
SQUAREFREE VALUES OF POLYNOMIALS

Michael Filaseta*

1. Introduction.

The purpose of this paper is to present some results related to squarefree values of

polynomials. For f(x) 2 Z[x] with f(x) 6� 0; we de�ne Nf = gcd(f(m);m 2 Z): For

computational reasons it is worth noting that

Nf = gcd(f(m);m 2 f0; 1; :::; ng)

where n denotes the degree of f(x): This observation is due to Hensel (cf. [1, p. 334]) and

follows in a fairly direct manner after using Lagrange's interpolation formula to deduce

that

f(m) =

nX
j=0

(�1)n�j
�
m

j

��
m� j � 1

n� j

�
f(j);

where m is any integer > n:We will be interested in estimating the number of polynomials

f(x) for which there exists an integer m such that f(m) is squarefree. This property

should hold for all polynomials f(x) for which Nf is squarefree. However, this seems to be

very di�cult to establish. Nagel [8] showed that if f(x) 2 Z[x] is an irreducible quadratic

and Nf is squarefree, then f(m) is squarefree for in�nitely many integers m: Erd}os [2]
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proved the analogous result for irreducible cubics. Nair [9] has shown that in the case of

an irreducible polynomial f(x) of degree n; one may obtain a similar theorem for k-free

values of f(x) provided that k � (
p
2� 1

2
)n: Of related interest are the papers of Hooley

[5], Nair [10], and Huxley and Nair [6]. The problem of determining whether there exists a

polynomial f(x) 2 Z[x] of degree � 4 for which there are in�nitely many integers m such

that f(m) is squarefree is open.

Our interest is in the simpler problem of showing that many polynomials take on at

least one squarefree value. If one can show that (i) every polynomial f(x) 2 Z[x] with Nf

squarefree is such that f(m) is squarefree for at least one integer m; then it will follow

that (ii) every polynomial f(x) 2 Z[x] with Nf squarefree is such that f(m) is squarefree

for infinitely many integers m (cf. the proof of Theorem 2 in [3]). In fact, (i) implies

that (iii) every polynomial f(x) 2 Z[x] is such that f(m)=Nf is squarefree for in�nitely

many integers m: Our goal is to show the weaker result that almost all polynomials f(x)

with Nf squarefree take on at least one squarefree value.

To clarify our results, we de�ne

Sn(N) = ff(x) =
nX
j=0

ajx
j 2 Z[x] : jaj j � N for j = 0; 1; : : : ; ng:

Thus, jSn(N)j = (2[N ] + 1)n+1: We say that almost all polynomials f(x) have a certain

property P if for every non-negative integer n;

(1) lim
N!1

jff(x) 2 Sn(N) : f(x) satis�es Pgj
jSn(N)j = 1:

Results associated with almost all polynomials go back to van der Waerden [12]. He

showed that for almost all polynomials f(x) the associated Galois group is the symmetric
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group on n letters where n = deg f(x): In particular, this implies that almost all polyno-

mials are irreducible. A proof of this latter fact can be found in P�olya and Szeg}o [11, p.

156]. Other related results can be found in Gallagher [4] and the author's [3].

We make a brief historic remark on the phrase \almost all" in this context. Van der

Waerden's Algebra I includes a comment on his result above [13, p. 204]. The German

edition states that the Galois group is the symmetric group for asymptotically \100%"

of the polynomials rather than using a German equivalent for \almost all." This led to

a mistranslation in the English edition [14, p. 200] where a statement is made asserting

that the Galois group is the symmetric group for \all" polynomials. The earliest editions

of van der Waerden's Algebra I do not refer to his result above.

At times we will restrict our attention to polynomials f(x) for which Nf is squarefree.

An almost all result for such f(x) will mean that (1) holds with Sn(N) replaced by ff(x) 2

Sn(N) : Nf squarefreeg: We will prove

Theorem 1. Almost all polynomials f(x)withNf squarefree are such that f(m) is square-

free for some integer m:

Theorem 2. Almost all polynomials f(x) are such that there is an integer m for which

f(m)=Nf is squarefree.

We will actually prove stronger results (see section 3). As a consequence of the stronger

results, we note that almost all polynomials f(x) =
Pn

j=0 ajx
j are such that f(m)=Nf is

squarefree for some positive integer m �  (max0�j�nfjaj jg) ; where  (x) is any function

which tends to in�nity with x:

We end this section by asking whether analogous results hold when one considers values



4 MICHAEL FILASETA

f(m) with large prime factors rather than squarefree numbers. In particular, is there an

absolute constant c > 1 (or even a c > 1 which depends on deg f(x)) such that almost

all polynomials f(x) are such that there is a positive integer m and a prime p for which

pjf(m) and p > mc?

2. Preliminaries

Throughout this section and the next we make use of the notation established in the

introduction. We view n as being a �xed nonnegative integer so that, in particular, other

quantities such as � may depend on n: We will, however, stress when such a dependence is

necessary. We reserve p for denoting primes.

