n = 34, while
maintaining very good search times.

By using a Gray code again to iterate over the set of polynomials with degree n
and constant term 1, the parity of the number of terms is simple to maintain, as
it flips at each iteration. One could then test polynomials having an odd number
of terms for distance 0 or 2 from an irreducible polynomial, and those with even
length for distance 1 or 3. The revolving door algorithm was used to enumerate the
subsets of size 2 or 3 in an efficient way. In this method, each subsequent subset
considered differs from the prior one in a minimal way—one element is removed
from the last set, and another one replaces it.

This algorithm verified Theorem 1 for polynomials of degree n ≤ 34, and in
addition it determined the exact number of polynomials in F2[x] of each degree
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in this range having distance k from an irreducible polynomial, for each k. These
results are summarized in Figure 1 in Section 4, which shows the proportion of the
2n polynomials of degree n in F2[x] at distance k, for 0 ≤ k ≤ 4. (This figure also
incorporates data on polynomials with constant term 0.)

3. New computations

We follow a similar strategy in the present research: first generate irreducible
polynomials in F2[x], and then compute distances to these irreducible polynomials.
However, the new method incorporates three principal changes. First, we reduce
the space requirement for the table of irreducible polynomials, since memory was
the most important constraining factor in the prior computations. Second, we
investigate some different methods for generating the irreducible polynomials in
F2[x]. Third, we incorporate a parallel strategy in the distance computation.

For the first improvement, we observe that prior computations indicated that
nearly all polynomials in F2[x] have many irreducible neighbors of the same de-
gree at minimal distance. It seems then that one might store just a sample of the
irreducible polynomials of a particular degree in a hash table, without much loss
in the distance computations. In fact, we can estimate the number of polynomi-
als expected to require distance C > 3 if only a proportion q of the irreducible
polynomials are used, for a parameter q ∈ [0, 1].

Since the number of irreducible polynomials of degree n in F2[x] is precisely
1
n

∑
d|n µ(d)2n/d, where µ(·) is the Möbius function, it follows that the probability

that a polynomial g ∈ F2[x] is irreducible, given that deg(g) = n, g(0) = 1, and g

has odd length, is approximately 2n

n ·
1

2n−2 = 4
n . Suppose that f ∈ F2[x] has degree

n, f(0) = 1, and L2(f) is odd. If we assume that the irreducible polynomials of
degree n are uniformly distributed among the polynomials with constant term 1
and odd length, and we have selected a random proportion q of these polynomials,
then the probability that neither f(x) nor any polynomials of the form f(x)+xi+xj

with 0 < i < j < n lies in our selected set of irreducible polynomials is

(
1− 4q

n

)1+(n−1
2 )

= exp
(
6q − 4q2 − 2qn

)(
1 +O

(
1
n

))
.

Thus, we expect

(2) 2n−2

(
1− 4q

n

)1+(n−1
2 )

= exp
(
(n− 2) log 2 + 6q − 4q2 − 2qn

)(
1 +O

(
1
n

))
polynomials with odd length to require C > 3 when a random proportion q of the
polynomials are stored. This expression has constant limiting value 21−log 2 when
q = (log 2)/2 = 0.3465 . . . , so it follows that we should be able to discard nearly
2/3 of the irreducible polynomials with only minor effect when checking if distance
3 suffices for polynomials of odd length and constant term 1.

A similar analysis handles the case where the length of f is even. In this case,
the number of polynomials that we expect to fail all tests at both distance 1 and
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distance 3 is

2n−2

(
1− 4q

n

)n−1+(n−1
3 )

