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1 Introduction

For each nonnegative integerj, defineuj as the product of the odd numbers≤ j.
In particular, we haveu0 = u2 = 1, u4 = 3, u6 = 15, . . . . The purpose of this
paper is to establish the following.

Theorem 1. Letn be an integer> 1, and leta0, a1, . . . , an be arbitrary integers
with a0 = ±1 and0 < |an| < 2n− 1. Then

(1) f(x) =
n∑

j=0

aj
x2j

u2j

.

is irreducible over the rationals.

I. Schur (in [10]) obtained this result in the special case thatan = ±1 and used it
to establish the irreducibility ofH2n(x) whereHm(x) is themth Hermite poly-
nomial. The result stated above is best possible in the sense that, for any integer
n > 1, if |an| = 2n − 1, then there are values ofa0, a1, . . . , an with a0 = ±1
such that the polynomialf(x) in (1) is reducible. Indeed, if|an| = 2n − 1 and
a0 = ±1, then one can takean−2 = an−3 = · · · = a1 = 0 andan−1 to be one
of the four numbers±u2n−2 ± 1 to obtain thatf(x) is divisible byx2 − 1 (or, if
desired, byx2 +1). There are other examples of reducibility that can occur when
|an| = 2n− 1. The polynomialf(x) defined by

u12f(x) = 11x12 + 1188x8 + 6930x4 + 10395

= 11(x4 + 3)(x8 + 105x4 + 315)

is such an example. On the other hand, as will be evident from the proof, if
|an| = 2n− 1 andf(x) is reducible, thenf(x) must have a factor of degree≤ 4.

This work is continuation of earlier work by the authors in [5] and [1] in
which the role ofx2j/u2j above is replaced byxj/j! andxj/(j+1)!, respectively.
The conditions onan were different for these results, but in a manner similar to
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that just described, the results there were best possible. The general techniques
used for establishing Theorem 1 are similar to those used in [1], [5] and [6]. The
authors were not, however, able to take advantage of work by E. F. Ecklund, Jr.,
R. B. Eggleton, P. Erd̋os, and J. L. Selfridge [3] that played a crucial role in the
prior two papers [5] and [1] on the subject. We note that there is a fourth irre-
ducibility theorem of I. Schur (used to establish the irreducibility ofH2n+1(x)/x)
that the authors will address in a subsequent paper.

The rest of the paper is organized as follows. In the next three sections, we
give preliminary results that will be essential for our arguments. The second
section focuses on those results which are already established in the literature,
and the third section on a certain technical lemma that will play a role in the
fourth section. The fourth section gives two crucial lemmas for our arguments;
indeed, they imply immediately thatf(x) as in Theorem 1 cannot have a factor
of degreed ∈ [1, n] andd 6∈ {3, 4} except possibly for seven pairs(n, d). Finally,
the fifth section will complete the proof of Theorem 1, handling these seven pairs
(n, d) together with an analysis ford ∈ {3, 4}.

2 Preliminary Material

In this section, we give some background results which already appear in the
literature or are easily derived from it. As this is the case, the results in this
section will be stated without proof.

If p is a prime andm is a nonzero integer, we defineν(m) = νp(m) to be the
nonnegative integer such thatpν(m) | m andpν(m)+1 - m. We defineν(0) = +∞.
Considerw(x) =

∑n
j=0 ajx

j ∈ Z[x] with ana0 6= 0 and letp be a prime. LetS
be the following set of points in the extended plane:

S = {(0, ν(an)), (1, ν(an−1)), (2, ν(an−2)), . . . , (n− 1, ν(a1)), (n, ν(a0))}.

Consider the lower edges along the convex hull of these points. The left-most
endpoint is(0, ν(an)) and the right-most endpoint is(n, ν(a0)). The endpoints
of each edge belong toS, and the slopes of the edges increase from left to right.
When referring to the “edges” of a Newton polygon, we shall not allow two
different edges to have the same slope. The polygonal path formed by these
edges is called the Newton polygon ofw(x) with respect to the primep. We will
refer to the points inS asspotsin the construction of the Newton polygon.

In investigating irreducibility with Newton polygons, we will make use of the
following result due to Dumas [2].

