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1. Introduction

In 1929, I. Schur [19] established the following result:

Theorem 1 (I. Schur). Let n be a positive integer, and let a0; a1; � � � ; an denote arbitrary
integers with ja0j = janj = 1. Then

an
xn

n!
+ an�1

xn�1

(n� 1)!
+ � � �+ a1x+ a0

is irreducible.

Irreducibility here and throughout this paper refers to irreducibility over the rationals.
Some condition, such as ja0j = janj = 1, on the integers aj is necessary; otherwise, the
irreducibility of all polynomials of the form above would imply every polynomial inZ[x] is
irreducible (which is clearly not the case). In this paper, we will mainly be interested in

relaxing the condition janj = 1. Speci�cally, we will show:

Theorem 2. Let a0; a1; : : : ; an denote arbitrary integers with ja0j = 1, and let f(x) =Pn
j=0 ajx

j=j!. If 0 < janj < n, then f(x) is irreducible unless

an = �5 and n = 6

or

an = �7 and n = 10

in which cases either f(x) is irreducible or f(x) is the product of two irreducible polynomials
of equal degree. If janj = n, then either f(x) is irreducible or f(x) is x � 1 times an

irreducible polynomial of degree n� 1.
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In the cases that the pair (an; n) is (�5; 6) or (�7; 10), one can obtain reducible f(x).

In the way of examples, we note

5� x6

6!
� 1 =

�
x3

12
+ 1

��
x3

12
� 1

�

and

7� x10

10!
� 1 =

�
x5

720
+ 1

��
x5

720
� 1

�
:

These particular examples arise partially because 6!=5 and 10!=7 are squares. It is possible

to show that if n is a positive integer and p is a prime for which n!=p is a square, then

(n; p) 2 f(2; 2); (6; 5); (10; 7)g.
If one chooses a0 = �1, the integers a1; a2; : : : ; an�2 arbitrarily, and an = �n (or any

multiple of n will do), it is easy to see that there is an integer an�1 for which f(�1) = 0
and there is an integer an�1 for which f(1) = 0. Thus, x� 1 may be a factor of f(x) when
janj = n. The last statement of the theorem implies that the remaining factor of degree
n� 1 will necessarily be irreducible.

In the next three sections, we establish Theorem 2. It is of some interest to know to
what extent one can further extend the range on an in Theorem 2. In Section 5, we will
establish

Theorem 3. Let C be a positive number < 1=
p
2. Let n be a positive integer, and let

a0; a1; : : : ; an be arbitrary integers with ja0j = 1 and 0 < janj � Cn3=2. Let f(x) =Pn
j=0 ajx

j=j!. Then for all but �nitely many pairs of integers (an; n), either f(x) is

irreducible or f(x) factors in Q[x] as the product of a linear polynomial and an irreducible
polynomial of degree n � 1. In the case that f(x) has a linear factor, one necessarily has
njan.
The proof we will give of Theorem 3 is non-e�ective; the exceptional pairs (an; n) cannot
be determined. A weaker inequality such as

0 < janj � n exp

 s
logn

(log log n)3

!

would make Theorem 3 e�ective, and we describe how this can be done in Section 6.
From Theorem 3, it follows that if janj is not too large, then either f(x) is irreducible or

it has a linear factor. Suppose instead we wish to conclude that either f(x) is irreducible
or it has a factor of degree � 2. Then a stronger result, with a larger upper bound on
janj, can be obtained directly from our methods. In fact, an even stronger result can be
obtained if for some k � 3 one allows for f(x) to have a factor of degree � k. We will not

elaborate further on this, but these remarks are easily deduced from the proof we give of
Theorem 3.

The proof of Theorem 3 will be based on �nding an upper bound on n for the exceptional
pairs (an; n) in the statement of the theorem. The condition 0 < janj � Cn3=2 then implies

that this list of exceptional pairs is �nite. The author has considered speci�cally the case
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that 0 < janj � 2n. In particular, if f(x) is as above with n < janj < 2n, then either

f(x) is irreducible or (an; n) = (�6; 4). If janj = 2n and f(x) is reducible, then f(x) is the
product of two irreducible polynomials. One of these two polynomials will be linear, and

in fact will be x� 1 or 2x� 1, unless (an; n) = (�10; 5) and f(x) factors as the product of
an irreducible quadratic and an irreducible cubic. In this regard, the examples

6� x4

4!
� 1 =

�
x2

2
+ 1

��
x2

2
� 1

�
and 10� x5

5!
+
x3

3!
+
x2

2!
+ 1 =

1

12

�
x2 + 2

� �
x3 + 6

�

are worth noting. This result with 0 < janj � 2n can be obtained in a very similar manner

to the proof of Theorem 2, and we do not elaborate on the details.