= exp
(

(n− 2) log 2− 2q
3
(
n2 − 6n+ 17

)
− 4q2

3
(n− 6)− 32q3

9

)(
1 +O

(
1
n

))
,

(3)

and this expression tends to 0 as n grows large if q > (3 log 2)/(2n).
We set q = 1/4 at degrees n = 35 and 36, so that only about an eighth of the

irreducible polynomials need to be stored in these tests, since we only store one of
f and its reciprocal f∗. We reduce this to q = .175 at n = 37, then to q = 1/8
at n = 38 and 39, and finally to q = 1/9 at n = 40. Table 1 shows the number
of irreducible polynomials selected at each degree using these parameters. We use
(2) to estimate the number of polynomials that we expect will fail the test for
distance C ≤ 3. (We expect no exceptional polynomials from (3) since q remains
substantially larger than the critical value here.) Table 4 lists both this estimated
number of exceptions (to two significant digits), and the actual number produced
in our computations at each degree. Each estimate shown in this table is in fact
half the value produced by (2), since our implementation tests only about half of
the polynomials of each degree, owing to the symmetry of f with f∗.

Table 1. Generating irreducible polynomials: q = sampling rate,
N = irreducible polynomials selected.

n q N
35 .250 122 698 486
36 .250 238 588 443
37 .175 325 039 433
38 .125 452 116 480
39 .125 880 977 087
40 .111 1 525 544 625

The second change in the algorithm involved the method for generating irre-
ducible polynomials in F2[x]. We used a variation on the procedure employed in
[6], reducing the time required, at the expense of a larger space requirement. For
example, at degree n = 40 we used the bit-packing strategy to scan quickly for
divisors of degree up to 16, and then checked if the polynomial occurred in a pre-
computed hash table containing the reducible polynomials of degree 40 having no
factor with degree less than 17. However, after these computations were completed,
we found that the algorithm of [4] is significantly more efficient in terms of both
time and space. This method, which was employed in [5], computes the set of irre-
ducible polynomials in F2[x] of fixed degree n in a more efficient way by exploiting
a correspondence with certain equivalence classes of binary Lyndon words of length
n + 1. (Recall that a binary Lyndon word is a finite sequence of 0s and 1s that
exhibits no periodic structure.)

Our third main improvement lies in the implementation of the distance computa-
tion for large degrees. For n = 35 through 37, we used a single iMac computer with
4 GB of memory and a dual-core 2.93 GHz Intel processor for this check. However,
due to a restriction in the operating system, we found that one process could not
allocate more than about 3 GB of memory, and as a result we needed to increase
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α slightly at n = 37. Starting with degree n = 38, we used OpenMP in C++ to
implement shared memory on multicore machines to speed up the distance check.
These computations were performed on a cluster of dual quad-core Intel 2.33 GHz
Xeon processors, housed at the Centre for Interdisciplinary Research in the Mathe-
matical and Computational Sciences (IRMACS) at Simon Fraser University. Using
all eight cores on one blade of the cluster, and with 16 GB of memory available to
the group, we could store just one copy of the very large hash table in memory,
with eight processors querying it simultaneously.

In shared memory computations, one should of course distribute the computation
among the cores as evenly as possible for maximum benefit of the parallelization.
Splitting the work among the cores based on prefix (or suffix) bits of the polynomials
however produces uneven times, since our program discards any polynomial that is
lexicographically larger than its reciprocal. After some experimentation, we found
a good strategy was to pair two complementary segments in each process, such as
prefix bit sequences 10011 and 01100.

Table 2 summarizes the distance computations. Each polynomial used exactly
40 bits of storage in our C++ implementation. (This required discarding the high
bit at n = 40.) In the table, c denotes the number of cores used per process in the
shared memory calculations, J is the total number of jobs, α is the load factor for
the hash table, Sg is the space needed in gigabytes for the hash table, and Th is
the total time in hours for the jobs to complete. In addition, the value b indicates
the load balance in the shared memory calculations, defined as the total CPU time
used by all c cores, divided by the time required by the longest-running core; its
optimum value is therefore 8. Our load-balancing strategy thus improved with each
successive degree.