Lemma 1. Letg(x) andh(x) be inZ[x] with g(0)h(0) 6= 0, and letp be a prime.
Let k be a non-negative integer such thatpk divides the leading coefficient of
g(x)h(x) butpk+1 does not. Then the edges of the Newton polygon forg(x)h(x)
with respect top can be formed by constructing a polygonal path beginning at
(0, k) and using translates of the edges in the Newton polygon forg(x) andh(x)
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with respect to the primep (using exactly one translate for each edge). Neces-
sarily, the translated edges are translated in such a way as to form a polygonal
path with the slopes of the edges increasing.

We will make use of the following estimate, which can be found in [8], for
π(x), the number of primes≤ x.

Lemma 2. The inequality

π(x) <
(
1 +

3

2 log x

) x

log x

holds for allx > 1.

The next lemma deals with gaps between primes.

Lemma 3. For x ≥ 2479, there is a prime in the interval(x, 1.01x]; and for
x ≥ 213, there is a prime in the interval(x, 1.05x].

The first result in Lemma 3 with intervals(x, 1.01x] is obtained in [6] by
making direct use of estimates like Lemma 2 above from [8]. A proof of the sec-
ond result follows by noting[1.05 · 213] = 223 is prime and by simply checking
the lengths of the gaps between primes in the interval[223, 2503] (the number
2503 is the smallest prime> 2479).

In addition, we will make use of the following consequence of work by
D. H. Lehmer [7].

Lemma 4. Letm be an odd positive integer. Ifm > 7 andm 6∈ {25, 243}, then
there is a primep ≥ 11 dividingm(m + 2). If m > 5 andm 6∈ {21, 45}, then
there is a primep ≥ 11 dividingm(m+ 4).

In particular, we note that this lemma implies that the product of three consec-
utive odd numbers each≥ 7 must be divisible by a prime≥ 11. This particular
use of the lemma is an easy consequence of prior work by Schur [10].

3 A Technical Lemma

Here, we establish the following:

Lemma 5. Letm, `, andk denote positive integers withk ≥ 2, and let

T = {2m+ 1, 2m+ 3, . . . , 2m+ 2`− 1}.
For each odd primep ≤ k in turn, remove fromT a number divisible bype where
e = e(p) is as large as possible. LetS denote the set of numbers that are left. Let
Np be the exponent in the largest power ofp dividing

∏
t∈S t. Then

∏
p>k

pNp =

∏
t∈S t∏

2<p≤k p
Np

≥ (2m+ 1)`−π(k)+1

(`− 1)!
· 2ν2((`−1)!).
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Before turning to the proof, we remark that our intent above is for a different
element ofT to be selected for each odd primep ≤ k. One constructsS by taking
these primes one at a time in any order and removing from whatever elements of
T still remain an element which is divisible by the largest power of the prime.
If instead one considers each odd primep and chooses aup in T divisible by as
large a power ofp as possible, allowing for repetition in theup, and definesS as
the setT with theup removed, the estimate given in Lemma 5 is still valid. In
fact, the only real reason in this paper to not allow for repetition in Lemma 5 is
that it gives a stronger result which implies the analogous result with repetition.

Proof. The proof is based on an idea of Erdős [4]. Clearly,|S| = ` − π(k) + 1
so that ∏

t∈S

t ≥ (2m+ 1)`−π(k)+1.

It remains to estimate
∏

2<p≤k p
Np. First suppose that̀≤ p ≤ k. Note that since

T is a a set of̀ consecutive odd numbers, at most one element ofT is divisible
by p. However, any such number is not inS since it would have been one of the
numbers removed fromT to formS. Thus,∏

2<p≤k

pNp =
∏

2<p≤min{k,`−1}
pNp ≤

∏
2<p≤`−1

pNp .

Denote byap an element ofT that was removed withνp(ap) maximal. For1 ≤
j ≤ νp(ap), let s + 1 denote the number of elements ofT divisible bypj. Since
ap was removed fromT , we deduce that there are≤ s elements ofS divisible by
pj. Observe that

2m+ 1 + 2spj ≤ 2m+ 2`− 1 =⇒ s ≤
[
`− 1

pj

]
.

We deduce that

Np ≤
∞∑

j=1

[
`− 1

pj

]
= νp((`− 1)!).

Thus,

(`− 1)! = 2ν2((`−1)!)
∏

2<p≤`−1

pνp((`−1)!) ≥ 2ν2((`−1)!)
∏

2<p≤`−1

pNp ,

and the result follows.

