A generalization of a third
irreducibility theorem of I. Schur

by

MARTHA ALLEN (Milledgeville, GA) and
MICHAEL FILASETA (Columbia, SC)

1 Introduction

For each nonnegative integgrdefineu; as the product of the odd numbets;.
In particular, we have,y = uy, = 1,u4 = 3,ug = 15,.... The purpose of this
paper is to establish the following.

Theorem 1. Letn be an integer> 1, and letag, a4, . . . , a,, be arbitrary integers
with ¢y = £1 and0 < |a,| < 2n — 1. Then

n 22

is irreducible over the rationals.

I. Schur (in [10]) obtained this result in the special case éhat +1 and used it

to establish the irreducibility off,, (x) where H,,(z) is them'™ Hermite poly-
nomial. The result stated above is best possible in the sense that, for any integer
n > 1, if |a,| = 2n — 1, then there are values af, a4, ..., a, with ¢y = £1

such that the polynomigl(z) in (1) is reducible. Indeed, ifz,| = 2n — 1 and

ap = *x1, then one can take,_» = a,,_3 = --- = a; = 0 anda,_; to be one

of the four numberstu,, _» + 1 to obtain thatf(x) is divisible byz? — 1 (or, if
desired, by:2 + 1). There are other examples of reducibility that can occur when
|a,| = 2n — 1. The polynomialf (z) defined by

upp f(x) = 112" + 11882° + 6930z + 10395
= 11(z* + 3) (2% + 1052* + 315)

is such an example. On the other hand, as will be evident from the proof, if
la,,| = 2n — 1 and f(x) is reducible, therf (x) must have a factor of degree4.

This work is continuation of earlier work by the authors in [5] and [1] in
which the role oft?/ /uy; above is replaced by /5! andz? /(j+1)!, respectively.
The conditions om,, were different for these results, but in a manner similar to
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that just described, the results there were best possible. The general techniques
used for establishing Theorem 1 are similar to those used in [1], [5] and [6]. The
authors were not, however, able to take advantage of work by E. F. Ecklund, Jr.,
R. B. Eggleton, P. Erds, and J. L. Selfridge [3] that played a crucial role in the
prior two papers [5] and [1] on the subject. We note that there is a fourth irre-
ducibility theorem of I. Schur (used to establish the irreducibilityfef 1 (z) /x)

that the authors will address in a subsequent paper.

The rest of the paper is organized as follows. In the next three sections, we
give preliminary results that will be essential for our arguments. The second
section focuses on those results which are already established in the literature,
and the third section on a certain technical lemma that will play a role in the
fourth section. The fourth section gives two crucial lemmas for our arguments;
indeed, they imply immediately th&t(x) as in Theorem 1 cannot have a factor
of degreel € [1,n] andd ¢ {3, 4} except possibly for seven paits, d). Finally,
the fifth section will complete the proof of Theorem 1, handling these seven pairs
(n, d) together with an analysis faf e {3,4}.

2 Preliminary Material

In this section, we give some background results which already appear in the
literature or are easily derived from it. As this is the case, the results in this
section will be stated without proof.

If pis a prime andn is a nonzero integer, we definém) = v,(m) to be the
nonnegative integer such that™ | m andp”™*!  m. We define(0) = +oc.
Considerw(z) = Y7 a2’ € Z[z] with a,a9 # 0 and letp be a prime. LefS

be the following setjof points in the extended plane:

S = {(07 V<an))> (17 I/(anfl))u (27 V(an*2))7 T (TL -1, V(a1)>> (n7 V(ao))}'

Consider the lower edges along the convex hull of these points. The left-most
endpoint is(0, v(a,)) and the right-most endpoint {&, v(ay)). The endpoints
of each edge belong 8, and the slopes of the edges increase from left to right.
When referring to the “edges” of a Newton polygon, we shall not allow two
different edges to have the same slope. The polygonal path formed by these
edges is called the Newton polygomwofz) with respect to the primg. We will
refer to the points irt asspotsin the construction of the Newton polygon.

In investigating irreducibility with Newton polygons, we will make use of the
following result due to Dumas [2].

Lemma 1. Letg(z) andh(x) be inZ[x] with g(0)h(0) # 0, and letp be a prime.