Table 2. Distance computation: c = cores, J = jobs, α = load
factor, Sg = space (GB), b = load factor, Th = time (hrs).

n c J 1/α Sg b Th
35 1 1 2 1.1 — 7.4
36 1 1 2 2.2 — 14.6
37 1 1 1.85 2.8 — 45.7
38 8 1 3 6.3 5.1 32.6
39 8 1 3 12.3 6.0 58.1
40 8 2 2 14.2 7.2 146.2

Table 3 exhibits the results of the distance computations. It indicates the number
of polynomials found at each distance k ≤ 3, and the number that fail the test.
These numbers account for both f and f∗, so the sum across the row at degree
n is exactly 2n−1. Of course, due to our sampling of the irreducible polynomials,
these distances are upper bounds—for example, some of the polynomials counted
in the k = 2 column are in fact irreducible. This leaves a relatively small number
of polynomials to check in a third stage in order to verify Theorem 1. A separate
program verifies that each of these exceptional polynomials has distance 0 or 2.
This program uses the IterIrredTest function in the NTL library [9] called from
a C++ program to test irreducibility. Table 4 summarizes these computations, and
shows the modest time in minutes Tm required to complete the test.
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Table 3. Number of polynomials detected at distance k.

n k = 0 k = 1 k = 2 k = 3 k ≥ 4
35 245 396 972 5 347 650 573 8 344 536 124 3 242 284 019 1 496
36 477 175 020 10 695 545 232 16 702 692 131 6 484 323 952 2 033
37 650 078 866 16 980 159 922 33 709 365 412 17 379 578 446 294 090
38 904 231 253 26 485 132 540 67 802 867 444 42 234 344 196 12 378 039
39 1 761 954 174 52 979 923 472 135 657 311 536 84 459 030 000 19 687 762
40 3 051 086 345 96 526 950 648 271 742 478 661 178 350 956 296 84 341 938

Table 4. Checking exceptional polynomials: estimated and ac-
tual number of exceptions, true distance results, time in minutes.

n Est. Actual k = 0 k = 2 Tm
35 360 748 18 730 .002
36 440 1 043 23 1 020 .003
37 1.0 · 105 147 045 6 653 140 392 0.38
38 5.0 · 106 6 190 937 371 487 5 819 450 16.1
39 7.8 · 106 9 843 881 558 390 9 285 491 26.9
40 3.5 · 107 42 176 124 2 495 792 39 680 332 119.0

4. Distance distributions

Suppose that f ∈ F2[x] has constant term 1 and degree n. Estimating the
conditional probability that f is irreducible given that it has odd length as 4/n, we
may determine a conjectural distribution for the distance from f to an irreducible
polynomial of the same degree in F2[x]. If f has odd length, then the probability
that f has distance at least 4 is negligible at(

1− 4
n

)1+(n−1
2 )

= e2−2n

(
1− 20

3n
+O

(
1
n2

))
,

so the probability that f has distance 2 is approximately 1 − 4/n. If f has even
length, then it is not adjacent to an irreducible polynomial with approximate prob-
ability (

1− 4
n

)n−1

= e−4

(
1− 4

n
+O

(
1
n2

))
.

Since the probability that f has distance at least 5 is again negligible, decaying like
exp(−2n2/3), we estimate the probability that f has distance 3 as e−4(1 − 4/n),
and distance 1 as 1− e−4(1− 4/n).

If f(0) = 0, then clearly the probability that f has distance k from an irreducible
polynomial is the same as the probability that f+1 has distance k−1. As shown in
[5,6], one can then determine the heuristic distribution for the probability r2(k, n)
that a randomly selected polynomial in F2[x] of degree n has distance k from an
irreducible polynomial:

r2(n, 0) ≈ 1
n
, r2(n, 1) ≈ 1− e−4

4
+

1 + e−4

n
, r2(n, 2) ≈ 2− e−4

4
− 1− e−4

n
,

r2(n, 3) ≈ 1 + e−4

4

(
1− 4

n

)
, r2(n, 4) ≈ e−4

4

(
1− 4

n

)
.
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Figure 1 (from [6]) shows that these estimates fit the experimental data very well.