Lemma 1. Let � > 0; and let B = B(N) be a function which increases to in�nity with

N: Suppose further that B(N) = o(N): Then there exists N0 = N0(n; �; B) such that if

N � N0; then the number of pairs (f(x);m) with f(x) 2 Sn(N); m 2 Z\ [1; B]; and f(m)

squarefree is in the interval

�
(1� �)

6

�2
(2N)n+1B; (1 + �)

6

�2
(2N)n+1B

�
:

Proof. Let �0 > 0: Fix m0 to be a positive integer satisfying m0 � (1=�0) + 1 so that if

m � m0; then

mn�1 + � � � +m+ 1 =
mn � 1

m� 1
< �0mn:

For the moment �x m to be an integer in [m0; B]; and consider an integer d such that

(2) jdj � (1� �0)Nmn:



SQUAREFREE VALUES OF POLYNOMIALS 5

If a0; a1; : : : ; an�1 are arbitrary integers in [�N;N ] and N is su�ciently large, depending

only on �0; we get that

(3)
��d� �an�1mn�1 + � � � + a1m+ a0

��� � Nmn:

We successively choose a0; a1; : : : ; an�1 as above with a0 � d (mod m) and for j 2

f1; 2; : : : ; n� 1g;

aj �
�
d� a0 � � � � � aj�1m

j�1
�
=mj (mod m):

Thus, the total number of choices for (a0; a1; : : : ; an�1) is

�
2[N ] + 1

m
+O(1)

�n
=

�
2N

m

�n
+On

�
Nn�1

mn�1

�
:

By (3), we can now �nd a unique an 2 [�N;N ] such that

d = anm
n + � � � + a1m+ a0:

The above steps may be reversed. More speci�cally, given m and d as above, we must have

that a0; : : : ; an�1 satisfy the congruences above, and this uniquely determines an as above.

Thus, for m �xed in [m0; B]; each integer d satisfying (2) has (2N=m)
n
+On

�
Nn�1=mn�1

�
representations of the form f(m) where f(x) 2 Sn(N):

We now let m vary over all the positive integers m � B: We divide the pairs (f(x);m);

where f(x) 2 Sn(N) and 1 � m � B; into 3 sets S1; S2; and S3: The set S1 consists of

those (f(x);m) for which d = f(m) is squarefree, m 2 [m0; B]; and (2) holds. The set

S2 consists of those (f(x);m) for which d = f(m) is nonsquarefree, m 2 [m0; B]; and (2)

holds. The set S3 consists of the remaining pairs (f(x);m): Then since for any t > 0 the
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number of squarefree numbers � t is (6=�2)t+O(
p
t); we get that

jS1j =
X

m0�m�B

��
2N

m

�n
(6=�2)(1� �0)(2N)mn +On (N

nm) +O
�
Nn+ 1

2

��

= (6=�2)(1� �0)(2N)n+1B +On

�
Nn+1m0

�
+On

�
NnB2

�
+O

�
Nn+ 1

2B
�
;

jS2j =
�
1� 6

�2

�
(1� �0)(2N)n+1B +On

�
Nn+1m0

�
+On

�
NnB2

�
+O

�
Nn+ 1

2B
�
;

and

jS3j = (2[N ] + 1)
n+1

[B] � jS1j � jS2j

= �0(2N)n+1B +On

�
Nn+1m0

�
+On

�
NnB2

�
+O

�
Nn+ 1

2B
�
:

Now, jS1j gives us a lower bound on the number of pairs (f(x);m) with f(m) squarefree

and m 2 [1; B]: An upper is

jS1j+ jS3j < (6=�2)(1 + �0)(2N)n+1B +On

�
Nn+1m0

�
+On

�
NnB2

�
+O

�
Nn+ 1

2B
�
:

Thus, taking �0 = �=2 and N su�ciently large, the result follows.

The proof of Lemma 1 given above is similar to the proof of Lemma 1 in [3]. Lemma

1 asserts that the f(x) 2 Sn(N) on average take on � 6

�2
B squarefree values as x ranges

over the positive integers � B: We note that this is true despite the fact that a positive

proportion of the f(x) 2 Sn(N) take on no squarefree values. More speci�cally, observe

that Nf is divisible by p2 if and only if

f(x) � x2(x� 1)2 � � � (x� (p� 1))2g(x) + px(x� 1) � � � (x� (p� 1))h(x) (mod p2);
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for some polynomials g(x) and h(x) 2 Z[x]: Thus, if p � n+ 1; then f(x) � 0 is the only

such f(x) modulo p2; if (n+1)=2 � p � n; then there are exactly pn�p+1 incongruent such

f(x) modulo p2; and if p � n=2; then there are exactly p2n�3p+2 incongruent such f(x)

modulo p2: A simple application of the sieve of Eratosthenes implies that for N su�ciently

large, the proportion of f(x) 2 Sn(N) for which Nf is nonsquarefree is asymptotic to

1�
Y

p�n=2

�
1� 1

p3p

� Y
(n+1)=2�p�n

�
1� 1

pn+1+p

� Y
p�n+1

�
1� 1

p2n+2

�

� 1�
Y
p

�
1� 1

p3p

�
= 0:015675 : : : :

Thus, the polynomials f(x) 2 Sn(N) which take on at least one squarefree value as x ranges

over the positive integers � B on average take on � (6=�2)B(1:0159 : : : ) squarefree values.