Let k£ be a non-negative integer such that divides the leading coefficient of
g(z)h(x) butp®*! does not. Then the edges of the Newton polygon(foyh(z)
with respect tg can be formed by constructing a polygonal path beginning at
(0, k) and using translates of the edges in the Newton polygog(forandi(x)



with respect to the prime (using exactly one translate for each edge). Neces-
sarily, the translated edges are translated in such a way as to form a polygonal
path with the slopes of the edges increasing.

We will make use of the following estimate, which can be found in [8], for
7(x), the number of primes. z.

Lemma 2. The inequality

n(a) < (1+ k )i

2logz/ logx

holds for allz > 1.
The next lemma deals with gaps between primes.

Lemma 3. For x > 2479, there is a prime in the intervals, 1.01x]; and for
x > 213, there is a prime in the intervdle, 1.05x].

The first result in Lemma 3 with intervals;, 1.01z] is obtained in [6] by
making direct use of estimates like Lemma 2 above from [8]. A proof of the sec-
ond result follows by notingl.05 - 213] = 223 is prime and by simply checking
the lengths of the gaps between primes in the inte@2d, 2503] (the number
2503 is the smallest prime- 2479).

In addition, we will make use of the following consequence of work by
D. H. Lehmer [7].

Lemma 4. Letm be an odd positive integer. # > 7 andm ¢ {25,243}, then
there is a primep > 11 dividingm(m + 2). If m > 5 andm ¢ {21,45}, then
there is a primep > 11 dividingm(m + 4).

In particular, we note that this lemma implies that the product of three consec-
utive odd numbers each 7 must be divisible by a prime 11. This particular
use of the lemma is an easy consequence of prior work by Schur [10].

3 A Technical Lemma

Here, we establish the following:
Lemma 5. Letm, ¢, andk denote positive integers with> 2, and let
T={2m+1,2m+3,...,2m+2( — 1}.

For each odd prime < k in turn, remove fronT" a number divisible by® where
e = e(p) is as large as possible. Létdenote the set of numbers that are left. Let
N, be the exponent in the largest powepafividing [[,., t. Then

{—m(k)+1
Hpr _ [Tiest > (2m + 1)t L ora((e=1))
H2<p§k pr (6 - 1)!

p>k



Before turning to the proof, we remark that our intent above is for a different
element ofl" to be selected for each odd primec k. One construct§' by taking
these primes one at a time in any order and removing from whatever elements of
T still remain an element which is divisible by the largest power of the prime.
If instead one considers each odd primand chooses a, in T" divisible by as
large a power op as possible, allowing for repetition in thg, and defines' as
the setl’ with the u, removed, the estimate given in Lemma 5 is still valid. In
fact, the only real reason in this paper to not allow for repetition in Lemma 5 is
that it gives a stronger result which implies the analogous result with repetition.

Proof. The proof is based on an idea of Bed[4]. Clearly,|S| = ¢ — 7(k) + 1
so that

tesS

It remains to estimatg],_,, p"". First suppose thdt< p < k. Note that since
T is a a set of consecutive odd numbers, at most one elemefit isfdivisible
by p. However, any such number is not$hsince it would have been one of the
numbers removed frori to form S. Thus,

1= 11 »"< I] »™

2<p<k 2<p<min{k,(—1} 2<p<t—1

Denote bya, an element of" that was removed with,(a,) maximal. Forl <
J < vp(ay), lets + 1 denote the number of elementsBivisible byp’. Since
a, was removed froni’, we deduce that there ares elements ofS divisible by
p’. Observe that

A -1
2m+1+42sp’ <2m+20 —1 = s < [égf_}‘

We deduce that

Thus,

(6—1) 21/241 H p ((e—1)! 21/221 H p

2<p<l—1 2<p<i—1

and the result follows. O

4 Two Further Lemmas

In this section, we establish the following results concerrjifig) as in (1).



Lemma 6. Letay, ay, . . ., a, denote arbitrary integers withug| = 1, and let

f@) =" a,—.

u
=0 %

Letk be a positive odd integex n. Suppose there exists a prime> k£ + 2 and
a positive integer- for which

P20 =1)(2n—3)- (20— k) and ' fa,.

Thenf(z) cannot have a factor of degrdeand cannot have a factor of degree
k+1.

Lemma 7. Letn be an integer> 3, and letk be an odd integer if3, n]. Then

H p'>2n—1

p"||(2n—1)(2n—3)---(2n—k)
p>k+2

unless one of the following conditions hold:
1. k£ = 3 and either2n — 1 or 2n — 3 is a power of3
2. k=>5andn e {5,14,15}
3. k=Tandn = 14.

