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1. Introduction

Let n be a non-negative integer and consider the set of polynomials

Sn = ff(x) =
nX
j=0

"jx
j : "j 2 f0; 1g for each j and "0 = 1g:

The condition "0 = 1 ensures that the elements of Sn are not divisible by x. Let

S =

1[
n=0

Sn:

There are interesting open problems concerning the polynomials in S. Using the main

result in [1] (with base 2) or using the well-known explicit formula for the number of

irreducible polynomials of degree � n modulo 2, one can easily show that there are at least

on the order of 2n=n irreducible polynomials in Sn. Odlyzko (private communication) has

asked whether almost all polynomials in S are irreducible? In other words, does

lim
n!1

jff(x) 2 Sn : f(x) is irreduciblegj
2n

= 1?

It is not even known how to establish that the limit (or the limit supremum) is positive.

Another open problem, posed by Odlyzko and Poonen [2], is to determine whether it is

true that if � is a root with multiplicity > 1 of some polynomial f(x) in S, then � is a

root of unity.

The purpose of this paper is to establish two results concerning the polynomials in S.

First, we shall show
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Theorem 1. Let b = 3, 4, or 5. Then there are in�nitely many polynomials f(x) 2 S

for which f(b) is squarefree. Moreover, for such b, the density of polynomials f(x) 2 S for

which f(b) is squarefree is

(1) lim
n!1

jff(x) 2 Sn : f(b) is squarefreegj
2n

=
6

�2

Y
pjb

�
1� 1

p2

��1

:

There are other trivial values of b for which one can obtain similar results (when jbj � 2),

but we do not know how to establish the analogous results for b � 6. As an immediate

consequence of Theorem 1, we deduce the

Corollary. Let b = 3, 4, or 5. There are in�nitely many squarefree numbers in base b

consisting only of the digits 0 and 1.

The arguments can be modi�ed slightly to allow for the possibility that "0 = 0 in the

de�nition of Sn. Thus, for b = 3, 4, or 5, we can obtain the density of squarefree numbers

in base b among the positive integers consisting only of the digits 0 and 1 in base b. For

b = 4, the density is 1=2 times the expression on the right-hand side of (1); for b = 3 and

5, the density is 3=4 times the expression on the right-hand side of (1).

It is of some interest to know a corresponding result for base 10. By applying an

argument similar to what we will use for b = 4 in Theorem 1, it can be shown that there

are in�nitely many squarefree numbers which consist only of the digits 0, 1, and 2. In

fact, if d1, d2, and d3 are any three distinct digits not equal to 0, 4, and 8 in some order,

then there are in�nitely many squarefree numbers m in base 10 with each digit of m being

either d1, d2, or d3. We will not address this issue further here.

Our second theorem concerns squarefree polynomials in S (polynomials without any

roots having multiplicity > 1). We shall see how to obtain the next result as a fairly direct

consequence of our approach to establishing Theorem 1.
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Theorem 2. Almost all polynomials in S are squarefree. In other words,

lim
n!1

jff(x) 2 Sn : f(x) is squarefreegj
2n

= 1:

In the next section, we give a proof of Theorem 1 for the case that b = 3. In the process,

we will establish some preliminaries for the cases b = 4 and 5. The remainder of the proof

of Theorem 1 is given in Section 3. In Section 4, we will establish Theorem 2 using a

lemma (Lemma 9) which aided in the proof of Theorem 1.

2. Some Preliminaries and the Case b = 3

Let n be a positive integer. For integers b and m with m � 2, we de�ne t(n) = t(n;m; b)

as the number of f(x) 2 Sn for which m divides f(b). We begin with an estimate for t(n).

Suppose �rst that m and b are integers which are not relatively prime. Then there is a

prime p which divides both m and b. Observe that for every f(x) 2 Sn, we have f(b) � 1

(mod p). Hence, for every f(x) 2 Sn, m does not divide f(b), and we deduce that t(n) = 0.

The next lemma deals with the remaining situation where m and b are relatively prime

integers.

Lemma 1. Let m and b be relatively prime integers with m � 2. Then

t(n) =
2n

m
(1 + o(1))

as n approaches in�nity.