This curiosity is due to the size of the coe�cients of the polynomials under consideration

in comparison to B:

For f(x) 2 Z[x] and ` 2 Z; we de�ne �(`) = �f (`) to be the number of incongruent

solutions to f(x) � 0 (mod `): The next lemma gives some basic properties of �(`):

Lemma 2. Let f(x) 2 Z[x] of degree n: Then �(`) has the following properties:

(i) �(`) is multiplicative (i.e., if `1 and `2 are relatively prime integers, then �(`1`2) =

�(`1)�(`2));

(ii) if �(p) = p; then either p � n or f(x) � 0 (mod p);

(iii) if �(p) < p; then �(p) � n;

(iv) if �(p2) > �(p); then f(x) has a multiple root modulo p (i.e., there exist an integer

a and a polynomial g(x) such that f(x) � (x� a)2g(x) (mod p)),

(v) if �(p2) < p2; then �(p2) � pn;
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(vi) if p > n and �(pr) = pr for some positive integer r; then f(x) � 0 (mod pr):

Proof. Property (i) is an immediate consequence of the Chinese Remainder Theorem. A

theorem of Lagrange states that either the number of solutions to the congruence f(x) � 0

(mod p) is � n or f(x) is identically 0 as a polynomial modulo p: This easily implies

(ii) and (iii). Each root m of f(x) modulo p extends to at most p roots m + kp; where

k 2 f0; 1; : : : ; p � 1g; modulo p2: Furthermore, m will extend to exactly 1 root of f(x)

modulo p2 unless m is a multiple root of f(x) modulo p (cf. [7, pp. 63-69]). Thus, (iv)

follows. From the above, if �(p) < p; then (v) is a consequence of (iii). Also, if p � n;

then (v) is immediate since then �(p2) � p2 � pn: Now, suppose that p > n and �(p) = p:

Then �(p2) < p2 implies that f(x) = pg(x) where g(x) is a polynomial in Z[x] which is not

identically 0 modulo p: By Lagrange's Theorem, we get that g(x) has � deg g(x) = n roots

modulo p: Each such rootm of g(x) modulo p corresponds to exactly p incongruent roots of

f(x) modulo p2 since f(m+ kp) � pg(m+ kp) � 0 (mod p2) for each k 2 f0; 1; : : : ; p� 1g:

Thus, (v) follows. Finally, we just note that the proof of (vi) is similar to the proof of (v).

Lemma 3. For B � ee; f(x) 2 Z[x]; and z � log logB; the number of positive integers

m � B for which f(m) is not divisible by p2 for each p � z is equal to

Y
p�z

�
1� �(p2)

p2

�
(B +O(logB)) :

In particular, there exists an absolute constant C1 > 0 such that the number of positive

integers m � B for which f(m) is squarefree is

�
Y
p�z

�
1� �(p2)

p2

�
(B +C1 logB) :
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The proof of Lemma 3 is omitted. It is a direct application of the sieve of Eratosthenes.

The main idea in the paper is to show that for most f(x) 2 Sn(N) the upper bound given

above is very close to the actual number of integers m � B for which f(m) is squarefree.

This is what is to be expected since the product above converges as z tends to in�nity.

Lemma 4. Let xj 2 (0; 1) for j 2 f1; 2; : : : ; rg: Then

rY
j=1

(1� xj) � 1�
rX

j=1

xj :

The proof of Lemma 4 is easily done by induction since by the conditions on xj ;

0
@1� r�1X

j=1

xj

1
A (1� xr) � 1�

rX
j=1

xj :

Lemma 5. As f(x) ranges over all the incongruent polynomials of degree � n modulo

p2; the average value of �f (p
2) is 1:

We omit the proof of Lemma 5 as it follows in a fairly straight forward manner by using

translation considerations to establish that each of 0; 1; : : : ; p2�1 have an equal probability

of being attained as a value of f(m) (mod p2):

Our next goal is to show that for most f(x) 2 Sn(N); if

Y
p�z

�
1� �(p2)

p2

�
> 0;

then it is not too small. We formulate this in the following manner.

Lemma 6. Let � > 0; and let N be su�ciently large (depending on n and �). Let

z � log logN: Then there exist positive numbers n0 = n0(�) and �
0 = �0(�; n) such that the
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number of f(x) 2 Sn(N) satisfying

(i)
Y

p�n2+n0

�
1� �f (p

2)

p2

�
> 0 and (ii)

Y
p�z

�
1� �f (p

2)

p2

�
< �0

is � �(2N)n+1:

Proof. Consider the f(x) 2 Sn(N) for which (i) holds (where n0 as well as �0 are for the

moment unspeci�ed). Thus, �(p2) < p2 for each such f(x) and each prime p � n2 + n0:

Hence, Y
p�n2+n0

�
1� �f (p

2)

p2

�
�

Y
p�n2+n0

�
1� p2 � 1

p2

�
=

Y
p�n2+n0

�
p�2
�
:

Now, consider any f(x) 2 Sn(N): We get from Lemma 2 (ii), (iii), and (iv) that for

n2 + n0 < p � z; either �f (p
2) � n or f(x) has a multiple root modulo p: Letting

c(n; z) =
Y

n2+n0<p�z

�
1� n

p2

�
;

we see that c(n; z) is greater than the product

c(n) =
Y

p>n2+n0

�
1� n

p2

�
;

which is easily seen to converge to a positive quantity. Hence, for each f(x) 2 Sn(N);

Y
n2+n0<p�z

�
1� �f (p

2)

p2

�
�

Y
n2+n0<p�z

�
1� n

p2

� Y�

n2+n0<p�z

�
1� �f (p

2)

p2

�

� c(n)
Y�

n2+n0<p�z

�
1� �f (p

2)

p2

�
;

where
Q�

indicates that the product is over those primes p for which f(x) has a multiple

root modulo p: We now show that this latter product is not small for most polynomials

f(x) 2 Sn(N):
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Let k = k(�) be a positive integer such that

