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1. Introduction.

In this paper, the authors continue their work on the problem of �nding an h = h(x)

as small as possible such that for x su�ciently large, there is a squarefree number in the

interval (x; x + h]: This problem has been investigated by Fogels [4], Roth [11], Richert

[10], Rankin [9], Schmidt [12], Graham and Kolesnik [5], the second author [14,15], and the

�rst author [2]. In particular, the authors [3] have recently shown by elementary means

that there is a constant c > 0 such that for x su�ciently large, the interval (x; x+ h] with

h = cx8=37 contains a squarefree number. Using exponential sums, they showed that 8/37

may be replaced by 3/14. A more extensive history of the problem can be found in their

paper [3]. The purpose of this paper is to make the following improvement.

Theorem. There exists a constant c > 0 such that for x su�ciently large the interval

(x; x+ cx1=5 log x] contains a squarefree number.

The proof of the Theorem will be elementary. Much of the ground work has already

been done and described in previous work on the problem (cf. [3]). For the purposes of

completeness, we will present most of the necessary background here while at the same

time introducing new approaches to some of the previous work.

2. Preliminaries

Notation (unless speci�ed otherwise):

c is a su�ciently large constant. For convenience, we consider c � 1:

x is a su�ciently large real number (i.e., x � x0 for some x0 = x0(c)):
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a; b; d; and u denote positive integers.

p denotes a prime.

� = 1=5:

h = cx� log x.

f(x)� g(x) means that there is a constant c0 independent of c such that jf(x)j � c0g(x)

for all x su�ciently large.

� is a number > �. More speci�cally, x� > h
p
log x.

� is a real number.

v1; v2; and � are positive real numbers.

Let S denote the number of integers in (x; x + h] which are not squarefree. For d a

positive integer, let Md denote the number of multiples of d
2 in the interval (x; x+ h]: In

particular, since x is su�ciently large and h � x1=4; we get that if d > 2
p
x; then Md = 0:

We easily get that

S �
X

p�2
p
x

Mp:

Hence,

S � S1 + S2;

where

S1 =
X

p�h
p
log x

Mp and S2 =
X

h
p
log x<p�2

p
x

Mp:

Since Mp � (h=p2) + 1; we get that

S1 �
X

p�h
p
log x

�
h

p2
+ 1

�

< h

1X
n=2

1

n2
+ �(h

p
log x)

= h(
�2

6
� 1) + �(h

p
log x):

By the prime number theorem or a Chebyshev estimate, we get that

S1 �
2

3
h:

Therefore, in order to prove the Theorem, it su�ces to show that S2 � c�x� log x for some

� < 1:

De�ne

S(t1; t2) = fd 2 (t1; t2] : 9 an integer m such that md2 2 (x; x+ h]g:
Suppose that d 2 (h

p
log x; 2

p
x]: Then d2 > h so that there is at most one multiple of d2

in (x; x + h]. We get that for d 2 (h
p
log x; 2

p
x]

Md = 1 () d 2 S(h
p
log x; 2

p
x)
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and

Md = 0 () d =2 S(h
p
log x; 2

p
x):

Therefore, S2 � jS(hplog x; 2px)j. To get bounds for jS(hplog x; 2px)j we will use the
following lemma.

Lemma 1. If

jS(x�; 2x�)j � x���� for v1 � � � v2;

then

jS(xv1 ; 2xv2)j �� x
���v1:

If

jS(x�; 2x�)j � x�+�� for v1 � � � v2;

then

jS(xv1; 2xv2)j �� x
�+�v2 :

A proof of the above lemma is fairly simple and can be found in [1]. The lemma is

essentially contained in Roth's paper [11]. We note that if one replaces � with 0 in the

�rst asymptotic inequality in Lemma 1, then the second asymptotic inequality holds with

� replaced by 0 and with an extra factor of log x: Furthermore, Lemma 1 can easily be

extended to obtain from a bound on jS(x�; 2x�)j consisting of a sum of several terms of

the form x���� or x� a corresponding bound on jS(xv1 ; 2xv2)j: To make use of the lemma,

we will arrive at estimates for jS(x�; 2x�)j for two di�erent ranges of �: To begin with,

suppose that u and u+a are in S(x�; 2x�): Then there exist integers m1 and m2 such that

m1u
2 2 (x; x+h] and m2(u+ a)2 2 (x; x+ h]: Observe that since u and u+ a 2 (x�; 2x�],