Figure 1. Predicted proportions versus experimental data for dis-
tances in F2[x] (k = 0: open circles; k = 1: boxes; k = 2: crosses;
k = 3: diamonds; k = 4: filled circles).

Thus, for large n, one expects that approximately 24.54% of the polynomials of
degree n will have distance 1, about 49.54% distance 2, another 25.46% distance 3,
and the remaining .46% distance 4. We may also use this model to estimate the
number of polynomials f ∈ F2[x] with constant term 1 of any degree with distance
at least 4 to an irreducible polynomial. For polynomials with odd length, the
heuristic predicts this total number to be∑

n≥41

2n−2

(
1− 4

n

)1+(n−1
2 )

< 1.2 · 10−23,

since we have established Theorem 1. Similarly, for polynomials with even length,
the expected total is∑

n≥41

2n−2

(
1− 4

n

)n−1+(n−1
3 )

< 3.1 · 10−431.

This then presents some additional heuristic evidence for a favorable resolution of
Turán’s question with constant C = 5.

Finally, Turán’s problem has been investigated using other primes besides p =
2. For a polynomial f ∈ Fp[x], define its length Lp(f) by choosing each of its
coefficients in the interval (−p/2, p/2], and then summing their absolute values (in
Z) as in (1). Define cn(p) as the smallest positive integer with the property that
for every monic polynomial f ∈ Fp[x] with degree n and f(0) 6= 0, there exists
an irreducible polynomial g ∈ Fp[x] with the same degree and Lp(f − g) ≤ cn(p).
Bérczes and Hajdu [2] showed in effect that cn(3) ≤ 2 for n ≤ 12, so that C = 4
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suffices in Turán’s question for polynomials in Z[x] up to degree 12. The second
author extended this result to n ≤ 18 in [6], and also investigated the problem in
Fp[x] for other primes p ≤ 31 across a range of degrees.

We may apply a similar analysis for the prime p = 3 to obtain heuristic ap-
proximations for the probability r3(n, k) that a polynomial f ∈ F3[x] with degree
n has distance k from an irreducible polynomial of the same degree. We assume
that irreducible polynomials of fixed degree in F3[x] are uniformly distributed pro-
vided that no linear factors appear. We estimate the probability that a poly-
nomial f with degree n and f(0)f(1)f(−1) 6= 0 is irreducible as 27/8n, and a
lengthy calculation produces the following estimates for r3(k, n), where we use t for
exp(−27/16) = 0.18498 . . . :

r3(0, n) =
1
n

+O

(
1
n2

)
,

r3(1, n) =
2
3
− 2t

27
(
t3 + 4t+ 4

)
+

t

32n
(
19t3 + 38t+ 51

)
+O

(
1
n2

)
≈ 0.60163 +

0.33614
n

,

r3(2, n) =
1
3
− t

27
(
2t4 + 4t2 − 7t− 8

)
+

1
128n

(
87t5 − 32t4 + 130t3 − 109t2 − 204t− 128

)
+O

(
1
n2

)
≈ 0.39606− 1.3177

n
,

r3(3, n) =
t2

27
(
2t3 + 2t2 + 4t+ 1

)
− t2

128n
(
87t3 + 44t2 + 130t+ 43

)
+O

(
1
n2

)
≈ 0.0023078− 0.018473

n
,

and r3(k, n) is minuscule for k ≥ 4. Figure 2 shows that these estimates fit the
data for n ≤ 18 from [6] very well. It seems plausible then that C = 4 may in fact
hold in Turán’s problem in Z[x].

It is argued in [6] that larger primes are unlikely to produce better bounds in
Turán’s problem when working over Fp[x]. However, in Z[x] it is quite possible that
even C = 2 suffices, as it appears that no integer polynomial requiring distance 3
is even known.