1X
j=0

�
7

10

�2jk
<

�

2e
:

Such a k exists since

1X
j=0

�
7

10

�2jk
�

1X
j=k

�
7

10

�j
=

10

3

�
7

10

�k
:

De�ne

t(j) =
�
n2 + n0

�2j
for j 2 f0; 1; : : : ; s+ 1g;

where s is chosen so that (n2 + n0)
2s < z � (n2 + n0)

2s+1
: Thus,

Y�

n2+n0<p�z

�
1� �f (p

2)

p2

�
�

sY
j=0

0
@ Y�

t(j)<p�t(j+1)

�
1� �(p2)

p2

�1A :

Let T = T (n;N) be the set of f(x) 2 Sn(N) for which there is a j 2 f0; 1; : : : ; sg such

that f(x) has a multiple root modulo p for � 2jk primes p 2 (t(j); t(j + 1)]: Also, we

de�ne T 0 = T 0(n;N) to be the set of f(x) 2 Sn(N) for which �f (p
2) = p2 for some prime

p 2 (n2 + n0; z]: We show that

(4) jT [ T 0j � � (2N)
n+1

and then establish that
Q

p�z

�
1� �f (p

2)

p2

�
� �0 for the remaining f(x) 2 Sn(N):

We deal with T 0 �rst. By Lemma 2 (vi), each f(x) 2 T 0 is such that f(x) � 0 (mod p2)

for some prime p 2 (n2+n0; z]: Note that the number of f(x) 2 Sn(N) such that f(x) � 0

(mod p2) for a given prime p is

�
2N

p2
+O(1)

�n+1

=

�
2N

p2

�n+1

+On (N
n) :
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The choice of z � log logN easily implies that the total number of such f(x) 2 T 0 is

�
X

n2+n0<p�z

 �
2N

p2

�n+1

+On (N
n)

!

�
0
@ X
p>n2+n0

�
2N

p2

�n+1

1
A+On (N

n log logN)

� (2N)
n+1

 X
p>n0

1

p2

!
+On (N

n log logN) :

For n0 chosen su�ciently large (depending only on �) we get that jT 0j � (�=2)(2N)n+1:

We now turn to considering T:We begin by dividing up T into subsets Tj which are not

necessarily disjoint. For each j 2 f0; 1; : : : ; sg; we de�ne Tj as the set of f(x) 2 Sn(N) such

that f(x) has a multiple root modulo p for � 2jk primes p 2 (t(j); t(j +1)]: Fix j; and set

w = 2jk: Let p1; : : : ; pw be w distinct primes in (t(j); t(j+1)]: De�ne Tj (p1; : : : ; pw) to be

the set of f(x) 2 Tj such that f(x) has a multiple root modulo pj for each j 2 f1; : : : ; wg:

Note that each f(x) 2 Tj belongs to some set Tj (p1; : : : ; pw) : The number of incongruent

polynomials modulo a prime p of degree� n which have a multiple root modulo p is equal to

the number of incongruent polynomials of the form (x�a)2g(x) where a 2 f0; 1; : : : ; p�1g

and deg g(x) � n � 2: Thus, the number of such polynomials is � pn: Thus, the Chinese

Remainder Theorem easily gives that the number of incongruent polynomials f(x) modulo

p1 � � � pw of degree� n such that f(x) has a multiple root modulo pj for each j 2 f1; : : : ; wg

is � pn1 � � � pnw: By dividing Tj (p1; : : : ; pw) into these � pn1 � � � pnw congruence classes, we get

that

jTj (p1; : : : ; pw) j �
�
2N + 1

p1 � � � pw + 1

�n+1

pn1 � � � pnw:

By the de�nition of s; we have that (n2 + n0)
2s < z; so that for n0 su�ciently large,

w � 2sk < z: Also, each pj � t(s + 1) = t(s)2 � z2 so that p1 � � � pw � z2z : The choice
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z � log logN gives that

p1 � � � pw � 2N

n+ 1
� 1;

for N su�ciently large (depending on n). Hence,

jTj (p1; : : : ; pw) j �

0
B@ 2N + 1

p1 � � � pw +

2N

n+ 1
� 1

p1 � � � pw

1
CA
n+1

pn1 � � � pnw

=

�
1 +

1

n+ 1

�n+1
(2N)n+1

p1 � � � pw < e
(2N)n+1

p1 � � � pw :

Since each polynomial in Tj belongs to some Tj (p1; : : : ; pw) described above, we now

get that

jTj j � e(2N)n+1

0
@ X
t(j)<p�t(j+1)

1

p

1
A
w

� e(2N)n+1cw;

where we can take c to be any constant > log 2 provided n0 is su�ciently large. Here, we

have used that X
p�y

1

p
= log log y +A+ o(1);

for some absolute constant A: We take c = 7=10:

We are now ready to complete our estimate for jT j: We get that

jT j �
sX

j=0

jTj j � e(2N)n+1

1X
j=0

�
7

10

�2jk
<
�

2
(2N)

n+1
;

by our choice of k: The above estimates on jT 0j and jT j easily imply (4).