Proof. Since
m�1X
j=0

e2�iaj=m =

�
m if mja
0 otherwise,

we obtain

t(n) =
1

m

X
f(x)2Sn

m�1X
j=0

e2�if(b)j=m =
1

m

m�1X
j=0

X
f(x)2Sn

e2�if(b)j=m:
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On the other hand, from the de�nition of Sn, we have

X
f(x)2Sn

e2�if(b)j=m = e2�ij=m
nY

k=1

�
1 + e2�ib

kj=m
�
:

Observe that when j = 0, the right-hand side is 2n. Hence,

t(n) =
2n

m
+ E;

where

E =
1

m

m�1X
j=1

e2�ij=m
nY

k=1

�
1 + e2�ib

kj=m
�
:

It remains to show that E = o(2n).

For each j 2 f1; 2; : : : ;m� 1g, we rewrite the absolute value of the product above as
�����
nY

k=1

�
1 + e2�ib

kj=m
������ =

�����
nY

k=1

e�ib
kj=m

�����
�����
nY

k=1

�
e�ib

kj=m + e��ib
kj=m

������
= 2n

nY
k=1

��cos(�bkj=m)
�� :

Since m and b are relatively prime and 1 � j � m� 1, the expression bkj=m is a rational

number which di�ers from an integer by at least 1=m. Therefore,

��cos(�bkj=m)
�� � jcos(�=m)j :

Since m � 2, this last expression is < 1. We obtain

jEj � 1

m

m�1X
j=1

�����
nY

k=1

�
1 + e2�ib

kj=m
������

=
2n

m

m�1X
j=1

nY
k=1

��cos(�bkj=m)
�� � 2n jcos(�=m)jn ;

and the lemma easily follows. �
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Lemma 2. Let b be a positive integer, and let B be a real number > 0. Denote by S(B;n)

the number of f(x) 2 Sn such that f(b) is not divisible by p2 for every prime p � B. Then

S(B;n) = 2n
Y

p�B; p-b

�
1� 1

p2

�
+ o (2n) :

Lemma 2 follows from Lemma 1 by an easy sieve argument and we omit the details.

Observe that

Y
p�B; p-b

�
1� 1

p2

�
=
Y
p-b

�
1� 1

p2

�
(1 +O(1=B)) =

6

�2

Y
pjb

�
1� 1

p2

��1

(1 +O(1=B)) :

Fix " > 0. By choosing B su�ciently large and then choosing n su�ciently large, we

deduce from Lemma 2 that S(B;n) di�ers from

6� 2n

�2

Y
pjb

�
1� 1

p2

��1

by � "2n. Thus, to prove Theorem 1, it su�ces to show that the number of f(x) 2 Sn

such that f(b) is divisible by p2 for some prime p > B is � "2n. For such an estimate we

may suppose that B is arbitrarily large; more speci�cally, we can take B � B0 where B0

is an arbitrary constant depending only on ". The proof of Theorem 1 for the case b = 3

therefore follows from the following lemma.

Lemma 3. Let " > 0, and let B be su�ciently large. Then there are � "2n polynomials

f(x) 2 Sn for which there exists an integer d > B such that d2jf(3).

Proof. Let d be an integer > B. Let r be the positive integer satisfying

3r=2 < d � 3(r+1)=2:

We �x "r; "r+1; : : : ; "n 2 f0; 1g arbitrarily and consider f(x) =
Pn

j=0 "jx
j 2 Sn. Observe

that for any choice of "0; "1; : : : ; "r�1 2 f0; 1g, we have

0 �
r�1X
j=0

"j3
j < d2:
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Also, for distinct choices of the r�tuple ("0; "1; : : : ; "r�1) with each "j 2 f0; 1g, the num-

bers
Pr�1

j=0 "j3
j are distinct; hence, they are distinct modulo d2. We deduce that with

"r; "r+1; : : : ; "n 2 f0; 1g �xed, there is at most one choice of ("0; "1; : : : ; "r�1) such that

f(3) is divisible by d2. It follows that there are at most 2n�r+1 choices for f(x) 2 Sn such

that f(3) is divisible by d2. The inequality 3(r+1)=2 � d > B implies that r is large. Hence,

2n�r+1 = 2n+12�r = 2n+1(3r=2)�2 log 2= log 3 � 2n+1(3(r+1)=2)�5=4 � 2n+1d�5=4:

We deduce that the number of f(x) 2 Sn such that f(3) is divisible by d2 for some integer

d > B is

� 2n+1
X
d>B

d�5=4:

Since B is su�ciently large and
P1

d=1 d
�5=4 converges, we deduce that this last expression

is � "2n, completing the proof of the lemma. �

3. The Cases b = 4 and b = 5

In this section, we complete the proof of Theorem 1. We will improve on the argument

given for Lemma 3 to obtain the desired result. We note that the work in this section

allows us also to handle the case b = 3 here, but we have chosen to indicate the proof of

the case b = 3 separately in the previous section partially because of its simplicity and

partially because the case b = 3 of Theorem 1 by itself can be used to obtain Theorem 2

(see Section 4).

As in the previous section, we �x " > 0 and considerB to be su�ciently large. Analogous

to Lemma 3, we want to show for b = 4 and b = 5 that the number of f(x) 2 Sn such that

f(b) is divisible by d2 for some d > B is � "2n.
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For b � 3, we de�ne

S(b) =

8<
:

1X
j=0

"jb
j : "j 2 f0; 1g; all but �nitely many "j are 0

9=
;

and

S0 = S0(b) = fm1 �m2 : m1;m2 2 S(b);m1 > m2g

=

8<
:

1X
j=0

"jb
j 2 Z+ : "j 2 f�1; 0; 1g; all but �nitely many "j are 0

9=
; :

For r and t positive integers, we consider the set

X(r; t) = X(r; t; b) = fu 2 Z\ [br�1; br) : gcd(b; u) = 1 and tu2 2 S0g:

The next several lemmas serve to estimate the size of X(r; t). In the end, we will need a

more intricate estimate for the case b = 5 than for the case b = 4; in particular, for the

case b = 5, we will need to strengthen our next lemma which is a preliminary bound on

jX(r; t)j.

Lemma 4. Let b � 3, r � 2, and t � 1 be integers. Then

jX(r; t)j � 3r+1b2:

Proof. For any positive integers m and s, m is in S0 if and only if bsm is in S0. Thus, we

may suppose that b - t, and we do so. We may also suppose that jX(r; t)j 6= 0. Let u be

in X(r; t). Then tu2 is in S0. By the de�nition of S0, an element of S0 is either relatively

prime to b or it is divisible by b. Thus, the conditions gcd(b; u) = 1 and tu2 2 S0 imply

gcd(b; t) = 1.

We write

tu2 =

1X
k=0

�kb
k;
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where each �k = �k(u) is in f�1; 0; 1g. There are 3r+1b2 di�erent values for the (r +

2)�tuple (u0; �00; �
0
1; : : : ; �

0
r) where u

0 is a non-negative integer < b2 and �0k 2 f�1; 0; 1g

for k 2 f0; 1; : : : ; rg. Consider a �xed such (r+2)�tuple. The lemma will follow if we can

show that there is at most one u 2 X(r; t) for which u � u0 (mod b2) and �k(u) = �0k for

every k 2 f0; 1; : : : ; rg.

Let u and v be in X(r; t) with u � v (mod b2) and �k(u) = �k(v) for every k 2

f0; 1; : : : ; rg. We want to show that u = v. Let p be a prime divisor of b. Then gcd(b; u) = 1

implies p - u. Since gcd(u � v; u + v) = gcd(u � v; 2u), we deduce that if p divides both

u � v and u+ v, then p = 2. Also, u � v (mod b2) implies p2j(u � v) so that in the case

p = 2, we have 4 - (u+ v). Since gcd(b; t) = 1, it follows that gcd(br+1; t(u+ v)) is either 1

or 2 and, hence, divides b. The condition �k(u) = �k(v) for every k 2 f0; 1; : : : ; rg implies

br+1j �tu2 � tv2
�
. We deduce brj(u � v). The conclusion u = v now follows since u and v

are positive integers < br. �

Lemma 5. Let j and s be positive integers. Let K be a set of s�tuples (�1; : : : ; �s)

satisfying the two conditions:

(i) For each i 2 f1; 2; : : : ; sg, �i 2 f1; 2; 3g.

(ii) For each i 2 fj + 1; j + 2; : : : ; sg, if �i�j 2 f2; 3g, then �i 2 f1; 2g.