5. An explicit density result

In Section 4, heuristic arguments indicated that it is plausible that every poly-
nomial in F2[x] has distance at most 4 from an irreducible polynomial of the same
degree. In this section, we show on the other hand that distance 4 is certainly
required in F2[x], in a particularly strong sense. Throughout this section, we work
in the field F2 of arithmetic modulo 2. We show that a positive proportion of poly-
nomials f(x) in F2[x] have minimal distance at least 4 to an irreducible polynomial
in this ring. More precisely, we show that a positive proportion of polynomials
f(x) in F2[x] have the property that if g(x) is an irreducible polynomial in F2[x] of
arbitrary degree, then the number of terms in f(x) + g(x) is at least 4. To clarify,
the trinomial x40 + x20 + x arose in our computations earlier in the paper as an
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Figure 2. Predicted proportions versus experimental data for dis-
tances in F3[x] (k = 0: open circles; k = 1: boxes; k = 2: crosses;
k = 3: diamonds).

example of a polynomial of degree 40 that has distance 4 from every irreducible
polynomial in F2[x] of degree ≤ 40. However, x57 +x40 +x20 +x+ 1 is irreducible,
so x40 + x20 + x has distance 2 from some irreducible polynomial. We show in this
section that a positive proportion of polynomials f(x) in F2[x] have distance at
least 4 from every irreducible polynomial in F2[x]. We begin by explaining how to
construct one such f(x).

We first state some essential motivating facts.

(i) For each odd positive integer n, the nth cyclotomic polynomial Φn(x) factors
in F2[x] as

Φn(x) = ρ(1)
n (x)ρ(2)

n (x) · · · ρ(κ)
n (x),

where the ρ(j)
n (x) are mutually incongruent irreducible polynomials modulo 2,

each having degree ordn(2), and κ(n) = ϕ(n)/ordn(2). Here, ϕ(·) is Euler’s
totient function, and ordn(2) is the smallest positive integer t such that 2t ≡ 1
(mod n).

(ii) The infinite collection of polynomials

ρ(j)
n (x), n ≥ 1, n odd, 1 ≤ j ≤ κ(n),

are distinct, and different from x and x+ 1.

The arguments establishing these statements are not difficult, given classical lit-
erature on the subject. In this section, we will make use of a polynomial f(x)
constructed explicitly from the Chinese Remainder Theorem, where the moduli are
among factors of Φn(x) described in (i), together with the polynomials x and x+1.
This construction will enable us to justify our main result, without making explicit
use of any of the motivating facts above.
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For our argument, as in (i), we define κ(n) to be the number of distinct irreducible
factors of Φn(x) modulo 2. We will be interested in the value of κ(n) for each
nontrivial positive divisor of 315. A direct computation (or (i)) can be used to
obtain Table 5, which exhibits these values.

Table 5. Number of irreducible factors κ(n) of Φn(x) modulo 2.

n 3 5 7 9 15 21 35 45 63 105 315
κ(n) 1 1 2 1 2 2 2 2 6 4 12

We now take advantage of the polynomials ρ(j)
n (x) described in (i). The following

lemma is easily established, and we omit its proof.

Lemma 1. Let m be a positive integer. Let ρ(x) denote a factor (not necessarily
irreducible) of Φm(x) in F2[x]. Let h(x) ∈ F2[x] be a polynomial divisible by ρ(x).
Then h(x) + xu + xv is divisible by ρ(x) for all positive integers u and v with u− v
divisible by m.

We next require a covering system of the integers: a system of congruences with
the property that every integer satisfies at least one congruence from the system.
While there is some flexibility in the system we construct, the left column in Table 6
shows the specific covering system that we employ here. The first column in this
table exhibits expressions of the form aj (mod mj), with 1 ≤ j ≤ 29. We therefore
assert that for each integer x, there is at least one j ∈ {1, 2, . . . , 29} such that
x ≡ aj (mod mj). To verify that this is in fact the case, we may proceed as follows.
Observe that each mj divides 315. Given x ∈ Z, we can select y ∈ {1, 2, . . . , 315}
such that x ≡ y (mod 315). This implies then that x ≡ y (mod mj) for each
j ∈ {1, 2, . . . , 29}. Therefore, to see that every integer x satisfies some congruence
x ≡ aj (mod mj), it suffices to show that every integer y ∈ {1, 2, . . . , 315} satisfies
some congruence y ≡ aj (mod mj). As y ∈ {1, 2, . . . , 315} and j ∈ {1, 2, . . . , 29},
this is a simple computational check.