In the sixth section of this paper, we will discuss other results related to the irreducibility

of f(x). In particular, we will give a proof of the following nice generalization of Schur's

theorem due to T.Y. Lam (private communication):

Theorem 4 (T.Y. Lam). Let n be an integer � 2, and let a0; a1; : : : ; an be arbitrary
integers with gcd(a0an; n!) = 1. Then

Pn
j=0 ajx

j=j! is irreducible.

We observe that, as a consequence of Lam's theorem, if p is a prime, ja0j = 1, and janj = p,
then f(x) is irreducible for n < p. Together with Theorem 2, this implies that if janj = p,
then the condition janj < n in Theorem 2 may be replaced by janj 6= n. In other words, if
janj = p, then f(x) irreducible unless (an; n) 2 f(�5; 6); (�7; 10)g or n = p.

2. Background and Sketch of the Proof of Theorem 2

Recently, the author [9] established that all but �nitely many Bessel polynomials are
irreducible. The proof of Theorem 2 will be based on the same techniques. However, there
are really two basic elements of the proof and these both have a long history. The �rst is
the use of Newton polygons to deduce the irreducibility of the polynomials in Theorem 2.
In 1906, G. Dumas [6] obtained an important result, discussed below, which has been the
basis of many irreducibility theorems since then (cf. [9,11,13,24]), so it is not surprising
that Newton polygons should play a role in the proof of Theorem 2. In fact, R.F. Coleman
[4] has already observed that Newton polygons can be used to establish the irreducibility

of the polynomials in Theorem 1 in the case that an = an�1 = � � � = a1 = a0 = 1;

and the author [9] recently gave a proof of Theorem 1 in its full generality using Newton
polygons. The second basic element of our proof of Theorem 2 is the use of information
on the distribution of primes. In particular, a result of E.F. Ecklund, Jr., R.B. Eggleton,

P. Erd}os, and J.L. Selfridge [7] on prime divisors of binomial coe�cients will play an

important role.
Newton polygons can be described as follows. Let f(x) =

Pn
j=0 ajx

j 2 Z[x] with

a0an 6= 0. Let p be a prime, and let m be an integer. We use the p-adic notation

�(m) = �p(m) = r if prjm and pr+1 - m:

If m = 0, then we will understand this to mean �(m) = +1. For j 2 f0; : : : ; ng, we
de�ne a set of points S = f(0; �(an)); (1; �(an�1)); : : : ; (n; �(a0))g in the extended plane.

3



The elements of S we refer to as spots. We consider the lower edges along the convex hull

of these spots. The left-most edge has one endpoint being (0; �(an)) and the right-most
edge has (n; �(a0)) as an endpoint. The endpoints of every edge belong to the set S. We

emphasize that, for our purposes, when referring to the \edges" of a Newton polygon, we

shall not allow 2 di�erent edges to have the same slope. The polygonal path formed by

these edges is called the Newton polygon of f(x) with respect to the prime p. Observe
that the slope of the edges are always increasing when calculated from the left-most edge

to the right-most edge. The following theorem is due to Dumas [6].

Theorem 5. Let g(x) and h(x) be inZ[x] with g(0)h(0) 6= 0, and let p be a prime. Let k

be a non-negative integer such that pk divides the leading coe�cient of g(x)h(x) but pk+1

does not. Then the edges of the Newton polygon for g(x)h(x) with respect to p can be

formed by constructing a polygonal path beginning at (0; k) and using translates of the

edges in the Newton polygons for g(x) and h(x) with respect to the prime p, using exactly
one translate for each edge of the Newton polygons for g(x) and h(x). Necessarily, the
translated edges are translated in such a way as to form a polygonal path with the slopes
of the edges increasing from left to right.

Although we will stick here to the use of Newton polygons as just described, we note
that there are other contexts in which Newton polygons occur. In particular, one may
describe Newton polygons, or more appropriately Newton polytopes, in several variables
as follows. Associate with a polynomial f(x1; : : : ; xm) a set T of points (e1; e2; : : : ; em) in
Rm corresponding to the terms axe11 x

e2
2 � � �xemm of f with a 6= 0. Denote by Cf the convex

hull of the set T in Rm. Then Cf is called the Newton polytope of f . We mention two
results associated with Newton polytopes. D.N. Bernstein [3] has shown that the number
of intersection points (counted with multiplicity) of m algebraic curves in m variables can
be determined from the use of Newton polytopes. If f factors as the product of polynomials
g and h in Z[x1; : : : ; xm], A.M. Ostrowski [16] has established that Cf = Cg + Ch. If one
replaces the prime p in our de�nition of Newton polygons above with a variable, then
Ostrowski's theorem comes close to directly implying Theorem 5 (but note the example
f(x) = g(x)h(x) with g(x) = h(x) = x+ 1 and p = 2 in this context).