We now consider
Q�

n2+n0<p�z

�
1� �f (p

2)

p2

�
where f(x) 2 Sn(N)�T �T 0: By Lemma

2 (v), we get that for each prime p in the range of the product above, �(p2) � np: Also, for

each j 2 f0; 1; : : : ; sg; there are fewer than 2jk primes p 2 (t(j); t(j + 1)] for which f(x)

has a multiple root modulo p: Hence,

Y�

t(j)<p�t(j+1)

�
1� �f (p

2)

p2

�
�

Y�

t(j)<p�t(j+1)

�
1� n

p

�
�
�
1� n

t(j)

�2jk
:
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Thus, using Lemma 4,

Y�

n2+n0<p�z

�
1� �f (p

2)

p2

�
�

sY
j=0

�
1� n

t(j)

�2jk

� 1�
sX

j=0

2jkn

t(j)
= 1�

sX
j=0

2jkn

(n2 + n0)2
j
>

1

2
;

provided n0 is su�ciently large. We note that we can choose n0 so that everything above

holds and so that n0 only depends on � (and not on n unless, of course, � depends on n).

For example, by checking the cases n � p
n0 and n >

p
n0 separately, the last inequality

above is easily seen to hold provided that

1X
j=0

2jk

n
2j�(1=2)
0

<
1

2
;

which, since k only depended on �; gives a lower bound on n0 depending only on �:

Combining the above, we get that for f(x) 2 Sn(N)� T � T 0 and f(x) satisfying (i),

Y
p�z

�
1� �(p2)

p2

�
� c(n)

2

0
@ Y
p�n2+n0

p�2

1
A :

Thus, the lemma follows by letting �0 be the right-hand side above.

Lemma 7. Let � > 0; and let N be su�ciently large (depending on n and �). Let

z 2 [2; log logN ]: Then

(5)
X

f(x)2Sn(N)

0
@Y
p�z

�
1� �f (p

2)

p2

�1A =

0
@Y
p�z

�
1� 1

p2

�1A (2N)n+1 +On

�
Nn+�

�
:

Proof. For each p � z; consider the p2n+2 incongruent polynomials modulo p2 of degree

� n; and let w1(p); : : : ; wr(p); where r = r(p) = p2n+2; denote some ordering of the values

of �f (p
2) as f(x) ranges over these polynomials. Let p1; : : : ; pt represent the t = �(z)
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primes � z; and let f1(x); : : : ; ft(x) denote arbitrary polynomials with integral coe�cients.

Then the Chinese Remainder Theorem implies that the number of f(x) 2 Sn(N) such that

f(x) � fj(x) (mod p2j ) for every j 2 f1; : : : ; tg is�
2[N ] + 1

p21 � � � p2t
+O(1)

�n+1

=

�
2N

p21 � � � p2t

�n+1

+On

��
2N

p21 � � � p2t

�n�
;

where we have used that since z � log logN;

(6) p21 � � � p2t � (log logN)
2 log logN

< N �0 ;

where �0 2 (0; 1) and N is su�ciently large (depending on �0). For later purposes, we �x

�0 = minf1=2; �g: If w0j denotes the number of incongruent roots of fj(x) modulo p2j ; then

the contribution of the f(x) � fj(x) (mod p2j ) (for all j 2 f1; : : : ; tg) on the left-hand side

of (5) is
tY

j=1

 
1� w0j

p2j

! �
2N

p21 � � � p2t

�n+1

+On

��
2N

p21 � � � p2t

�n�!
:

Hence, summing over all f(x) 2 Sn(N); we get that

X
f(x)2Sn(N)

Y
p�z

�
1� �f (p

2)

p2

�

=
Y
p�z

��
1� w1(p)

p2

�
+ � � � +

�
1� wr(p)

p2

�� �
2N

p21 � � � p2t

�n+1

+On

��
2N

p21 � � � p2t

�n�!
:

Recalling the de�nition of wj(p) and Lemma 5, we get that

Y
p�z

0
@r(p)X
j=1

�
1� wj(p)

p2

�1A =
Y
p�z

�
r(p)� r(p)

p2

�
=

0
@Y
p�z

p2n+2

1
AY

p�z

�
1� 1

p2

�
:

Thus,

X
f(x)2Sn(N)

Y
p�z

�
1� �f (p

2)

p2

�
=
Y
p�z

�
1� 1

p2

�0@(2N)
n+1

+On

0
@(2N)

n
Y
p�z

p2

1
A
1
A :

Recalling our choice of �0 = minf1=2; �g in (6), we get the desired result.
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3. The Main Theorems

We are now ready to prove Theorems 1 and 2 of the introduction. As mentioned there,

we will actually be able to prove slightly stronger results.

Theorem 3. Let n 2 Z+[f0g; and let B(N) be a function which increases to in�nity with

N: Then the proportion of polynomials f(x) 2 Sn(N) with Nf squarefree which satisfy

that f(m) is squarefree for some integer m 2 [1; B] tends to 1 as N tends to in�nity.

Theorem 4. Let n 2 Z+ [ f0g; and let B(N) be a function which increases to in�nity

with N: Then the proportion of polynomials f(x) 2 Sn(N) which satisfy that f(m)=Nf is

squarefree for some integer m 2 [1; B] tends to 1 as N tends to in�nity.

Proof of Theorem 3. We suppose, as we may, that B(N) = o(N) and that N is su�ciently

large (depending on � given below and n). Recall the discussion after Lemma 1 and, in

particular, that there is a positive proportion of f(x) 2 Sn(N) for which Nf is squarefree.