4 Two Further Lemmas

In this section, we establish the following results concerningf(x) as in (1).
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Lemma 6. Leta0, a1, . . . , an denote arbitrary integers with|a0| = 1, and let

f(x) =
n∑

j=0

aj
x2j

u2j

.

Letk be a positive odd integer≤ n. Suppose there exists a primep ≥ k + 2 and
a positive integerr for which

pr|(2n− 1)(2n− 3) · · · (2n− k) and pr - an.

Thenf(x) cannot have a factor of degreek and cannot have a factor of degree
k + 1.

Lemma 7. Letn be an integer≥ 3, and letk be an odd integer in[3, n]. Then∏
pr‖(2n−1)(2n−3)···(2n−k)

p≥k+2

pr > 2n− 1

unless one of the following conditions hold:

1. k = 3 and either2n− 1 or 2n− 3 is a power of3

2. k = 5 andn ∈ {5, 14, 15}
3. k = 7 andn = 14.

Proof of Lemma 6.This argument is based on the proof of Lemma 1 in [5]. To
prove thatf(x) cannot have a factor of degreek or k + 1, it suffices to show that
F (x) = u2nf(x) cannot have a factor of degreek or k + 1. For` an odd positive
integer, defineb2n−` = 0 and

b2n−(`+1) = a 2n−(`+1)
2

(2n− 1)(2n− 3) · · · (2n− `+ 2)(2n− `).

Then

F (x) = u2nf(x) =
n∑

j=0

aj
u2n

u2j

x2j =
2n∑
i=0

bix
i.

Note that the conditionpr|(2n − 1)(2n − 3) · · · (2n − k) implies thatpr|bi for
i ∈ {0, 1, 2, . . . , 2n− k}. Thus, the2n− k + 1 right-most spots,

(k, ν(b2n−k)), . . . , (2n− 1, ν(b1)), (2n, ν(b0)),

associated with the Newton polygon ofF (x) with respect top havey-coordinates
≥ r. Consider the left-most endpoint(0, ν(an)). By the given,pr - an; thus, the
y-coordinate of the left-most endpoint is< r.

Recall that the slopes of the edges of the Newton polygon ofF (x) increase
from left to right. Thus, the spots(i, ν(b2n−i)) for i ∈ {k − 1, k, k + 1, . . . 2n}
all lie on or above edges of the Newton polygon which have positive slope. We
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will show that each of these positive slopes is< 1/(k + 1). Since the slopes of
the edges of the Newton polygon increase from left to right, it suffices to show
that the right-most edge has slope< 1/(k + 1). Observe that the slope of the
right-most edge is given by

max
1≤j≤n

{ν(a0u2n) − ν(aju2n/u2j)

2j

}
.

Using thatν
(
(2j − 1)!

)
< (2j − 1)/(p− 1), we obtain for1 ≤ j ≤ n that

ν(a0u2n) − ν
(
aj
u2n

u2j

)
≤ ν(u2n) − ν(u2n/u2j) = ν(u2j)

≤ ν
(
(2j − 1)!

)
<

2j − 1

p− 1
.

As p ≥ k + 2, we deduce

max
1≤j≤n

{ν(a0u2n) − ν(aju2n/u2j)

2j

}
<

1

p− 1
≤ 1

k + 1
.

Thus, each edge of the Newton polygon ofF (x) with respect top has slope
< 1/(k + 1).

Now supposeF (x) has a factorg(x) ∈ Z[x] with deg g(x) ∈ {k, k + 1}.
By Lemma 1, the Newton polygon ofF (x) with respect top must include trans-
lations of the edges of the Newton polygon ofg(x) with respect top. Suppose
(a, b) and (c, d) with a < c are two lattice points on an edge of the Newton
polygon ofF (x) having positive slope. Since the slope is< 1/(k+1), we obtain

1

c− a
≤ d− b

c− a
<

1

k + 1
.

Thus,c− a > k + 1 ≥ deg g(x) so that(a, b) and(c, d) cannot be the endpoints
of a translated edge of the Newton polygon ofg(x). Therefore, the translates of
the edges of the Newton polygon ofg(x) with respect top must be among the
edges of the Newton polygon ofF (x) having 0 or negative slope. On the other
hand, the endpoints of the edges of the Newton polygon ofF (x) having 0 or
negative slope must be among the spots(i, ν(b2n−i)) for i ∈ {0, 1, . . . , k − 1}.
Sincek − 1 < degg(x), these edges by themselves cannot consist of a complete
collection of translated edges of the Newton polygon ofg(x), and so we have a
contradiction. Thus,F (x) cannot have a factor with degreek or k + 1.