While the moduli in our covering system are not distinct, it is important that
each modulus m is repeated at most κ(m) times. With aj (mod mj) as in Table 6,
we consider congruences

(4) f(x) ≡ xaj + 1 (mod gj(x)), for 1 ≤ j ≤ 29,

where each gj(x) is chosen to be an irreducible factor of Φmj
(x) in F2[x], and where

the collection of gj(x) are distinct. The particular gj(x) corresponding to a given
aj (mod mj) that we use appears in the right column of Table 6. In addition, we
combine the 29 congruences in (4) with the two additional requirements

(5) f(x) ≡ 0 (mod x) and f(x) ≡ 1 (mod x+ 1).

In particular, if f(x) satisfies (5), then f(0) = 0 and f(1) = 1 in F2.
Suppose now that f(x) satisfies the congruences in (4) and (5), and suppose

further that f(x) has at least three terms with degree > 12. Let g(x) be an
irreducible polynomial that has minimal distance τ from f(x), so that f(x) + g(x)
has as few terms as possible in F2[x]. We do not require here that deg g ≤ deg f .
Our immediate goal is to show τ ≥ 4.

We show first that if τ ≤ 3, then g(0) = 1. Assume τ ≤ 3 and g(0) = 0. Since
g(x) is irreducible, we deduce g(x) = x. We use that f(x) has at least three terms
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Table 6. Covering system with polynomial selection.

1 (mod 3) x2 + x + 1

1 (mod 5) x4 + x3 + x2 + x + 1

1 (mod 7) x3 + x + 1

2 (mod 7) x3 + x2 + 1

3 (mod 9) x6 + x3 + 1

2 (mod 15) x4 + x3 + 1

8 (mod 15) x4 + x + 1

11 (mod 21) x6 + x5 + x4 + x2 + 1

17 (mod 21) x6 + x4 + x2 + x + 1

19 (mod 35) x12 + x11 + x10 + x8 + x5 + x4 + x3 + x2 + 1

34 (mod 35) x12 + x10 + x9 + x8 + x7 + x4 + x2 + x + 1

33 (mod 45) x12 + x3 + 1

42 (mod 45) x12 + x9 + 1

0 (mod 63) x6 + x5 + 1

18 (mod 63) x6 + x4 + x3 + x + 1

27 (mod 63) x6 + x5 + x2 + x + 1

42 (mod 63) x6 + x5 + x3 + x2 + 1

45 (mod 63) x6 + x5 + x4 + x + 1

54 (mod 63) x6 + x + 1

5 (mod 105) x12 + x10 + x9 + x7 + x6 + x4 + 1

14 (mod 105) x12 + x11 + x9 + x8 + x7 + x3 + 1

20 (mod 105) x12 + x8 + x6 + x5 + x3 + x2 + 1

35 (mod 105) x12 + x9 + x5 + x4 + x3 + x + 1

24 (mod 315) x12 + x9 + x6 + x2 + 1

60 (mod 315) x12 + x10 + x8 + x6 + x3 + x + 1

150 (mod 315) x12 + x11 + x9 + x6 + x4 + x2 + 1

195 (mod 315) x12 + x11 + x9 + x8 + x7 + x6 + x5 + x + 1

249 (mod 315) x12 + x11 + x10 + x8 + 1

285 (mod 315) x12 + x11 + x10 + x8 + x6 + x5 + x2 + x + 1

with degree > 12. Since f(x) + g(x) has τ ≤ 3 terms, we must have that f(x) has
exactly four terms, three of degree > 12 together with the term x. However, this
contradicts that f(1) = 1. Hence, if τ ≤ 3, then g(0) = 1.