Alternatively, one may deduce that Nf is squarefree for a positive proportion of the f(x) 2

Sn(N) as a consequence of Theorem 1 in [3], which stated that for a positive proportion

of the f(x) 2 Sn(N); there is an integer m for which f(m) is prime. Let � > 0: To

obtain Theorem 3, we need only prove that if N is su�ciently large, there are � �(2N)n+1

polynomials f(x) 2 Sn(N) with Nf squarefree and such that f(m) is nonsquarefree for

all integers m 2 [1; B]: In fact, for later purposes, we prove something stronger. Using

the notation of Lemma 6 with n0 = n0(�=2); we prove that the set T of f(x) 2 Sn(N)

such that (i) gcd
�
Nf ;

Q
p�n2+n0

p2
�
is squarefree and (ii) f(m) is nonsquarefree for every

integer m 2 [1; B] satis�es jT j � �(2N)n+1 (provided N is su�ciently large). Assume that
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jT j > �(2N)n+1: Let z = log logB: For each f(x) 2 Sn(N); we denote W (f(x)) as the

number of integers m 2 [1; B] such that f(m) is squarefree. Then Lemma 3 implies that

W (f(x)) =
Y
p�z

�
1� �(p2)

p2

�
B + E(f(x));

where

E(f(x)) � C1

Y
p�z

�
1� �(p2)

p2

�
logB:

Thus, using Lemma 7, we get that

X
f(x)2Sn(N)

W (f(x)) =
X

f(x)2Sn(N)

0
@Y
p�z

�
1� �(p2)

p2

�
B +E(f(x))

1
A(7)

=
Y
p�z

�
1� 1

p2

�
(2N)n+1B + E1;

with

E1 =
X

f(x)2Sn(N)

E(f(x)) +On

�
Nn+ 1

2B
�
� C2

�
Nn+1 logB +Nn+ 1

2B
�
;

where C2 = C2(n) and we note that E1 may be negative (so that, in particular, we claim

no bound on jE1j at this point). Note that

Y
p�z

�
1� 1

p2

�
>
Y
p

�
1� 1

p2

�
=

6

�2
:

Recalling that z = log logB(N); we get that since N and, hence, B(N) are su�ciently

large,

6

�2
<
Y
p�z

�
1� 1

p2

�
<

6

�2
+
�0

2
;

where �0 > 0 is arbitrarily small and possibly depends on � and n: Thus,

X
f(x)2Sn(N)

W (f(x)) =
6

�2
(2N)n+1B + E2;
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where

E2 � �0(2N)n+1B:

On the other hand, Lemma 1 gives us that

X
f(x)2Sn(N)

W (f(x)) =
6

�2
(2N)n+1B + E3;

where

jE3j � �0(2N)n+1B:

Thus, in fact,

jE2j = jE3j � �0(2N)n+1B:

Recalling how E2 was obtained, we now get that

jE1j � 2�0(2N)n+1B:

The importance of this last inequality is that, unlike with the previous inequality on E1;

we now are supplied with a lower bound on E1: More speci�cally, E1 � �2�0(2N)n+1B:

Recalling the de�nitions of T and E(f(x)); we get that

E(f(x)) = �
Y
p�z

�
1� �f (p

2)

p2

�
B for all f(x) 2 T:

Thus, X
f(x)2T

E (f(x)) = �
X

f(x)2T

Y
p�z

�
1� �f (p

2)

p2

�
B:

The de�nition of T easily implies that for each prime p � n2 + n0; �f (p
2) < p2 for all

f(x) 2 T: Thus, by Lemma 6, there exists an �00 such that

(8)
Y
p�z

�
1� �f (p

2)

p2

�
� �00
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for all but at most (�=2)(2N)n+1 polynomials f(x) 2 T: Since by assumption jT j >

�(2N)n+1; there are � (�=2)(2N)n+1 polynomials f(x) 2 T for which (8) holds. Hence,

X
f(x)2T

E (f(x)) � � �
2
�00 (2N)

n+1
B:

On the other hand,

X
f(x)2Sn(N)

E(f(x))>0

E (f(x)) � C1

X
f(x)2Sn(N)

E(f(x))>0

Y
p�z

�
1� �f (p

2)

p2

�
logB

� C1jSn(N)j logB � C1(2N)n+1 logB +On ((2N)n logB) :

Thus, recalling the de�nition of E1;

E1 � � �
2
�00 (2N)

n+1
B +O

�
(2N)n+1 logB

�
+On

�
Nn+ 1

2B
�
:

We are still free to choose �0 > 0: We take �0 = (��00)=5: Then the above contradicts that

jE1j � 2�0(2N)n+1B =
2

5
��00(2N)n+1B;

completing the proof.