Proof of Lemma 6.This argument is based on the proof of Lemma 1 in [5]. To
prove thatf (xz) cannot have a factor of degréer k + 1, it suffices to show that
F(z) = ug, f(x) cannot have a factor of degréer k + 1. For¢ an odd positive
integer, definé,,,_, = 0 and

bon—(e41) = @zn=(esn) 2n—1)2n—3)---2n—L+2)(2n —1).

Then

n 2n
F(z) = ugnf(x) = Zajuﬂx% = Zblﬂ
— Ugj —
7=0 =0
Note that the conditiop”|(2n — 1)(2n — 3) - - (2n — k) implies thatp”|b; for
i€4{0,1,2,...,2n — k}. Thus, the2n — k + 1 right-most spots,

(k,v(bon—k)),...,(2n — 1,v(b1)), (2n,v(by)),

associated with the Newton polygon®fz) with respect tg havey-coordinates
> r. Consider the left-most endpoift, v(a,)). By the givenp” 1 a,; thus, the
y-coordinate of the left-most endpoint4sr.

Recall that the slopes of the edges of the Newton polygoFi(af) increase
from left to right. Thus, the spotS, v(by, ;) fori € {k — 1,k k+1,...2n}
all lie on or above edges of the Newton polygon which have positive slope. We



will show that each of these positive slopesqsl/(k + 1). Since the slopes of
the edges of the Newton polygon increase from left to right, it suffices to show
that the right-most edge has slogel/(k + 1). Observe that the slope of the
right-most edge is given by

A {V(CL()'LLQn) — V'<aju2n/u2j> }
1<j<n 2]

Using thatv((2j — 1)!) < (2j — 1)/(p — 1), we obtain forl < j < n that

(ooan) = (a532) < vluan) = vl fzg) = Vo)
<v((2j— 1)) < 2;_—11.

Asp > k + 2, we deduce

I/(CZ()UQn) — I/(Clju2n/u2j) } < 1 < 1
p

max{ 2 —1 " k+1

1<j<n
Thus, each edge of the Newton polygon iofx) with respect top has slope
<1/(k+1).

Now supposeF'(z) has a factoy(z) € Z[x] with degg(x) € {k,k + 1}.
By Lemma 1, the Newton polygon @f(x) with respect tgp must include trans-
lations of the edges of the Newton polygongf:) with respect tgp. Suppose
(a,b) and (c,d) with a < ¢ are two lattice points on an edge of the Newton
polygon of F'(z) having positive slope. Since the slopedd /(k+ 1), we obtain

1 d—>b 1
< < .
c—a _c—a k+1

Thus,c —a > k+ 1 > deg g(z) so that(a, b) and(c, d) cannot be the endpoints

of a translated edge of the Newton polygory¢f). Therefore, the translates of
the edges of the Newton polygon gfz) with respect tgp must be among the
edges of the Newton polygon &f(z) having O or negative slope. On the other
hand, the endpoints of the edges of the Newton polygo#'(@f) having 0 or
negative slope must be among the sgets (b2, ;) fori € {0,1,..., k — 1}.
Sincek — 1 < degg(x), these edges by themselves cannot consist of a complete
collection of translated edges of the Newton polygom (@f), and so we have a
contradiction. ThusF'(z) cannot have a factor with degréer £ + 1. O

The proof of Lemma 7 will be a bit more involved. In the prior work of [1]
and [5], we were able to take advantage of a result by Ecklund, Eggletods Erd
and Selfridge [3] in which a similar product is considered gvdividing instead
a product oft consecutive integers. We are no longer able to appeal to this result
and instead establish Lemma 7 based on other estimates in the distribution of
primes. Our approach here is nevertheless similar to that given in [3].



Proof of Lemma 7 Let k£ be as in the statement of the lemma fsis odd), and
setc = n/k. Definev to be the product appearing in the lemma, and:lée
defined by

2n—1)2n—3)---(2n — k) = wv
Thus,u is a product of primes each k. To establish Lemma 7, we will consider
the following five cases: (i} > 25 andk > 1001, (ii) 1 < ¢ < 25 andk > 1001,
(iii) » > 999 with 9 < k£ <999, (iv) k € {3,5,7} andk < n, and (vV)n < 998
with 9 < k£ < n. In the first four cases, we establish Lemma 7 by showing
v > 2n, and in the last case we will base our argument largely on computations.