Our main use of Theorem 5 is summarized in our �rst lemma. We note that the proof
is similar to the proof of Lemma 2 in [9].

Lemma 1. Let a0; a1; : : : ; an denote arbitrary integers with ja0j = 1, and let

f(x) =

nX
j=0

aj
xj

j!
:

Let k be a positive integer � n=2. Suppose there exists a prime p � k + 1 and a positive
integer r for which

prjn(n� 1) � � � (n� k + 1) and pr - an:

Then f(x) cannot have a factor of degree k.

Proof. It su�ces to show that

F (x) = n!f(x) =

nX
j=0

aj (n!=j!)x
j
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cannot have a factor of degree k. We set bj = ajn!=j! for 0 � j � n. The condition

prjn(n�1) � � � (n�k+1) implies that prjbj for j 2 f0; 1; : : : ; n�kg. Thus, the n�k+1 right-
most spots, (k; �(an�kn!=(n� k)!)); : : : ; (n; �(a0n!)), associated with the Newton polygon

of F (x) with respect to p have y-coordinates � r. Since pr - an and bn = an, we have

pr - bn, and the left-most spot (0; �(an)) has y-coordinate < r. Recall that the slopes

of the edges of the Newton of F (x) with respect to p increase from left to right. This is
su�cient to imply that the spots (j; �(bn�j)) for j 2 fk � 1; k; k + 1; : : : ; ng all lie on or

above edges of the Newton polygon of F (x) which have positive slope.

Next, we show that each of these positive slopes is < 1=k. Since the slopes of the edges

of the Newton polygon increase from left to right, it su�ces to show that the right-most

edge has slope < 1=k. The slope of that edge is

max
1�j�n

�
�(b0)� �(bj)

j

�
:

For 1 � j � n, we have

�(b0) � �(bj) = �(a0n!)� �(ajn!=j!)

� �(n!)� �(n!=j!)

= �(j!) =

�
j

p

�
+

�
j

p2

�
+

�
j

p3

�
+ � � �

< j

�
1

p
+

1

p2
+ � � �

�
=

j

p� 1
:

Since p � k + 1, we obtain

max
1�j�n

�
�(b0) � �(bj )

j

�
<

1

p� 1
� 1

k
:

Thus, each edge of the Newton polygon of F (x) has slope < 1=k.
Now, assume F (x) has a factor g(x) 2 Z[x] of degree k. We obtain a contradiction to

Theorem 5 by showing that translates of all the edges of the Newton polygon of g(x) with

respect to p cannot be found among the edges of the Newton polygon of F (x) with respect
to p. First, we show that no translate of an edge of the Newton polygon of g(x) can be
found among those edges in the Newton polygon of F (x) having positive slope. Suppose

(a; b) and (c; d), with a < c, are two lattices points on an edge of the Newton polygon of

F (x) having positive slope. Since we have already shown such a slope is < 1=k, we deduce

1

k
>
d� b

c� a
� 1

c� a
:

Therefore, c � a > k = deg g(x). It follows that (a; b) and (c; d) cannot be endpoints of
a translated edge of the Newton polygon of g(x). Therefore, the translates of the edges

of the Newton polygon of g(x) with respect to p must be among the edges of the Newton
polygon of F (x) having zero or negative slope. We have already observed that all the
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spots (j; �(bn�j )) for j 2 fk�1; k; � � � ; ng lie on or above the edges of the Newton polygon

of F (x) having positive slope. Therefore, the spots forming the endpoints of the edges
of the Newton polygon of F (x) having zero or negative slope must be among the spots

(j; �(bn�j)) where j 2 f0; 1; : : : ; k � 1g. Since k � 1 < deg g(x), these edges by themselves

cannot consist of a complete collection of translated edges of the Newton polygon of g(x).

Therefore, we obtain a contradiction, completing the proof. �

As a consequence, we deduce

Lemma 2. If 0 < janj < n, then f(x) cannot have a linear factor.

Proof. If 0 < janj < n, then there must be a prime power pr such that prjn and pr - an.