Then

jKj �
�

3

1 +
p
2

�j �
1 +

p
2
�s
:

Proof. For each t 2 f1; 2; : : : ; jg, consider the elements (�1; : : : ; �s) of K and de�ne Kt as

the set of [(s� t+ j)=j]�tuples (�t; �j+t; : : : ; �[(s�t)=j]j+t). Thus, jKj �
Qj

t=1 jKtj. Also,

observe that the number of components in each element of K is the sum over t of the

number of components in each element of Kt. In other words,

(2) s =

jX
t=1

�
s� t+ j

j

�
:
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Fixing t 2 f1; 2; : : : ; jg, we consider the elements ( 1;  2; : : : ;  [(s�t+j)=j]) of Kt. For each

i 2 f1; 2; : : : ; [(s�t+j)=j]g, we de�neNi as the number of di�erent choices for  1;  2; : : : ;  i

which arise. In other words, Ni is the number of i�tuples ( 1;  2; : : : ;  i) obtained from

the �rst i components of the elements of Kt. Thus, jKtj = N[(s�t+j)=j]. By condition (i),

N1 � 3. By conditions (i) and (ii), N2 � 7 (there are � 3 choices for ( 1;  2) with  1 = 1

and � 4 choices for ( 1;  2) with  1 2 f2; 3g). Fix i 2 f3; 4; : : : ; [(s� t+ j)=j]g. LetM be

the number of (i� 1)�tuples ( 1;  2; : : : ;  i�1) with  i�1 = 1. Observe that M � Ni�2.

By condition (i), there are � 3M possible i�tuples ( 1;  2; : : : ;  i) with  i�1 = 1. On the

other hand, by condition (ii), there are � 2(Ni�1 �M) possible i�tuples ( 1;  2; : : : ;  i)

with  i�1 2 f2; 3g. Therefore,

Ni � 3M + 2(Ni�1 �M) = 2Ni�1 +M � 2Ni�1 +Ni�2:

Recall that N1 � 3 and N2 � 7. An easy induction argument now gives Ni � 3(1+
p
2)i�1.

Thus,

jKtj = N[(s�t+j)=j] � 3(1 +
p
2)[(s�t)=j] =

�
3

1 +
p
2

��
1 +

p
2
�[(s�t+j)=j]

:

The lemma now follows from jKj � Qj
t=1 jKtj and (2). �

Lemma 6. Let b be an odd integer � 5, and let r and j be positive integers with j � r.

Let a and t be positive integers and suppose that bjjja. Then the number of positive

integers u < br with gcd(b; u) = 1 and such that both tu2 and t(u + a)2 are in S0 is

� (b� 1)3j(1 +
p
2)r�j.

Proof. As in the proof of Lemma 4, we may suppose that gcd(b; t) = 1 and do so. Let u

be as in the statement of the lemma. Let

D(u) = t(u+ a)2 � tu2 = ta(2u+ a):
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Since tu2 and t(u+ a)2 are in S0, we have

(3) tu2 =

1X
k=0

�kb
k and t(u+ a)2 =

1X
k=0

�kb
k

for some integers �k and �k in f�1; 0; 1g. We write

(4) u =

r�1X
k=0

ukb
k and D(u) =

1X
k=0

dkb
k

where, for each non-negative integer k, uk 2 [0; b� 1] and

(5) dk = �k � �k 2 [�2; 2]:

Note that since b � 5, D(u) has a unique representation as in (4) with dk 2 [�2; 2].

Suppose now that v is a positive integer < br with v 6= u and gcd(b; v) = 1 and such that

both tv2 and t(v + a)2 are in S0. Let ` be the non-negative integer satisfying b`jj(v � u).

Then D(v)�D(u) = 2ta(v � u) so that

b`+j jj (D(v)�D(u)) :

Viewing the numbers u0; u1; : : : ; u`�1 in (4) as �xed, we deduce that the numbers d0; d1; : : : ;

d`+j�1 are uniquely determined. Furthermore, the number u` uniquely determines the

value of d`+j and di�erent values of u` lead to di�erent values of d`+j . In particular, there

is at most one choice of u` which leads to d`+j = 0. We refer to such a choice of u` as

\nice."

We keep the notation above and still view u0; u1; : : : ; u`�1 as �xed. Suppose that ` � 1.