Case (i). Considerc > 25 andk > 1001. To establishy > 2n, we show that
logv > log(2n). The definition ofu andv imply

logv =log((2n —1)---(2n — k)) — logu.

We combine a lower bound fosg((2n — 1) --- (2n — k)) with an upper bound
for log u to obtain a lower bound fdbg v.
Observe that

k+1 k+1
2

(2n—1)(2n—3)---(2n—k) > ((2n —k)) * = ((2c — 1)k)
One checks thdbg(2c¢ — 1) > 0.99log(2c¢) for ¢ > 25. Hence,

1%&@n—mwn—$-~@n—m)zk+l kt1

log(2¢ — 1) +

log k

k+1
> 0.495k log(2c) + ki

log k,

which gives us our lower bound dog((2n — 1)---(2n — k)).

Since(2n—2)(2n—4) - - - (2n—k+1) is the product ofk — 1) /2 consecutive
even numbers, it is divisible bk — 1)/2)! - 2(-=1)/2_ Using this in part, we see
that

"< o 1 v
p||(2”1)

It is not difficult to show based on well-known identities fay(m!) that if p”
exactly divides(*", ') thenp” < 2n — 1 (cf. [3]). We deduce that

kE+1

5 < (2n)" g

u< (2n—1)"Bk(k—-1)--.
Appealing to Lemma 2, we deduce

k+1
logu < m(k)log(2n) + log k

1
log k

3 k



kE+1

3 k 3
:k<1 ) (1 )1 2 log k
* 2log k * log k * 2logk 0g(2c) + ©8

- klog(QC)(l + 2log k;) (log12c) * loik;) * : J2r 1

log k.

Usingc > 25 andk > 1001, we obtain

k+1
log u < 0.49k log(2¢) + il

log k.

Combining our lower bound fdbg((2n — 1)---(2n — k)) with our upper
bound forlog u, we see that

logv > 0.005k log(2c).

For fixedc > 25, the function0.005k log(2¢) — log(2ck) is increasing fork >
1001 and positive. It follows, for > 25 andk > 1001, thatlogv > log(2ck)
log(2n), completing the case under consideration.

Case (ii). Considerl < ¢ < 25 andk > 1001. Since2ck — k + 2 > k + 2, the
primes in the interval

I'=02n—k+2,2n—1] = (2ck — k + 2,2ck — 1]

divide v. We consider the two possibilitiels74 < ¢ < 25andl < ¢ < 1.74
separately. For the first of these, we appeal to the first assertion in Lemma 3; for
the second, we use the second assertion of Lemma 31.Fbr< ¢ < 25 and

k > 1001, one checks that

2ck —k+2>2479 and 1.01*(2ck — k +2) < 2ck — 1.
Forl < ¢ < 1.74 andk > 1001, one checks that
2ck —k+2>213 and 1.05%*(2ck — k +2) < 2ck — 1.

Thus, in either case, there are two primesandp, in I. Furthermore, in both
cases, we can find such primes satisfying

p1> (2c—1)k  and py > 1.01(2c — 1)k.

It follows that
v > pips > 1.01(2¢ — 1)%k* > 2ck = 2n.

Case (iii). Considern > 999 and9 < k < 999. We apply Lemma 5 with
¢ = (k +1)/2 to obtain that

=) F T ()

2
— k—=1Y ?
(%3)!

v



Lets = L — (k). We deduce > 2n — 1 provided
n—K)En -k (%)
2n — 1 2VQ((%)!)

Recall thatt < n. It follows that(2n — k)/(2n — 1) > 1/2. Thus, for this case,
it suffices to show

B C 0l

e[ )]

We deduce that for each odd intedee [9,999], if n > ny, thenv > 2n — 1.
A computation shows that the maximum valuengfover suchk is in fact999,
establishingy > 2n — 1 in this case.