The proof of Lemma 7 will be a bit more involved. In the prior work of [1]
and [5], we were able to take advantage of a result by Ecklund, Eggleton, Erdős,
and Selfridge [3] in which a similar product is considered overp dividing instead
a product ofk consecutive integers. We are no longer able to appeal to this result
and instead establish Lemma 7 based on other estimates in the distribution of
primes. Our approach here is nevertheless similar to that given in [3].
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Proof of Lemma 7.Let k be as in the statement of the lemma (sok is odd), and
setc = n/k. Definev to be the product appearing in the lemma, and letu be
defined by

(2n− 1)(2n− 3) · · · (2n− k) = uv

Thus,u is a product of primes each≤ k. To establish Lemma 7, we will consider
the following five cases: (i)c ≥ 25 andk ≥ 1001, (ii) 1 ≤ c ≤ 25 andk ≥ 1001,
(iii) n ≥ 999 with 9 ≤ k ≤ 999, (iv) k ∈ {3, 5, 7} andk ≤ n, and (v)n ≤ 998
with 9 ≤ k ≤ n. In the first four cases, we establish Lemma 7 by showing
v > 2n, and in the last case we will base our argument largely on computations.

Case (i). Considerc ≥ 25 andk ≥ 1001. To establishv > 2n, we show that
log v > log(2n). The definition ofu andv imply

log v = log((2n− 1) · · · (2n− k)) − log u.

We combine a lower bound forlog((2n − 1) · · · (2n − k)) with an upper bound
for log u to obtain a lower bound forlog v.

Observe that

(2n− 1)(2n− 3) · · · (2n− k) ≥ ((2n− k)
) k+1

2 =
(
(2c− 1)k

) k+1
2 .

One checks thatlog(2c− 1) > 0.99 log(2c) for c ≥ 25. Hence,

log
(
(2n− 1)(2n− 3) · · · (2n− k)

) ≥ k + 1

2
log(2c− 1) +

k + 1

2
log k

> 0.495k log(2c) +
k + 1

2
log k,

which gives us our lower bound onlog((2n − 1) · · · (2n − k)).
Since(2n−2)(2n−4) · · · (2n−k+1) is the product of(k−1)/2 consecutive

even numbers, it is divisible by((k − 1)/2)! · 2(k−1)/2. Using this in part, we see
that

u ≤ k!

((k − 1)/2)!

∏
p≤k

pr||(2n−1
k )

pr.

It is not difficult to show based on well-known identities forνp(m!) that if pr

exactly divides
(
2n−1

k

)
thenpr ≤ 2n− 1 (cf. [3]). We deduce that

u ≤ (2n− 1)π(k)k(k − 1) · · · k + 1

2
< (2n)π(k)k

k+1
2 .

Appealing to Lemma 2, we deduce

log u < π(k) log(2n) +
k + 1

2
log k

<
(
1 +

3

2 log k

) k

log k
log(2ck) +

k + 1

2
log k
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= k
(
1 +

3

2 log k

)
+

k

log k

(
1 +

3

2 log k

)
log(2c) +

k + 1

2
log k

= k log(2c)
(
1 +

3

2 log k

)( 1

log(2c)
+

1

log k

)
+
k + 1

2
log k.

Usingc ≥ 25 andk ≥ 1001, we obtain

log u < 0.49k log(2c) +
k + 1

2
log k.

Combining our lower bound forlog((2n − 1) · · · (2n − k)) with our upper
bound forlog u, we see that

log v > 0.005k log(2c).

For fixedc ≥ 25, the function0.005k log(2c) − log(2ck) is increasing fork ≥
1001 and positive. It follows, forc ≥ 25 andk ≥ 1001, thatlog v > log(2ck) =
log(2n), completing the case under consideration.