Proof of Theorem 4. For n = 0; the theorem is clear, so we only consider n � 1: Let

� 2 (0; 1); and let N be su�ciently large (depending on n and �). Assume that there exists

� �(2N)n+1 polynomials f(x) 2 Sn(N) such that f(m)=Nf is nonsquarefree for every

m 2 [1; B]: Let T1 denote the set of such polynomials. By the proof of Theorem 3 and the

notation of Lemma 6, the number n0 = n0(�=6) is such that jT2j � (�=3)(2N)n+1 where

T2 denotes the set of f(x) 2 Sn(N) for which (i) gcd
�
Nf ;

Q
p�n2+n0

p2
�
is squarefree and

(ii) f(m) is nonsquarefree for each integer m 2 [1; B]: Since increasing the size of n0 will
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only decrease the number of f(x) for which (i) and (ii) hold, we may assume that n0 � 7:

We do this so that later we may use that

X
j�n0

1

j2
<

4

25
:

Let T3 = T1 � T2 so that T3 consists of � (2�=3)(2N)n+1 polynomials f(x) 2 T1 for which

Nf is divisible by p2 for some p � n2 + n0: De�ne

M =M(n; �) =

�
4(n2 + n0)

�

�2(n2 + n0)

and

B0 = B0(N) =
1

M
B

�
N

(2M)n

�
� 1:

Using the notation of Lemma 6, de�ne

n1 = n1(�) = n0

�
�

4(2M)n
2+n+2

�
:

The proof of Theorem 3 implies that there are

� �

2(2M)n
2+n+2

jSn ((2M)nN)j

polynomials g(x) 2 Sn ((2M)nN) for which (i0) gcd
�
Ng;

Q
p�n2+n1

p2
�
is squarefree and

(ii0) g(m) is nonsquarefree for each integer m 2 [1; B0((2M)nN)]: We will obtain a contra-

diction by showing that there are more than (�=(2(2M)n
2+n+2)) jSn ((2M)nN)j such g(x)

(with even gcd
�
Ng;

Q
p�n2+n1

p
�
= 1).

We begin by restricting our attention to p � n2 + n0: For each such p; let k = k(p) =

k(p; n; �) be the minimal positive integer such that

pk+1 � 4(n2 + n0)

�
:
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Note that � 2 (0; 1) implies that the right-hand side above is > n2 + n0 so that pk <

4(n2 + n0)=�: Let T4 be the set of polynomials f(x) 2 T3 such that pk+1 divides Nf for at

least one prime p � n2 + n0: The constant term of each such f(x); being f(0); must be

divisible by pk+1: Thus, the number of f(x) 2 T3 for which pk+1 divides Nf for a given

prime p � n2 + n0 is

� (2N +1)n
�
2N + 1

pk+1
+ 1

�
� �

4(n2 + n0)
(2N +1)n+1+(2N +1)n � �

3(n2 + n0)
(2N)n+1:

Hence,

jT4j � �
�
n2 + n0

� �

3(n2 + n0)
(2N)n+1 � �

3
(2N)n+1:

De�ne T5 = T3 � T4: Thus, jT5j � (�=3)(2N)n+1:

For f(x) 2 T5; de�ne

Mf =

1Y
r=1

� Y
p�n2+n0
pr jNf

p
�

and Pf =Mf

Y
pjMf

p:

Note that Nf = MfQf where gcd(Qf ;
Q

p�n2+n0
p) = 1 and that Pf � M2

f : By the

de�nition of T5; for each prime p � n2 + n0 and each f(x) 2 T5; we have that p
k+1 does

not divideMf : This easily implies that each ofMf and Pf is �M(n; �) for every f(x) 2 T5:

We now de�ne a function � : T5 ! Sn ((2M)nN) as follows. For each f(x) 2 T5 and

each prime p � n2+n0; de�ne r = r(p; f(x)) to be the nonnegative integer satisfying that

pr dividesMf and pr+1 does not divideMf : In particular, pr+1 does not divide Nf so that

there is an integer a = a(p; f(x)) 2 [1; pr+1] such that f(a) 6� 0 (mod pr+1): Necessarily,

f(a) � 0 (mod pr): By the Chinese Remainder Theorem, there is a minimal positive

integer b = b(f(x)) such that f(b) is divisible by Mf and, for each prime p � n2+n0; f(b)
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is not divisible by pMf : Furthermore, since f(x) 2 T5;

1 � b �
Y

p�n2+n0

pr(p;f(x))+1 �
Y

p�n2+n0

pk(p)+1 �
0
@ Y
p�n2+n0

pk(p)

1
A

2

�M(n; �):

De�ne

g(x) = f (Pfx+ b) =Mf :

Each coe�cient of f(Pfx+ b) is divisible by Mf ; except possibly the constant term f(b):

But f(b) � 0 (mod Mf ); and thus g(x) 2 Z[x]: Furthermore, it is easily veri�ed that each

coe�cient of g(x) has absolute value � N(2M)n: We de�ne �(f(x)) = g(x):

Note thatMf and Pf are uniquely determined by one another; in other words, givenMf ;

one can determine Pf ; and given Pf ; one can determine Mf : Since there exist � M(n; �)

possible values for Pf and � M(n; �) possible values for b; it is easy to see that for each

g(x) in the image of �; there are at mostM2 possible f(x) 2 T5 such that �(f(x)) = g(x):

In particular, since N is su�ciently large,

j�(T5)j � 1

M2
jT5j � �

3M2
(2N)n+1

=
�

3(2n
2+n)(Mn2+n+2)

(2(2M)nN)
n+1 � �

(2M)n
2+n+2

jSn ((2M)nN)j :

On the other hand, one can check that the de�nitions of b and g(x) above imply that for

g(x) 2 �(T5);

gcd

0
@Ng;