[

Fix

Case (iv). Considerk € {3,5,7} andk < n. Our approach here is basically
the same as in case (iii), but we bypass using Lemma 5 by making use of a more
direct analysis combined with Lemma 4. Hixc {3,5, 7}, we consider the set
T =1, = {(2n—1),(2n — 3),...,(2n — k)}. For each odd prime < k
beginning withp = 3, we choose an elemen, of 7" not yet chosen (so the
a,’s are distinct) for whichv,(a,) is maximal. Regardless &f there will be one
element, say, of T that is not equal ta, for everyp < k. Fork = 3, we
havet > 2n — 3 andged(t,3) = 1. If there is a prime> 5 dividing as, then

v > 5t > 5(2n — 3) > 2n — 1. If there are no prime% 5 dividing a3, thenag

is a power of3. Given the conditions of Lemma 7, the cdse- 3 is complete.
Now, consider € {5, 7}. There are positive integets andt, satisfying

(2) t=tty, ged <t1, Hp) =1 and t, minimal
p<k

Fork = 5, we havel, = 1; for k = 7, we havet, € {1,3}. The idea is to show
that if £ € {5, 7}, then there is a prime 11 that divides some,, so that

0> 11t > % > 11(275— B 11(22_ 7)

For each: € {5, 7}, we checked computationally whether the inequality asserted
in Lemma 7 holds wheit < n < 125. Fork = 5 andk < n < 125, the
inequality holds if and only it ¢ {5,14,15}. Fork = 7andk < n < 125,

the inequality holds if and only ik # 14. Forn > 125, one checks that Lemma

4 implies that some, is divisible by a prime> 11. Given the conditions of
Lemma 7, the argument is complete now wiiea {5, 7}.

> 2n — 1.

Case (v). Considern < 998 with 9 < k < n. There are a finite number of
pairs (n, k) to consider, and we simply did a computation (using MAPLE 7)



to determine whether the inequality in Lemma 7 holds. More explicitly, for a
positive integert, definet; = t,(t) andty = t5(t) as in (2). Letmy = 1. For
fixed (n, k), define recursively

k+1
mj:m]_1t1(2n—(2]—1)) f0r1§]§ %

For each(n, k), we computed values af; until we obtained one which exceeded
2n — 1. With the conditions om andk in this case, such A< (k+1)/2 always
existed, completing the case under consideration. O

5 A Proof of Theorem 1

Let f(z) be as in Theorem 1, and assuif{e) is reducible. Then there is an odd
integerk such thatf (x) has a factor (ifQ[x]) of degreé: or k+1in [1, n]. Lemma
6 and Lemma 7 lead us far into the proof of Theorem 1 as they immediately imply
that if f(x) is reducible, them,, must be divisible by a number 2n — 1 except
possibly in the case that= 1 or one of the three conditions stated in Lemma 7
occur. We are left then with considering these cases.

Suppose: = 1. Noting that2n — 1 is odd, we obtain from Lemma 6 that
a, must be divisible by2n — 1. The condition) < |a,| < 2n — 1 of Theorem
1 implies a contradiction. Recall also that it was noted in the introduction that
a linear or quadratic factor can exist|if,| = 2n — 1. So the strict inequality
la,| < 2n — 1, not required in the previous paragraph, is necessary here.

For the remainder of this section, we shall make use of several explicit New-
ton polygons. For this purpose, we dendig(p) as the Newton polygon of
a polynomialw(x) with respect to a prime. We refer to the horizontal dis-
tance between two points, y;) and(xs, y2) as|xs — x| and to the horizon-
tal length of an edge of a Newton polygon as the horizontal distance between
its endpoints. We work withF'(x) = us, f(z), noting that its factors have the
same degree as the factors fifr). We fix G(x) to be the polynomialF'(z)
with @, = a,_1 = -+ = a3 = ap = 1. Thus, ifG(z) = Z?:o b;z*, then
Fz) =377, a;b;z*. Throughout, we make use of Lemma 1 to derive infor-
mation about the factors df(z) and, hencef(z). Specifically, we make use of
the following (some of which have already been used and elaborated on in the
proof of Lemma 6):

(A) If F(x) has a factor of degreg then for any prime we have that/ can be
written as a sum of horizontal distances between consecutive lattice points
along the edges o¥/(p). More explicitly, if (2o, yo), (z1,%1); - - -, (T, yy)
is a complete list of the lattice points along the edged/pfp) with 0 =
To < T < -+ < Tp_y < =degF,thend = Z;Zl ej(z;—x;_1) where
eachs; € {0,1}.

(B) If the slope of an edge 0¥/(p) is positive andk 1/d, then the horizontal
distance between any two lattice points on the edgeds

10



(C) If the slope of the right-most edge 4f(p) is < 1/d and if the sum of the
lengths of the edges o¥-(p) with a zero or negative slope is d, then
F(z) cannot have a factor of degrée

(D) The spots used to foril-(p) lie on or above the spots used to faNg (p).