(1) m1 =
x

u2
+O

�
h

u2

�
=

x

u2
+O

�
hx�2�

�

and

(2) m2 =
x

(u+ a)2
+O

�
hx�2�

�
:

Since u and u+ a 2 S(x�; 2x�), we get that

m1(2u� a)�m2(2u+ 3a) =
x

u2
(2u� a)� x

(u+ a)2
(2u+ 3a) +O

�
hx��

�(3)

=
x

u2(u+ a)2

�
(u+ a)2(2u� a)� u2(2u+ 3a)

�
+O

�
hx��

�

=
�a3x

u2(u+ a)2
+O

�
hx��

�
:
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The second of the three expressions in (3) we view as a di�erence for x=u2 modi�ed by the

appearance of the polynomials 2u� a and 2u+ 3a: If a is small in (3), then one gets that

m1(2u�a)�m2(2u+3a) = 0: The above idea is due to Roth [11] and, as observed by Nair

[8], one can use (3) to show that if I is a subinterval of (x�; 2x�] with jIj � x(4��1)=3=4,

then jS(x�; 2x�) \ Ij � 2 (cf. [3]). This easily leads to

(4) jS(x�; 2x�)j � x(1��)=3 for h
p
log x < x� � 2

p
x:

Observe that (4) does not imply that jS(x�; 2x�)j � x1=5 log x when � < 2=5 (or, more

speci�cally, when x� is of a smaller order than x2=5 log�3 x). Thus, to obtain the theorem,

we can only make use of (4) when � � 2=5: In the range � � 2=5; however, there is a better

estimate for jS(x�; 2x�)j: The better estimate is

(5) jS(x�; 2x�)j � x1�2� for x1=3 � x� � 2
p
x:

Although either (4) or (5) will su�ce for obtaining the theorem, we will use (5) in this

paper for two reasons. First, as we have already mentioned, (5) is stronger than (4) when

� is restricted to the range � � 2=5: Thus, any future improvements on the theorem will

more likely bene�t from making use of (5) rather than (4). Also, the authors feel that (5)

is easier to obtain than (4), and so it seems reasonable to use a simpler result (especially

when it is also stronger). On the other hand, Roth's ideas will still play a very important

role in proving the theorem. Although making use of (4) when � � 2=5 does not help in

obtaining the theorem, we will make much use of (3) when � � 2=5:

We now turn to proving (5). First, we observe that a close examination of Davenport

or Estermann's approach described in [11] easily leads to (5) (also see [6] or [13]). The

authors' elementary approaches thus far have emphasized the use of di�erences, and so we

show here how to view (5) as a consequence of di�erences. Observe that it su�ces to show

that if I is a subinterval of (x�; 2x�] with jIj � (1=3)x3��1, then jS(x�; 2x�) \ Ij � 1:

Suppose that there exist u and u + a in S(x�; 2x�) \ I where jIj � (1=3)x3��1: De�ning
m1 and m2 as above, we get that

m1 �m2 =
x

u2
� x

(u+ a)2
+O

�
hx�2�

�
=

a(2u+ a)x

u2(u+ a)2
+O

�
hx�2�

�
:

Since u and u+a are in I (and x is su�ciently large), the right-hand side above has absolute

value < 1: On the other hand, it is easy to check that the �rst term on the right-hand side

above is greater than the absolute value of the error term. This implies that m1 �m2 is

an integer in (0; 1); giving a contradiction. Hence, we get the desired result.

Before �nishing this section, we observe that an application of Lemma 1 and (5) give

that ���S �x(1��)=2; 2px����� x�

(where we can allow � � 1=5 with h = cx� or h = cx� log x) so that, in particular,

(6)
���S �x2=5; 2px�

���� x1=5:
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3. Second Differences

The methods discussed in the �rst section may be viewed as �rst di�erence techniques.

To obtain (3) or (4) one uses a modi�ed �rst di�erence of x=u2: To obtain (5) one uses a

direct application of a �rst di�erence. In this section, we make use of second di�erences.