Case (ii).Consider1 ≤ c ≤ 25 andk ≥ 1001. Since2ck − k + 2 ≥ k + 2, the
primes in the interval

I = (2n− k + 2, 2n− 1] = (2ck − k + 2, 2ck − 1]

divide v. We consider the two possibilities1.74 ≤ c ≤ 25 and1 ≤ c ≤ 1.74
separately. For the first of these, we appeal to the first assertion in Lemma 3; for
the second, we use the second assertion of Lemma 3. For1.74 ≤ c ≤ 25 and
k ≥ 1001, one checks that

2ck − k + 2 ≥ 2479 and 1.012(2ck − k + 2) ≤ 2ck − 1.

For1 ≤ c ≤ 1.74 andk ≥ 1001, one checks that

2ck − k + 2 ≥ 213 and 1.052(2ck − k + 2) ≤ 2ck − 1.

Thus, in either case, there are two primesp1 andp2 in I. Furthermore, in both
cases, we can find such primes satisfying

p1 > (2c− 1)k and p2 > 1.01(2c− 1)k.

It follows that
v ≥ p1p2 > 1.01(2c− 1)2k2 > 2ck = 2n.

Case (iii). Considern ≥ 999 and9 ≤ k ≤ 999. We apply Lemma 5 with
` = (k + 1)/2 to obtain that

v ≥ (2n− k)
k+1
2

−π(k)+1(
k−1
2

)
!

· 2ν2

((
k−1
2

)
!
)
.
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Let s = k+1
2

− π(k). We deducev > 2n− 1 provided

(2n− k)(2n− k)s

2n− 1
>

(
k−1
2

)
!

2ν2

((
k−1
2

)
!
) .

Recall thatk ≤ n. It follows that(2n− k)/(2n− 1) > 1/2. Thus, for this case,
it suffices to show

(2n− k)s ≥
(

k−1
2

)
!

2ν2

((
k−1
2

)
!
)
−1
.

Fix

nk = max

{⌈
1

2

(( (
k−1
2

)
!

2ν2

((
k−1
2

)
!
)
−1

) 1
s

+ k

)⌉
, k

}
.

We deduce that for each odd integerk ∈ [9, 999], if n ≥ nk, thenv > 2n − 1.
A computation shows that the maximum value ofnk over suchk is in fact999,
establishingv > 2n− 1 in this case.

Case (iv). Considerk ∈ {3, 5, 7} andk ≤ n. Our approach here is basically
the same as in case (iii), but we bypass using Lemma 5 by making use of a more
direct analysis combined with Lemma 4. Fixk ∈ {3, 5, 7}, we consider the set
T = Tk = {(2n − 1), (2n − 3), . . . , (2n − k)}. For each odd primep ≤ k
beginning withp = 3, we choose an elementap of T not yet chosen (so the
ap’s are distinct) for whichνp(ap) is maximal. Regardless ofk, there will be one
element, sayt, of T that is not equal toap for everyp ≤ k. For k = 3, we
havet ≥ 2n − 3 andgcd(t, 3) = 1. If there is a prime≥ 5 dividing a3, then
v ≥ 5t ≥ 5(2n − 3) > 2n − 1. If there are no primes≥ 5 dividing a3, thena3

is a power of3. Given the conditions of Lemma 7, the casek = 3 is complete.
Now, considerk ∈ {5, 7}. There are positive integerst1 andt2 satisfying

(2) t = t1t2, gcd

(
t1,
∏
p≤k

p

)
= 1 and t2 minimal.

For k = 5, we havet2 = 1; for k = 7, we havet2 ∈ {1, 3}. The idea is to show
that if k ∈ {5, 7}, then there is a prime≥ 11 that divides someap so that

v ≥ 11t1 ≥ 11t

3
≥ 11(2n− k)

3
≥ 11(2n− 7)

3
> 2n− 1.

For eachk ∈ {5, 7}, we checked computationally whether the inequality asserted
in Lemma 7 holds whenk ≤ n ≤ 125. For k = 5 andk ≤ n ≤ 125, the
inequality holds if and only ifn 6∈ {5, 14, 15}. For k = 7 andk ≤ n ≤ 125,
the inequality holds if and only ifn 6= 14. Forn ≥ 125, one checks that Lemma
4 implies that someap is divisible by a prime≥ 11. Given the conditions of
Lemma 7, the argument is complete now whenk ∈ {5, 7}.