Since b is an odd integer relatively prime to tu, we obtain that gcd(b; t(u + v)) = 1 so

that b`jj �tv2 � tu2
�
. Hence, the numbers �0; �1; : : : ; �`�1 in (3) are uniquely determined.

Di�erent values of u` lead to di�erent values of �`. We are interested only in u for which

tu2 2 S0 so that �` 2 f�1; 0; 1g. Therefore, there are at most 3 di�erent values of u` such

that tu2 2 S0.
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Since �` and �` are in f�1; 0; 1g, for each d` 2 f�2;�1; 0; 1; 2g, there are at most 3�jd`j

values of �` such that (5) holds. In particular, we deduce that if ` � j and u`�j is not nice

(so that d` 6= 0), then there are at most two values of �`, and hence at most two values of

u`, for which tu
2 and t(u+ a)2 are both in S0.

Since b - u, there are at most b� 1 choices for u0 in (4). Fix u0 and consider the choices

for u1; : : : ; ur�1 as in (4) with u as in the lemma. For ` 2 f1; 2; : : : ; r � 1g and for any

given u1; : : : ; u`�1, there are at most 3 di�erent values of u`, say 
i = 
i(u0; u1; : : : ; u`�1)

where i is a positive integer � 3. At most one such u` is nice, and if such a choice

of u` exists we can suppose that it is 
1 and do so. We de�ne �`(u`) = i where i 2

f1; 2; 3g with u` = 
i. Observe that u in (4) is uniquely determined by the value of

(�1(u1); �2(u2); : : : ; �r�1(ur�1)) (where we are still viewing u0 as �xed). Also, if ` 2

fj+1; j+2; : : : ; r� 1g and �`�j(u`�j) 2 f2; 3g (so that u`�j is not nice), then �`(u`) � 2.

Thus, the set of (r � 1)�tuples (�1(u1); : : : ; �r�1(ur�1)) satis�es the conditions of the set

K in Lemma 5 with s = r � 1. Recalling that there are � b � 1 choices for the value of

u0, we deduce that the number of u < br with gcd(b; u) = 1 and such that both tu2 and

t(u+ a)2 are in S0 is

� (b� 1)

�
3

1 +
p
2

�j �
1 +

p
2
�r�1

< (b� 1)3j(1 +
p
2)r�j ;

establishing the lemma. �

Lemma 7. Let b be a positive integer � 3. Let r and ` be positive integers with 1 � ` � r.

Let t be a positive integer. Then there exist 3r�`+2 intervals each of length < 2b` with the

union of these intervals containing all numbers u for which br�1 � u < br and tu2 2 S0.

Proof. Let s be the positive integer satisfying

bs�1

b� 1
< t � bs

b� 1
:
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For u < br and tu2 2 S0, we obtain

tu2 =

2r+s�1X
k=0

�kb
k for some �k 2 f�1; 0; 1g:

Fix �k for r + s+ `� 2 � k � 2r + s� 1. Let

� =

2r+s�1X
k=r+s+`�2

�kb
k �

r+s+`�3X
k=0

bk and � =

2r+s�1X
k=r+s+`�2

�kb
k +

r+s+`�3X
k=0

bk:

For br�1 � u < br and tu2 2 S0, we deduce that tu2 is in some such [�; �] so that u 2 [
; �]

where

[
; �] =
hp

�=t;
p
�=t
i
\ �br�1; br

�
:

Observe that

� � � = 2

r+s+`�3X
k=0

bk <
2br+s+`�2

b� 1
:

Therefore,

� � 
 �
p
�=t�

p
�=t =

� � �

t(
p
�=t+

p
�=t)

<
� � �

t

� � � �

tbr�1
<

2br+s+`�2=(b� 1)

br+s�2=(b� 1)
= 2b`:

Hence, the 3r�`+2 choices for �r+s+`�2; : : : ; �2r+s�1, each in f�1; 0; 1g, lead to 3r�`+2

intervals [
; �] of length < 2b` satisfying the conditions of the lemma. �

Since b � 3, it is not di�cult to check that the intervals in the proof of Lemma 7 above

are disjoint. On the other hand, it is already clear in the statement of Lemma 7 that we

may consider these intervals to be disjoint.

Lemma 8. Let b be an odd integer � 5. Let r and t be positive integers. Then

jX(r; t)j � exp

 
log 3(log b+ log(1 +

p
2)) r

log(3b)

!
;
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where the implied constant depends on b but not on r or t.