We consider the four cases τ = 0, τ = 1, τ = 2, and τ = 3, and show that in
each case we obtain a contradiction.

• Suppose τ = 0. In this case, f(x) is irreducible in F2[x]. Since f(0) = 0, we
deduce f(x) = x. Since f(x) has degree > 12, we obtain a contradiction.
• Suppose τ = 1. Since f(0) = 0 and g(0) = 1, we deduce g(x) = f(x) + 1.

But in this case, g(1) = f(1) + 1 = 1 + 1 = 0. Since g(x) is irreducible,
we deduce g(x) = x + 1 and so f(x) = x. This contradicts that f(x) has
degree > 12.
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• Suppose τ = 2. Since f(0) = 0 and g(0) = 1, we deduce g(x) = f(x)+xa+1
for some positive integer a. Since the congruences x ≡ aj (mod mj) form
a covering of the integers, there is a k ∈ {1, 2, . . . , 29} such that a ≡ ak
(mod mk). From (4), we obtain

f(x) ≡ xak + 1 (mod gk(x)).

We take m = mk, ρ(x) = gk(x), h(x) = f(x)+xak +1, u = ak and v = a in
Lemma 1 to deduce that g(x) = f(x) + xa + 1 is divisible by gk(x). Since
g(x) is irreducible, we deduce g(x) = gk(x) so that f(x) = xa + gk(x) + 1.
Recall that mk divides 315 and gk(x) is an irreducible factor of Φmk

(x) in
F2[x]. It is easy to check that the degree of gk(x) is at most 12. In fact,
gk(x) is one of the polynomials in the right column of Table 6 of degree
≤ 12. Since f(x) = xa + gk(x) + 1, we obtain a contradiction since f(x)
has at least three terms with degree > 12.
• Suppose τ = 3. Here, f(0) = 0 and g(0) = 1 implies g(x) = f(x) + xa +
xb+1, for some positive integers a and b. Then g(1) = f(1)+1+1+1 = 0,
so g(x) = x+1 and f(x) = xa+xb+x, contradicting that f(x) has at least
three terms with degree > 12.

We deduce then that τ ≥ 4.
Before proceeding, we clarify for later purposes what we have just shown: Every

polynomial f(x) having at least three terms of degree > 12 and satisfying the
congruences in (4) and (5) has the property that it has distance ≥ 4 to every
irreducible polynomial in F2[x].

We now construct a polynomial f(x) satisfying the congruences in (4) and (5),
noting that we require f(x) to have at least three terms with degree > 12. We
apply the Chinese Remainder Theorem on the system of congruences given by (4)
and (5). The polynomial f(x) we obtain has degree 243, and is displayed below.

f(x) = x243 + x238 + x233 + x232 + x231 + x227 + x225 + x223 + x222 + x221

+ x217 + x216 + x214 + x208 + x206 + x203 + x202 + x201 + x199

+ x197 + x196 + x192 + x186 + x184 + x180 + x175 + x174 + x171

+ x169 + x167 + x164 + x163 + x162 + x160 + x157 + x155 + x149

+ x147 + x146 + x145 + x143 + x141 + x136 + x133 + x130 + x129

+ x125 + x124 + x116 + x115 + x114 + x108 + x103 + x100 + x99

+ x98 + x95 + x94 + x92 + x88 + x83 + x81 + x72 + x68 + x63

+ x61 + x55 + x52 + x50 + x49 + x47 + x46 + x43 + x36 + x35

+ x29 + x26 + x23 + x22 + x20 + x18 + x14 + x10 + x7 + x6.