Case (v). Considern ≤ 998 with 9 ≤ k ≤ n. There are a finite number of
pairs (n, k) to consider, and we simply did a computation (using MAPLE 7)
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to determine whether the inequality in Lemma 7 holds. More explicitly, for a
positive integert, definet1 = t1(t) andt2 = t2(t) as in (2). Letm0 = 1. For
fixed (n, k), define recursively

mj = mj−1 · t1(2n− (2j − 1)) for 1 ≤ j ≤ k + 1

2
.

For each(n, k), we computed values ofmj until we obtained one which exceeded
2n− 1. With the conditions onn andk in this case, such aj ≤ (k+ 1)/2 always
existed, completing the case under consideration.

5 A Proof of Theorem 1

Let f(x) be as in Theorem 1, and assumef(x) is reducible. Then there is an odd
integerk such thatf(x) has a factor (inQ[x]) of degreek ork+1 in [1, n]. Lemma
6 and Lemma 7 lead us far into the proof of Theorem 1 as they immediately imply
that if f(x) is reducible, thenan must be divisible by a number> 2n− 1 except
possibly in the case thatk = 1 or one of the three conditions stated in Lemma 7
occur. We are left then with considering these cases.

Supposek = 1. Noting that2n − 1 is odd, we obtain from Lemma 6 that
an must be divisible by2n − 1. The condition0 < |an| < 2n − 1 of Theorem
1 implies a contradiction. Recall also that it was noted in the introduction that
a linear or quadratic factor can exist if|an| = 2n − 1. So the strict inequality
|an| < 2n− 1, not required in the previous paragraph, is necessary here.

For the remainder of this section, we shall make use of several explicit New-
ton polygons. For this purpose, we denoteNw(p) as the Newton polygon of
a polynomialw(x) with respect to a primep. We refer to the horizontal dis-
tance between two points(x1, y1) and(x2, y2) as |x2 − x1| and to the horizon-
tal length of an edge of a Newton polygon as the horizontal distance between
its endpoints. We work withF (x) = u2nf(x), noting that its factors have the
same degree as the factors off(x). We fix G(x) to be the polynomialF (x)
with an = an−1 = · · · = a1 = a0 = 1. Thus, ifG(x) =

∑n
j=0 bjx

2j, then
F (x) =

∑n
j=0 ajbjx

2j. Throughout, we make use of Lemma 1 to derive infor-
mation about the factors ofF (x) and, hence,f(x). Specifically, we make use of
the following (some of which have already been used and elaborated on in the
proof of Lemma 6):

(A) If F (x) has a factor of degreed, then for any primep we have thatd can be
written as a sum of horizontal distances between consecutive lattice points
along the edges ofNF (p). More explicitly, if (x0, y0), (x1, y1), . . . , (xr, yr)
is a complete list of the lattice points along the edges ofNF (p) with 0 =
x0 < x1 < · · · < xr−1 < xr = degF , thend =

∑r
j=1 εj(xj −xj−1) where

eachεj ∈ {0, 1}.

(B) If the slope of an edge ofNF (p) is positive and< 1/d, then the horizontal
distance between any two lattice points on the edge is> d.
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(C) If the slope of the right-most edge ofNF (p) is< 1/d and if the sum of the
lengths of the edges ofNF (p) with a zero or negative slope is< d, then
F (x) cannot have a factor of degreed.

(D) The spots used to formNF (p) lie on or above the spots used to formNG(p).

(E) If the slope of the right-most edge ofNG(p) is< 1/d, then the slope of the
right-most edge ofNF (p) is< 1/d.

The first item (A) above follows directly from Lemma 1; (B) is easily checked;
(C) is a consequence of (A) and (B); (D) follows from the fact thatνp(ajbj) ≥
νp(bj); and (E) follows from (D) anda0 = ±1 (so that the right-most endpoint
onNF (p) is the same as the right-most endpoint ofNG(p)).