Our goal now is to �nd a good estimate for S(x�; 2x�) when � � 2=5: Therefore, suppose

now that � satis�es this condition. We begin by supposing that u and u+a are consecutive

elements of S(x�; 2x�) and that a � x(4��1)=3=8: Suppose further that u+ b and u+ b+ a

are also in S(x�; 2x�) and that b � a+(1=8)x(4��1)=3: We view a as being �xed and show

that there is a su�ciently small absolute positive constant c1 such that any number b as

above must also satisfy b > c1a
�1=3x(5��1)=3: This result is a consequence of the work of

the �rst author in [1] where he uses second di�erences and the ideas of Halberstam and

Roth [7] to obtain a result about gaps between k�free numbers. We will give a di�erent

approach here which is based on the use of divided di�erences, the basis of the second

author's work in [14] and [15]. Both approaches are second di�erence approaches. For this

particular application, there is a slight advantage to using a divided di�erence approach

in that the error terms involved will be smaller than in the previous approach.

Let m1; m2; m3; and m4 be integers such that m1u
2; m2(u + a)2; m3(u + b)2; and

m4(u+ a+ b)2 are all in (x; x+ h]: If one uses (1), (2), and the corresponding expressions

for m3 and m4; one can view bm1� (a+ b)m2+am4 and am1� (a+ b)m3+ bm4 as divided

di�erences for x=u2: It is interesting to note that the �rst of these by itself can be used

to obtain (4). (Also, a direct application of a third di�erence can be used to obtain (4).)

We will use these two expressions for divided di�erences, however, in a di�erent way. We

observe that the �rst of these minus the second gives

(b� a)m1 � (a+ b)m2 + (a+ b)m3 � (b� a)m4

= (b� a)
x

u2
� (a+ b)

x

(u+ a)2
+ (a+ b)

x

(u+ b)2
� (b� a)

x

(u+ a+ b)2
+O

�
(a+ b)h

u2

�

=
ab(b� a)(a+ b)(2u+ a+ b)(2u2 + 2au + 2bu+ ab)x

u2(u+ a)2(u+ b)2(u+ a+ b)2
+O

�
(a+ b)h

u2

�
:

Now, u and u + a + b are both in (x�; 2x�] so that u > x� > a + b: In particular, this

implies that if c1 is su�ciently small and b � c1a
�1=3x(5��1)=3; then the �rst term on

the right-hand side above has absolute value < 1=2: The conditions a � x(4��1)=3=8;

b � a+ (1=8)x(4��1)=3; and x� > h
p
log x all imply that the �rst term on the right-hand

side above is also greater than the absolute value of the error term above. Thus, we get

that (b� a)m1 � (a+ b)m2 + (a+ b)m3 � (b� a)m4 is an integer 2 (0; 1): Hence, we must

have in fact that b > c1a
�1=3x(5��1)=3; as we had set out to establish.
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4. The Use of Roth's Method

In this section, we make use of the idea of Roth given by equation (3) from section 2

and the result established in section 3 to complete the proof of the theorem. Let R =

x(4��1)=3=8: Recall that in section 2, we mentioned that if I is a subinterval of (x�; 2x�]

with jIj � 2R, then jS(x�; 2x�)\Ij � 2: Indeed, this is how one can establish (4). Although

we will make use of this result, we do not include its proof here. For a proof, one can consult

Roth's paper [11] as well as [3]. For � �xed, de�ne

T (a) = fu : u and u+ a are consecutive elements in S(x�; 2x�)g;

and

t(a) = jT (a)j:
Note that

(7) jS(x�; 2x�)j � 1 +

1X
a=1

t(a):

From the comments above, we know that of every 3 consecutive elements in S(x�; 2x�);

there exist 2 consecutive elements of distance > R from one another. In other words, we

get that X
a�R

t(a) � 1 +
X
a>R

t(a):

Hence, from (7), we get that

(8) jS(x�; 2x�)j � 2 + 2
X
a>R

t(a):

Let a > R: We now bound t(a) from above. To do this, we consider u and u + b as two

non-consecutive elements in T (a): In particular, this implies that u + b � u + 2a so that

b � a+R: Hence, the conditions of section 3 hold, and we get that

(9) b > c1a
�1=3x(5��1)=3:

We now consider a subinterval I of S(x�; 2x�) with jIj � c2a
�3x5��1 where c2 is a su�-

ciently small positive constant to be chosen momentarily. We will show that the number

of u 2 T (a) \ I is � ca�8=3x(7�+3��2)=3 log x+ 1: Observe that since a > R; we get that

jIj � c2a
�3x5��1 � x� (provided c2 � 1=512). Thus, once the above bound on jT (a) \ Ij

is established, we will have that

t(a)� x�

a�3x5��1

�
ca�8=3x(7�+3��2)=3 log x+ 1

�
(10)

= ca1=3x(�5�+3�+1)=3 log x+ a3x1�4�:
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Suppose that u and u+ b 2 T (a) \ I: Then there exist integers m1; m2; m3; and m4 such

that m1u
2; m2(u+ a)2; m3(u+ b)2; and m4(u+ a+ b)2 are all in (x; x+ h]: From (3), we

get that

m1(2u� a)�m2(2u+ 3a) =
�a3x

u2(u+ a)2
+O

�
hx��

�

and

m3(2u+ 2b� a)�m4(2u+ 2b+ 3a) =
�a3x

(u+ b)2(u+ a+ b)2
+O

�
hx��

�
:

A simple calculation now gives that

m3(2u+ 2b� a)�m4(2u+ 2b+ 3a)�m1(2u� a) +m2(2u+ 3a)

=
a3x

u2(u+ a)2(u+ b)2(u+ a+ b)2

�
(u+ b)2(u+ a+ b)2 � u2(u+ a)2

�
+O

�
hx��

�

=
a3x

u2(u+ a)2(u+ b)2(u+ a+ b)2
b(2u+ a+ b)

�
2u2 + 2au+ 2bu+ ab+ b2

�
+O

�
hx��

�
:

Since both u and u+ b are in I; we get that b � jIj � c2a
�3x5��1: Thus, if c2 is su�ciently

small, we get that the �rst term on the right-hand side of the equation above is < 1=2:

We choose c2 > 0 so that the above all holds. Now, there is a su�ciently large constant c3
such that if b > c3a

�3x4��1h; then the �rst term on the right-hand side above is greater

than the absolute value of the error term. But this would make the right-hand side above

strictly between 0 and 1 which is an impossibility since m3(2u + 2b � a) �m4(2u + 2b+

3a)�m1(2u� a) +m2(2u+ 3a) is an integer. Thus, in fact, we must have that

b � c3a
�3x4��1h = c3ca

�3x4�+��1 log x:

Observe that this bound on b is an upper bound on the distance between any 2 elements of

T (a) \ I: On the other hand, (9) provides us with a lower bound on the distance between

any 2 non-consecutive elements of T (a) \ I: Hence, we get that

jT (a) \ Ij � 2
c3ca

�3x4�+��1 log x

c1a�1=3x(5��1)=3
+ 2� ca�8=3x(7�+3��2)=3 log x+ 1:

This was the bound on jT (a) \ Ij that we wanted; hence, (10) holds. Let B = x(5��1)=5:

From (10) we get that

X
R<a�B

t(a)�
X

R<a�B

�
ca1=3x(�5�+3�+1)=3 log x+ a3x1�4�

�

� cB4=3x(�5�+3�+1)=3 log x+B4x1�4�

= cx(�5�+15�+1)=15 log x+ x1=5:
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Also,

x� �
1X
a=1

at(a) �
X
a>B

at(a) � B
X
a>B

t(a)

so that X
a>B

t(a) � x�

B
= x1=5:

Combining the above with (8), we now get that

jS(x�; 2x�)j � cx(�5�+15�+1)=15 log x+ x1=5 for � < � � 2=5:

We now make use of Lemma 1, as modi�ed by the comments following it, to obtain that

jS(h
p
log x; x2=5)j � c

�
h
p
log x

��1=3
x(15�+1)=15 log x+ x1=5 log x

� c2=3x1=5(log x)1=2 + x1=5 log x:

Combining this with (6) gives that

jS(h
p
log x; 2

p
x)j � c2=3x1=5(log x)1=2 + x1=5 log x� c2=3x1=5 log x;

which completes the proof.

In conclusion, the authors thank Vasil Popov for initiating the collaboration which has

led to the authors' joint work on the gap problem for squarefree numbers.
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