(6)

Although we have already justified this polynomial has the properties we require,
we note that this is straightforward to verify directly. First, since f(0) = 0, the
polynomial f(x) is itself reducible. Second, since the number of terms in f(x) is
85, we have f(x) + 1 and f(x) + xa + xb + 1 are divisible by x + 1 and, hence,
reducible for all nonnegative integers a and b. Third, a direct computation shows
that gcd

(
f(x) + xa + 1, x315 + 1

)
, computed in F2[x], has positive degree for all

integers a satisfying 0 ≤ a < 315. Last, since

gcd
(
f(x) + xa + 1, x315 + 1

)
= gcd

(
f(x) + xa+315 + 1, x315 + 1

)
,
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it follows that f(x) + xa + 1 is reducible for all nonnegative integers a.
We have therefore constructed a single polynomial f(x) that has distance ≥ 4 to

an irreducible polynomial. We next prove Theorem 2, which shows that there are in
fact many such polynomials. Recall that D4(n) denotes the number of polynomials
of degree n that have minimal distance ≥ 4 to an irreducible polynomial in F2[x].
We also clarify here that again we do not restrict to irreducible polynomials of degree
≤ n in our definition of D4(n). Instead, we count only polynomials of degree n that
have distance ≥ 4 from irreducible polynomials in F2[x] of any degree.

Proof of Theorem 2. Let n ≥ 246, and set εn = 1. We want to show that there are
2n−246 different choices of the n-tuple (ε0, ε1, . . . , εn−1), with each εj in {0, 1}, for
which

F (x) = ε0 + ε1x+ · · ·+ εnx
n

has distance ≥ 4 to an irreducible polynomial. Let f(x) be the polynomial from
(6). Let w(x) denote the product of x, x+1, and all of the polynomials in the right
column of Table 6, so that degw = 244, and w(0) = w(1) = 0.

Select ε′244, ε′245, . . . , ε′n−1, each in {0, 1}, ensuring that a positive even number
of these ε′j are equal to 1. There are therefore 2n−245− 1 ≥ 2n−246 different choices
for the ε′j . Given such a selection, we next show that there exist ε′0, ε′1, . . . , ε′243,
for which xn +

∑n−1
j=0 ε

′
jx
j has distance ≥ 4 from every irreducible polynomial in

F2[x].
Let ε′n = 1 and let g(x) =

∑n
j=244 ε

′
jx
j . Observe that g(1) = 1 in F2, and

that g(x) has at least three terms of degree ≥ 244 (since ε′n = 1 and at least two
j ∈ {244, 245, . . . , n − 1} satisfy ε′j = 1). Let h(x) be the unique polynomial in
F2[x] of degree < 244 satisfying

(7) h(x) ≡ g(x) + f(x) (mod w(x)).

For 0 ≤ j ≤ 243, we define ε′j in {0, 1} so that h(x) =
∑243
j=0 ε

′
jx
j .

We claim that F (x) = g(x) + h(x) has distance ≥ 4 from every irreducible
polynomial in F2[x]. For each factor ρ(x) of w(x), we obtain from (7) that

F (x) ≡ g(x) + h(x) ≡ f(x) (mod ρ(x)).

Hence, F (x) satisfies the same congruences as those given for f(x) in (4) and (5).
More precisely, we have

F (x) ≡ xaj + 1 (mod gj(x)), for 1 ≤ j ≤ 29,

F (x) ≡ 0 (mod x) and F (x) ≡ 1 (mod x+ 1).

From the definition of F (x), we see that F (x) has at least three terms of degree
≥ 244. As noted earlier, these congruence conditions together with F (x) having
at least three terms of degree > 12 are sufficient to ensure that every irreducible
polynomial in F2[x] has distance ≥ 4 to F (x), completing the proof. �

We remark that the lower bound in Theorem 2 can be improved easily by ac-
counting for a multitude of similar constructions for the polynomial f(x). We do
not attempt to make this more precise. We also note that for n ≥ 244, the polyno-
mial xn−244w(x) + f(x) provides an explicit example of a polynomial of degree n
with distance ≥ 4 to every irreducible polynomial in F2[x].
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