We turn now to the case thatn = 14 andk ∈ {5, 7} (arising in the conditions
of Lemma 7). The Newton polygonNG(23) consists of two edges, one adjoining
the points(0, 0) and(4, 0) and one adjoining the points(4, 0) to (28, 1). From
(C), (D) and (E), we deduce thata12, a13, anda14 are all divisible by23. As
|a14| < 27, we have thatp - a14 for every primep 6= 23. We considerp = 3. The
Newton polygonNG(3) consists of two edges, one adjoining the points(0, 0) and
(18, 5) and one adjoining(18, 5) to (28, 8). Since3 - a14 anda0 = ±1, the points
(0, 0) and(28, 8) are onNF (3). If (18, 5) is as well, then by (D) the edges of
NF (3) are identical to those ofNG(3), and we deduce from (A) thatF (x) cannot
have a factor of degreek. So it must be the case that3|a5 (so that the coefficient
of x10 in F (x) is divisible by a higher power of3 than the coefficient ofx10 in
G(x)). In this case,NF (3) consists of a single edge from(0, 0) to (28, 8) of
slope2/7. It follows from (A) thatF (x) cannot have a factor of degree5, 6,
or 8. SoF (x) has a factor of degree7. We consider nowp = 7. The Newton
polygonNG(7) consists of three edges, one from(0, 0) to (6, 0), one from(6, 0)
to (20, 1), and one from(20, 1) to (28, 2). From (C), (D) and (E), we obtain that
F (x) cannot have a factor of degree7. This is a contradiction so that, in the case
n = 14, the polynomialf(x) cannot have a factor of degree in[5, 8].

We turn next to the case thatk = 5 andn = 15. The Newton polygonNG(29)
consists of a single edge from(0, 0) to (30, 1). From (C) and (E), we deduce that
29|a15. This is sufficient to deal with this case as the condition0 < |an| <
2n− 1 in Theorem 1 cannot hold. To obtain the stronger result suggested in the
introduction thatf(x) cannot have a factor of degree5 or 6 when|an| = 2n− 1
andk ≤ n, we note that an analysis ofNF (3) can be used. We omit the details.

We turn now tok = 5 andn = 5. The Newton polygonNG(7) consists of
two edges, one from(0, 0) to (2, 0) and one from(2, 0) to (10, 1). By (C), (D)
and (E), we obtain7|a5. Since|a5| < 9, we have3 - a5. The Newton polygon
NG(3) consists of a single edge from(0, 0) to (10, 3). As 3 - a0a5, we deduce
from (D) that the Newton polygonNF (3) also consists of just this one edge.
Hence,f(x) cannot have a factor of degree5 or 6.

Now, supposek = 3 and2n − 3 is a power of3. In Lemma 7, we obtained
slightly more information than necessary to complete the proof of Theorem 1.
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Since2n− 3 is a power of3 (andn ≥ k = 3), it is clear that∏
pr‖(2n−1)(2n−3)

p≥5

pr = 2n− 1.

Hence, in this case, we obtain a contradiction from Lemma 5 and the condition
0 < |an| < 2n − 1. Thus, if 2n − 3 is a power of3, thenf(x) cannot have a
factor of degree3 or 4. Note that an example was given in the introduction of
a reducible quarticf(x) arising when|an| = 2n − 1 with n = 6 and, in this
example,2n− 3 is a power of3.

It remains to considerk = 3 and2n− 1 is a power of3. Our analysis here is
complicated by the fact that there are infinitely many cases under consideration.
We proceed as follows. Observe that the product above is now2n − 3 so that
Lemma 5 implies2n − 3 dividesan. Since2n − 1 is divisible by3 and0 <
|an| < 2n − 1, we deduce that3 - an. Defineu by 2n − 1 = 3u. As n ≥
k = 3, we deduceu ≥ 2. If u = 2, thenNG(3) and, hence,NF (3) consist of a
single edge with slope3/10, giving a contradiction (by (A)). Thus,u ≥ 3 and,
consequently,n ≥ 14. Our approach will be to describeNG(3) rather explicitly
and, in particular, to show that the right-most edge ofNG(3) has slope3/10
and the left-most edge ofNG(3) has slope(n + 1)/(4n − 2). Since3 - ana0,
we deduce from (D) that the slopes of the edges ofNF (3) lie in the interval
[(n + 1)/(4n − 2), 3/10] ⊂ (1/4, 1/3). The slopes being positive and< 1/3
implies from (B) thatf(x) cannot have a factor of degree3. The slopes also
being> 1/4 implies thatf(x) cannot have a factor of degree4 (otherwise, the
horizontal distance between two lattice points would be≤ 4 which is easily seen
to be impossible). Thus, we will have a contradiction, and the proof of Theorem
1 will be complete.

We are left with showing that the right-most edge ofNG(3) has slope3/10
and the left-most edge ofNG(3) has slope(n+ 1)/(4n− 2). Here,2n− 1 = 3u

with u ≥ 3 (andn ≥ 14). Let m be such that2m − 1 = 3u−1. Thenm =
(3u−1 + 1)/2 = (n+ 1)/3. Define

H(x) =
m∑

j=0

u2m

u2j

x2j.