(E) If the slope of the right-most edge &f;(p) is < 1/d, then the slope of the
right-most edge o (p) is < 1/d.

The first item (A) above follows directly from Lemma 1; (B) is easily checked;
(C) is a consequence of (A) and (B); (D) follows from the fact thdt;b,) >
vp(b;); and (E) follows from (D) andy, = £1 (so that the right-most endpoint
on Nr(p) is the same as the right-most endpoinf\gf(p)).

We turn now to the case that= 14 andk € {5, 7} (arising in the conditions
of Lemma 7). The Newton polygai(23) consists of two edges, one adjoining
the points(0,0) and (4,0) and one adjoining the pointd, 0) to (28,1). From
(©), (D) and (E), we deduce that,, a3, anday, are all divisible by23. As
la14| < 27, we have thap { a4 for every primep # 23. We considep = 3. The
Newton polygonV(3) consists of two edges, one adjoining the point$)) and
(18,5) and one adjoining18, 5) to (28, 8). Since3 { a;4 anday = +1, the points
(0,0) and (28, 8) are onNx(3). If (18,5) is as well, then by (D) the edges of
Nr(3) are identical to those 0¥ (3), and we deduce from (A) thdt(z) cannot
have a factor of degree So it must be the case thdu; (so that the coefficient
of 2! in F(z) is divisible by a higher power df than the coefficient of1° in
G(x)). In this case N (3) consists of a single edge frof0,0) to (28,8) of
slope2/7. It follows from (A) that F'(x) cannot have a factor of degrée6,
or 8. So F(x) has a factor of degree We consider now = 7. The Newton
polygonN(7) consists of three edges, one frgi0) to (6,0), one from(6, 0)
to (20, 1), and one from(20, 1) to (28,2). From (C), (D) and (E), we obtain that
F(z) cannot have a factor of degréeThis is a contradiction so that, in the case
n = 14, the polynomialf (z) cannot have a factor of degree[in8|.

We turn next to the case thiat= 5 andn = 15. The Newton polygoms (29)
consists of a single edge froff, 0) to (30, 1). From (C) and (E), we deduce that
29|a15. This is sufficient to deal with this case as the conditiorc |a,| <
2n — 1 in Theorem 1 cannot hold. To obtain the stronger result suggested in the
introduction thatf(z) cannot have a factor of degrgéer 6 when|a,| = 2n — 1
andk < n, we note that an analysis 8fx(3) can be used. We omit the details.

We turn now tok = 5 andn = 5. The Newton polygonV;(7) consists of
two edges, one fron0, 0) to (2,0) and one from(2,0) to (10, 1). By (C), (D)
and (E), we obtaiT|a;. Sincelas| < 9, we have3 t a;. The Newton polygon
Nc(3) consists of a single edge froffi, 0) to (10, 3). As 3 ¢ agas, we deduce
from (D) that the Newton polygoVx(3) also consists of just this one edge.
Hence,f(x) cannot have a factor of degréer 6.

Now, supposé = 3 and2n — 3 is a power of3. In Lemma 7, we obtained
slightly more information than necessary to complete the proof of Theorem 1.

11



Since2n — 3 is a power of3 (andn > k£ = 3), itis clear that

H p-=2n—1.

p"[|(2n—1)(2n—-3)
p=5
Hence, in this case, we obtain a contradiction from Lemma 5 and the condition
0 < |a,| < 2n — 1. Thus, if2n — 3 is a power of3, then f(x) cannot have a
factor of degree3 or 4. Note that an example was given in the introduction of
a reducible quarti¢f(x) arising when|a,,| = 2n — 1 with n = 6 and, in this
example2n — 3 is a power of3.

It remains to considefr = 3 and2n — 1 is a power oB3. Our analysis here is
complicated by the fact that there are infinitely many cases under consideration.
We proceed as follows. Observe that the product above is2aow 3 so that
Lemma 5 implie2n — 3 dividesa,,. Since2n — 1 is divisible by3 and0 <
la,| < 2n — 1, we deduce thad { a,. Defineu by 2n —1 = 3*. Asn >
k = 3, we deduce: > 2. If u = 2, thenN(3) and, henceN(3) consist of a
single edge with slop8/10, giving a contradiction (by (A)). Thus; > 3 and,
consequentlyp > 14. Our approach will be to describ¥;(3) rather explicitly
and, in particular, to show that the right-most edge\Gf(3) has slope3/10
and the left-most edge df/(3) has slopgn + 1)/(4n — 2). Since3 t a,ay,
we deduce from (D) that the slopes of the edges\Vef3) lie in the interval
[(n+1)/(4n — 2),3/10] C (1/4,1/3). The slopes being positive ard 1/3
implies from (B) thatf(z) cannot have a factor of degr8e The slopes also
being> 1/4 implies thatf(z) cannot have a factor of degregotherwise, the
horizontal distance between two lattice points woulddbé which is easily seen
to be impossible). Thus, we will have a contradiction, and the proof of Theorem
1 will be complete.