Proof. Consider an arbitrary positive integer ` � r. By Lemma 7, X(r; t) is contained in

the union of 3r�`+2 disjoint intervals [
i; �i], with 1 � i � 3r�`+2, where each interval is

of length < 2b`. For each i 2 f1; 2; : : : ; 3r�`+2g and k 2 f1; 2; : : : ; b� 1g, we set

Xi;k(r; t) = fu 2 X(r; t) : u 2 [
i; �i] and u � k (mod b)g:

Let ni;k = jXi;k(r; t)j. Then
3
r�`+2X
i=1

b�1X
k=1

ni;k(ni;k � 1)

2
=

3
r�`+2X
i=1

b�1X
k=1

jf(u; v) : u 2 Xi;k(r; t); v 2 Xi;k(r; t); and u < vgj

=
X

1�a<2b`

bja

3r�`+2X
i=1

b�1X
k=1

jf(u; v) : u 2 Xi;k(r; t); v 2 Xi;k(r; t); and v � u = agj

�
X

1�a<2b`

bja

jf(u; v) : u 2 X(r; t); v 2 X(r; t); and v � u = agj :

From Lemma 6, we now deduce that

3r�`+2X
i=1

b�1X
k=1

ni;k(ni;k � 1)

2
�
X̀
j=1

X
1�a<2b`

bj jja

(b� 1)3j(1 +
p
2)r�j

�
X̀
j=1

2b`�j(b� 1)3j(1 +
p
2)r�j � b`(1 +

p
2)r:

Therefore,

jX(r; t)j =
3r�`+2X
i=1

b�1X
k=1

ni;k �
3r�`+2X
i=1

b�1X
k=1

�
1 +

ni;k(ni;k � 1)

2

�

=

3r�`+2X
i=1

b�1X
k=1

1 +

3r�`+2X
i=1

b�1X
k=1

ni;k(ni;k � 1)

2
� 3r�` + b`(1 +

p
2)r:

We choose

` =

"
(log 3� log(1 +

p
2)) r

log(3b)

#
+ 1

to obtain the lemma. �

13



Lemma 9. Let b = 4 or 5. Let " > 0, and let B = B(") be su�ciently large. Then the

number of f(x) 2 Sn such that f(b) is divisible by d2 for some integer d > B is � "2n.

Proof. Since B is su�ciently large, the number of f(x) 2 Sn as in the lemma is 0 unless n is

also large. We therefore consider n large. Let r be a positive integer for which br > B. We

consider the integers d such that br�1 � d < br. For f(x) 2 Sn, we have 0 < f(b) � bn+1

so that if f(b) is divisible by d2 (which is � b2r�2), then r � (n + 3)=2. We therefore

suppose, as we may, that r � (n+ 3)=2.

Recall that each f(x) 2 Sn has constant term 1 so that if f(b) is divisible by d2, then

gcd(b; d) = 1. If f(b) = td2, then we also have that 1 � t = f(b)=d2 � bn�2r+3 so that

d 2 X(r; t) for some positive integer t � bn�2r+3. We use Lemmas 4 and 8 to obtain that

the number of f(x) 2 Sn for which there exists a d 2 [br�1; br) such that d2jf(b) is

�
bn�2r+3X
t=1

jX(r; t)j �

8><
>:

4n�2r3r for b = 4

5n�2r exp

 
log 3(log 5 + log(1 +

p
2)) r

log 15

!
for b = 5:

In either case, if r > n=(2:4), the above expression on the right is easily � 2n=(nB). We

restrict our attention now to r � n=(2:4). We note that our method for obtaining this

bound on r is not the best possible, and it would be easy to replace 2:4 with a larger

number; however, 2:4 will be su�cient for what follows.