Thus,H is the polynomialG with the role ofu replaced byu − 1. We will
show that the Newton polygonsNG(3) andNH(3) are closely connected; in fact,
we will show that a translation ofNH(3) is embedded in the right-most part of
NG(3). In the case thatu = 2, we already indicated thatNG(3) consists of a
single edge with slope3/10. It will then follow that for everyu ≥ 3, the right-
most edge ofNG(3) has slope3/10, giving us partially what we want.

Fix ν = ν3. We make use of the fact that

(3) ν(3u − 2`) = ν(`) for 1 ≤ ` <
3u

2
.
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From (3),

ν

(
u2n

u2m

)
= ν

(
(2n− 1)(2n− 3) · · · (2m+ 1)

)
= ν

(
3u
)

+ ν
(
3u − 2

)
+ · · · + ν

(
3u − (2n− 2m− 2)

)
= u+ ν(1) + ν(2) + · · · ν(n−m− 1

)
= u+ ν

(
(n−m− 1)!

)
.

One checks thatn−m− 1 = 3u−1 − 1 so that

ν
(
(n−m− 1)!

)
=

u−1∑
j=1

[
3u−1 − 1

3j

]

=
u−1∑
j=1

(
3u−1−j − 1

)
=

3u−1 − 1

2
− (u− 1).

We deduce that

(4) ν

(
u2n

u2m

)
=

3u−1 − 1

2
+ 1 =

3u−1 + 1

2
=
n+ 1

3
.

Observe that

G(x) =
n∑

j=m+1

u2nx
2j

u2j

+
u2n

u2m

H(x).

As 2n− 2m = 3u − 3u−1 = 2 · 3u−1 = (4n− 2)/3, we see that the lattice point
((4n− 2)/3, (n+ 1)/3) is a spot in the construction ofNG(3). Furthermore, the
spot((4n− 2)/3, (n+ 1)/3) and the spots to the right of it in the construction of
NG(3) are precisely the spots used to constructNH(3) translated horizontally by
(4n− 2)/3 and vertically by(n+ 1)/3.

This does not completely establish what we want nor even thatNH(3) is
embedded inNG(3). To complete the proof, we establish two things, that the
left-most edge ofNG(3) has slope(n + 1)/(4n − 2) and that this slope is less
than the slopes of the edges appearing inNH(3). Once the former is shown the
latter will follow by induction as(n+ 1)/(4n− 2) is a decreasing function ofn
andH(x) is simplyG(x) with u in G(x) replaced byu− 1. The slope of the line
through(0, 0) and((4n− 2)/3, (n+ 1)/3) is (n+ 1)/(4n− 2). To establish that
the left-most edge ofNG(3) has slope(n + 1)/(4n− 2), it suffices to show that
the slope of the line through((4n − 2)/3, (n + 1)/3) and any spot(a, b) to the
left of ((4n− 2)/3, (n+ 1)/3) with a > 0 is less than(n+ 1)/(4n− 2). For any
such spot(a, b), we have an integerj for which

a =
4n− 2

3
− 2j, b = ν(u2n) − ν(u2n−a), and 0 < j < 3u−1.
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Recall that2n− 2m = (4n− 2)/3 so that

2n− a > 2n− (4n− 2)/3 = 2m.

Also, a = 2(2n− 1)/3 − 2j = 2
(
3u−1 − j

)
. From (3) and (4), we have

n+ 1

3
− b = ν

(
u2n

u2m

)
− ν

(
u2n

u2n−a

)
= ν

(
u2n−a

)− ν
(
u2m

)
= ν

(
(2n− a− 1)(2n− a− 3) · · · (2m+ 1)

)
= ν

(
a

2

(
a

2
+ 1

)
· · · (n−m− 1)

)

= ν
(
(3u−1 − 1)!

)− ν
((

3u−1 − j − 1
)
!
)
.

One checks that this last difference is equal toν(j!) < j/2. Thus, the slope of
the line through(a, b) and((4n− 2)/3, (n+ 1)/3) is

ν(j!)

2j
<

1

4
<

n+ 1

4n− 2
,

completing the proof of Theorem 1.
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