Y
p�n2+n0

p

1
A = 1:

Recall that by assumption, each f(x) 2 T5 � T1 is such that f(m)=Nf is nonsquarefree

for each integer m 2 [1; B]: Note that B0 ((2M)nN) = (B(N)=M) � 1: Now, if m 2

[1; (B(N)=M) � 1] and b is as in the de�nition of �; then Pfm + b is a positive integer
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� B(N): Also, the de�nition of Mf implies that Mf divides Nf : We now get that if

f(x) 2 T5 and g(x) = �(f(x)); then g(m) = f(Pfm + b)=Mf is nonsquarefree for each

integer m 2 [1; B0 ((2M)nN)]:

Thus far, we have shown that there are

� �

(2M)n
2+n+2

jSn ((2M)nN)j

polynomials g(x) 2 Sn ((2M)nN) such that gcd(Ng;
Q

p�n2+n0
p) = 1 and (ii0) holds. Let

T 01 denote the set of all such g(x): Let T
0
2 denote the set of all g(x) 2 T 01 which also satisfy

that gcd(Ng;
Q

p�n2+n1
p) = 1: It now su�ces to prove that

jT 02j >
�

2(2M)n
2+n+2

jSn ((2M)nN)j :

For p 2 (n2 +n0; n
2 +n1]; de�ne k

0 = k0(p) = k0(p; n; �) as the minimal positive integer

such that

pk
0
+1 � 4(n2 + n1)(2M)n

2 + n+ 2

�
:

Then following the argument which led to an estimate of jT5j; we get that there are

� 2�

3(2M)n
2+n+2

jSn ((2M)nN)j

polynomials g(x) 2 T 01 such that if p 2 (n2+n0; n
2+n1] and p

r divides Ng ; then r � k0(p):

Let T 03 denote the set of all such g(x): Note that T
0
2 � T 03: In fact, our goal now is to show

that most of the polynomials in T 03 are in T
0
2:

For each g(x) 2 T 03; let

M 0
g =

1Y
r=1

� Y
n2+n0<p�n

2+n1
pjNg

p

�
=

1Y
r=1

� Y
p�n2+n1
pjNg

p

�
:
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Note that with n and � �xed, so are M and k0(p) for each p 2 (n2 + n0; n
2 + n1]: Thus,

M 0
g takes on a �nite number of distinct values. Let M 0 be one such value of M 0

g: By the

de�nition of n1 and the proof of Theorem 3, we get that there are

� �

2(2M)n
2+n+2

����Sn
�
(2M)nN

M 0

����� � �

(2M)n
2+n+2(M 0)n+1

jSn ((2M)nN)j

polynomials h(x) 2 Sn((2M)nN=M 0) such that gcd
�
Nh;

Q
p�n2+n1

p
�
= 1 and h(m) is

nonsquarefree for each positive integer m � B0((2M)nN=M 0) � B0((2M)nN): We note

that we want the above to hold for every choice of M 0; and we can do this since N is

su�ciently large and there are only �nitely many values of M 0: Since every prime factor of

M 0 is > n2+n0 > n; we get by Lemma 2 (vi) that each g(x) withM 0
g =M 0 satis�es g(x) � 0

(mod M 0): But this means that g(x) = M 0h(x) for some h(x) 2 Sn((2M)nN=M 0): The

de�nition of M 0 = M 0
g implies that every such h(x) satis�es gcd

�
Nh;

Q
p�n2+n1

p
�

=

1: Also, using that gcd
�
Pf ;

Q
n2+n0<p�n2+n1

p
�
= 1; one can show from the de�nition

of Mf and M 0
g that MfM

0
g divides Nf where �(f(x)) = g(x): One gets that for h(x)

as above, h(m) = f(Pfm + b)=(MfM
0
g) is nonsquarefree for each positive integer m �

B0((2M)nN=M 0): We now get that

jT 03 � T 02j �
X� �

(2M)n
2+n+2(M 0)n+1

jSn ((2M)nN)j

=
�

(2M)n
2+n+2

�X�
(M 0)�n�1

�
jSn ((2M)nN)j ;

where
P�

denotes that the sum is over those values of M 0 which are strictly greater than

1: Since each such M 0 is divisible by some prime p > n2 +n0; we get that each such M 0 is

� n2 + n0 � n0: Thus, since n � 1;

X�
(M 0)�n�1 �

X
j�n0

1

j2
;
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which, by our choice of n0 � 7; is < 4=25: Hence,

jT 03 � T 02j �
4�

25(2M)n
2+n+2

jSn ((2M)nN)j ;

so that

jT 02j � jT 03j � jT 03 � T 02j �
38�

75(2M)n
2+n+2

jSn ((2M)nN)j ;

which completes the proof.

Before concluding the paper, we note that Theorem 4 and, hence, Theorem 2 can be

improved slightly. For f(x) 2 Z[x]; write Nf = UfVf ; where Vf is the largest squarefree

factor of Nf : Then one may replace the role of f(m)=Nf in the statement of Theorem 4

with f(m)=Uf : The proof is essentially the same with the following minor changes. One

de�nes �(f(x)) = g(x) where now g(x) = f(Pfx + b)= gcd(Mf ; Uf ): Then g(x) 2 �(T5)

implies that gcd(Ng;
Q

p�n2+n0
p2) is squarefree. One considers, instead of T 02; the set T

00
2

of g(x) 2 Sn((2M)nN) such that (i0) and (ii0) hold. Since T 02 � T 002 ; the lower bound

for jT 02j obtained in the proof of Theorem 4 is a lower bound for jT 002 j; and the desired

improvement follows.
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