Let s denote a positive integer � n � 2r. We consider f(x) =
Pn

j=0 "jx
j 2 Sn with

"2r+s�2; "2r+s�1; : : : ; "n �xed elements from f0; 1g. Thus, we obtain 22r+s�3 di�erent val-

ues of f(b). LetN(d) denote the number of di�erent (2r+s�3)-tuples ("1; "2; : : : ; "2r+s�3),

with each "j 2 f0; 1g, such that d2jf(b). Suppose N(d) � 1. Consider the f(x) counted

by N(d), and let f1(x) denote the f(x) which minimizes the value of f(b). Then there are

N(d)� 1 other f(x) counted by N(d) each having the property that d2jf(b). For each of

these N(d)� 1 di�erent f(x), we obtain

0 < f(b)� f1(b) � b2r+s�2 � d2bs:

14



Thus, there are at least N(d)� 1 di�erent f(x) 2 Sn (with "2r+s�2; "2r+s�1; : : : ; "n �xed)

such that f(b) � f1(b) = td2 for some positive integer t � bs. Di�erent choices for f(x)

give di�erent values for t. We deduce that there are at least N(d)� 1 di�erent t � bs for

which d 2 X(r; t).

With "2r+s�2; "2r+s�1; : : : ; "n still �xed, we bound the number of f(x) 2 Sn such that

there is a d 2 [br�1; br) for which d2jf(b). This number is

�
X

br�1�d<br

N(d) =
X

br�1�d<br

N(d)�1

(N(d)� 1) +
X

br�1�d<br

N(d)�1

1:

From our comments above and from Lemmas 4 and 8, we deduce that

X
br�1�d<br

N(d)�1

(N(d)� 1) �
X

br�1�d<br

X
1�t�bs

d2X(r;t)

1 =
X

1�t�bs

X
br�1�d<br

d2X(r;t)

1

=
X

1�t�bs

jX(r; t)j �

8><
>:

4s3r for b = 4

5s exp

 
log 3(log 5 + log(1 +

p
2)) r

log 15

!
for b = 5:

Also, X
br�1�d<br

N(d)�1

1 � br:

Letting "2r+s�2; "2r+s�1; : : : ; "n now vary, we deduce that the number of f(x) 2 Sn such

that there exists a d 2 [br�1; br) for which d2jf(b) is

� 2n�2r�s4s3r + 2n�2r�s4r for b = 4

and

� 2n�2r�s5s exp

 
log 3(log 5 + log(1 +

p
2)) r

log 15

!
+ 2n�2r�s5r for b = 5:

In the case b = 4, we choose

s =

�
r log(4=3)

log 4

�
+ 1;
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and in the case b = 5, we choose

s =

"
r

log 5

 
log 5� log 5 + log(1 +

p
2)

log 15
(log 3)

!#
+ 1:

It is easily checked that since 1 � r � n=(2:4), in either case the choice of s is a positive

integer � n � 2r. We obtain that the number of f(x) 2 Sn such that f(b) is divisible by

some d2 with br�1 � d < br is

� 2n�2r�sbr �
�

2n exp(�0:14r) for b = 4

2n exp(�0:034r) for b = 5:

In either case, b = 4 or b = 5, since e2 > b, the above bound is � 2ne�2r=100 � 2nb�r=100.

Letting r vary over the positive integers for which br > B, we easily obtain now that

the number of f(x) 2 Sn such that f(b) is divisible by d2 for some d > B is � 2nB�1=100 .

Since B is su�ciently large, the proof of the lemma is complete. �

4. The Proof of Theorem 2

Let R be a �xed real number � 1. We begin by estimating the number of f(x) 2 Sn

divisible by the square of a non-constant polynomial in Z[x] of degree � R. We will show

that there are o(2n) such f(x).

Odlyzko and Poonen [2] have obtained extensive results about the roots of polynomials

in Sn. For our purposes, it su�ces to know that these roots are bounded in absolute value

by 2 which is easily established as follows. Let f(x) 2 Sn, and write f(x) =
Pm

j=0 "jx
j

where m � n, "j 2 f0; 1g for each j, and "0 = "m = 1. If � 2 C and j�j � 2, then

jf(�)j �

������
mX
j=0

"j�
j

������ � j�jm �
m�1X
j=0

j�jj = j�jm � j�jm � 1

j�j � 1

=
j�jm+1 � 2j�jm + 1

j�j � 1
=

(j�j � 2)j�jm + 1

j�j � 1
> 0:
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Thus, f(�) 6= 0, and we deduce that all roots of the polynomials in Sn necessarily have

absolute value < 2.