We are left with showing that the right-most edge/df (3) has slope3/10
and the left-most edge df;(3) has slopdn + 1)/(4n — 2). Here,2n — 1 = 3“
with . > 3 (andn > 14). Letm be such thatm — 1 = 3“7!. Thenm =
(3*"'+1)/2 = (n+1)/3. Define

m

H(z) = Yom 2.
Uj

7=0
Thus, H is the polynomialG with the role ofu replaced byu — 1. We will
show that the Newton polygoué:(3) and Ny (3) are closely connected:; in fact,
we will show that a translation o¥(3) is embedded in the right-most part of
N¢(3). In the case that = 2, we already indicated that;(3) consists of a
single edge with slopg/10. It will then follow that for everyu > 3, the right-
most edge oV (3) has slope3/10, giving us partially what we want.

Fix v = 3. We make use of the fact that

u

(3) v(3*=20)=vl) forl</l< %
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From (3),

u(ﬁ) —v((2n—1)(2n—3) -+ (2m + 1))

=v(3") +v(3" =2) +--- +v(3" - (2n — 2m — 2))
=u+v(1)+v2)+v(in—m-—1)
=u+v((n—m-—1)).

One checks that — m — 1 = 3*~! — 1 so that

—

u- u-1_1
v((n—m—1)) = { o }
j=1
u—1
. R
=) (-1 = —(u—1)

, 2

7j=1
We deduce that

n 3u—1 1 3u=1 41 1
U2m, 2 2 3

Observe that

n 24
Glr)=Y 4 Prp(a).

el Uzj Uzm

As2n —2m = 3* —3v"1 =2.3u"1 = (4n — 2)/3, we see that the lattice point
((4n —2)/3,(n+1)/3) is a spot in the construction 8 (3). Furthermore, the
spot((4n —2)/3, (n+ 1)/3) and the spots to the right of it in the construction of
N¢(3) are precisely the spots used to constiligt(3) translated horizontally by
(4n — 2)/3 and vertically by(n + 1)/3.

This does not completely establish what we want nor evenAhaf3) is
embedded inVi(3). To complete the proof, we establish two things, that the
left-most edge of\V(3) has slopgn + 1)/(4n — 2) and that this slope is less
than the slopes of the edges appearing/in(3). Once the former is shown the
latter will follow by induction agn + 1)/(4n — 2) is a decreasing function af
andH (x) is simplyG(z) with u in G(x) replaced by: — 1. The slope of the line
through(0,0) and((4n —2)/3, (n+1)/3)is (n+1)/(4n — 2). To establish that
the left-most edge of/;(3) has slopdn + 1)/(4n — 2), it suffices to show that
the slope of the line througf{4n — 2)/3, (n + 1)/3) and any spota, b) to the
left of ((4n —2)/3, (n+1)/3) with a > 0 is less tharin + 1) /(4n — 2). For any
such spota, b), we have an integeirfor which

—2j, b=v(ug,) —v(ugm_a), and 0<j<3* 1

13



Recall than — 2m = (4n — 2)/3 so that
2n —a >2n — (4n —2)/3 = 2m.

Also,a = 2(2n —1)/3 — 2j = 2(3*~! — j). From (3) and (4), we have

n—?i)—l —b=v uﬂ> —1/( HYon ) :V(u2n7a) —V(U2m)

U2n—q

=v(2n—a—-1)2n—a—3)---(2m +1))

:y(%<g+1) ---(n—m—l))
=v(@E -1 —v(B“ =4 -1)).

One checks that this last difference is equatdtg!) < j/2. Thus, the slope of
the line through(a, b) and((4n — 2)/3, (n +1)/3) is

v(jh) 1 n+1

< <
2] 4 4n-—2

completing the proof of Theorem 1.
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