Let g(x) 2 Z[x] of degree r 2 [1; R], and suppose that g(x) is a factor of some polynomial

in Sn. It follows that the roots of g(x) are < 2. Also, since polynomials in Sn are monic,

the leading coe�cient of g(x) must be �1. Since the degree of g(x) is � R, it follows that

each coe�cient of g(x) has absolute value less than or equal to the product of 2R (an upper

bound on the absolute value of the product of the roots of g(x)) and 2R (an upper bound

on the number of combinations of r � R roots taken k at a time where k 2 f0; 1; : : : ; rg).

Since the absolute value of the coe�cients of g(x) are bounded by 4R and since g(x) has

degree � R, there are

� �2� 4R + 1
�R+1

di�erent possible values of g(x). To establish what we �rst set out to show, it su�ces then

to obtain that for each such g(x), there are o(2n) di�erent possible f(x) 2 Sn divisible by

g(x)2.

Fix g(x) as above. Suppose that f(x) =
Pn

j=0 "jx
j 2 Sn is divisible by g(x)2. We

consider the set Tn(f(x)) consisting of the polynomials w(x) =
Pn

j=0 "
0
jx

j 2 Sn where

there is exactly one k 2 f1; 2; : : : ; ng for which "0k 6= "k. In other words, w(x) =Pn
j=0 "

0
jx

j 2 Tn(f(x)) if and only if there is a k 2 f1; 2; : : : ; ng such that "0` = "` for

every ` 2 f0; 1; : : : ; ng with ` 6= k and "0k = 1 � "k. Thus, jTn(f(x))j = n. Since f(x)

is divisible by g(x)2 and f(x) has constant term 1, it must be the case that g(x) is not

divisible by x. If w(x) =
Pn

j=0 "
0
jx

j 2 Tn(f(x)) and k 2 f1; 2; : : : ; ng with "0k 6= "k, then

f(x)�w(x) = �xk is not divisible by g(x)2. We deduce that the elements of Tn(f(x)) are

not divisible by g(x)2.

Now, suppose that f1(x) and f2(x) are distinct polynomials in Sn with each divisible

by g(x)2. We show that Tn(f1(x)) and Tn(f2(x)) are disjoint. If the sets were not disjoint,

17



then there would be some w(x) which di�ers from each of f1(x) and f2(x) by a power of x.

By considering f1(x)� f2(x), it follows that for some k and ` in f1; 2; : : : ; ng with k > `,

xk � x` = x`(xk�` � 1) is divisible by g(x)2. Since the roots of xk�` � 1 are distinct and

since g(x) is not divisible by x, we deduce that g(x)2 cannot divide x`(xk�` � 1). Hence,

Tn(f1(x)) and Tn(f2(x)) are disjoint.

For each f(x) 2 Sn divisible by g(x)2, there correspond n polynomials, namely the

elements of Tn(f(x)), which are not divisible by g(x)
2, and these n polynomials are di�erent

for di�erent f(x). Thus, there are� 2n=(n+1) polynomials in Sn divisible by g(x)
2. Hence,

there are o(2n) polynomials in Sn divisible by g(x)2 and thus o(2n) polynomials f(x) 2 Sn
which are divisible by the square of a polynomial of degree � R.

Fix " > 0. It su�ces to show that if R is su�ciently large, then there are � "2n

polynomials f(x) 2 Sn which are divisible by the square of a polynomial in Z[x] of degree

> R. We will use Theorem 1 with b = 4 and the fact already established that the roots

of the polynomials in Sn have absolute value < 2. We note, however, the case b = 3

of Theorem 1 could be used instead of the case b = 4 if we use that the roots of the

polynomials in Sn have real parts < 1:5 (cf. [1] or [2]).

Let f(x) 2 Sn with f(x) divisible by the square of a polynomial g(x) 2 Z[x] of degree

r > R. We may suppose that g(x) is monic (otherwise, replace g(x) with �g(x)). Then

the roots of f(x) and hence g(x) have absolute value < 2. If �1; : : : ; �r denote the roots

of g(x), then g(x) =
Qr

j=1(x� �j) and

jg(4)j =
rY

j=1

j4� �jj � 2r > 2R:

Since f(x) is divisible by g(x)2, we deduce that f(4) is divisible by d2 for some integer

d > 2R. On the other hand, from Lemma 9 with b = 4, we obtain that for R su�ciently

large, there are � "2n such polynomials f(x) 2 Sn. Hence, Theorem 2 follows.
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