The lemma follows by taking k = 1 in Lemma 1. �

In the next two sections, we will show that if 0 < janj � n and f(x) has a factor of

degree k 2 [2; n=2], then either an = �5, n = 6, and k = 3 or an = �7, n = 10, and
k = 5. We explain here why Theorem 2 will then follow. Suppose f(x) is reducible. Then
f(x) and likewise F (x) has a factor of degree k 2 [1; n=2]. If 0 < janj < n, then Lemma 2
and the results just mentioned that we will be establishing in the next two sections easily
imply this case of Theorem 2. Now, consider the possibility that janj = n. In this case, we
still know that F (x) cannot have a factor of degree k 2 [2; n=2]. For n > 3, it follows that
F (x) has a linear factor and the remaining factor is irreducible; for n = 3, considering the
Newton polygon of F (x) with respect to 2 allows us to make the same conclusion (i.e., in
this case, F (x) factors as a linear polynomial times an irreducible quadratic in Z[x]). We
want to show that either F (x) = (x + 1)g(x) or F (x) = (x � 1)g(x) where g(x) 2 Z[x].
Since janj = n, we deduce that n divides each coe�cient of F (x). We write F (x) = nh(x)
where h(x) is a monic polynomial in Z[x] having constant term �(n � 1)!. We deduce
from the rational root test applied to h(x) that F (x) has an integer root m which divides
(n � 1)!. We now only need to show that no prime p divides m. Assume some prime p
divides m, and let r = �p((n � 1)!). As in the proof of Lemma 1, we have �p(j!) < j for
j � 1. Thus,

�p

�
aj
(n � 1)!

j!
mj

�
� �p((n � 1)!)� �p(j!) + j � r + 1 for 1 � j � n:

Hence,

h(m) =

nX
j=0

aj
(n� 1)!

j!
mj � �(n� 1)! 6� 0 (mod pr+1):

This contradicts that F (m), and hence h(m), is zero.
The above discussion explains the main role of Newton polygons in the proof of Theorem

2. We now turn to the role of results from the distribution of primes. In proving Theorem

1, Schur used the following:

Theorem 6 (J.J. Sylvester [22]). Let k be a positive integer. Then at least one of any

k consecutive integers > k is divisible by a prime > k.

Theorem 6 was rediscovered by Schur in [19]. The theorem implies immediately that

for any positive integer k, one of k+1; k+2; : : : ; 2k is a prime (since one of these integers
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must be divisible by a prime � k + 1). Thus, Bertrand's Postulate is a consequence of

Theorem 6.
As mentioned earlier, if f(x) is as in Theorem 2 (so its degree is n) and f(x) is reducible,

then f(x) has a factor of degree k 2 [1; n=2]. This implies n � k + 1 > k, so Theorem 6

implies that one of the k numbers n; n� 1; : : : ; n� k+ 1 is divisible by a prime p � k+1.

Observe that if 0 < janj � k, then p - an. Hence, from Lemma 1, we obtain

Lemma 3. If 0 < janj � k, then f(x) cannot have a factor of degree k.

Observe that if an = �1, then we deduce immediately that f(x) is irreducible. In other

words, we have just established Theorem 1.

To prove Theorem 2, we will make use of a generalization of Theorem 6 obtained by
Ecklund, Eggleton, Erd}os, and Selfridge [7]. We note the important related work by

P. Erd}os [8], K. Ramachandra [17], R. Tijdeman [23], M. Jutila [14], K. Ramachandra and

T.N. Shorey [18], and T.N. Shorey [20] involving estimates for the largest prime factor
of the product of k consecutive positive integers, say n(n � 1) � � � (n � k + 1). Also, see
A. Granville [10] for a result concerning p � k + 1 for which pjjn(n� 1) � � � (n� k + 1).

With F (x) as before and 0 < janj � n, we want to show for (an; n) 62 f(�5; 6); (�7; 10)g
that F (x) cannot have a factor of degree k 2 [2; n=2]. Assume otherwise. Then Lemma 1
implies Y

prjjn(n�1)���(n�k+1)
p�k+1

pr

divides an. Since 0 < janj � n, we will obtain a contradiction if the above product is > n.
In other words, we would like to know not just that n(n� 1) � � � (n� k +1) is divisible by
a prime > k (as in Theorem 6) but further that the contribution of all the prime factors
of this product which are > k is > n. This is not in fact always the case, but it usually is.
We will obtain the following lemma as a consequence of the work in [7], but we note here
that the work in [7] contains considerably stronger estimates (see the next section).

Lemma 4. Let k be an integer 2 [2; n=2]. Then

(1)
Y

prjjn(n�1)���(n�k+1)
p�k+1

pr > n

unless one of the following holds:

n = 12 and k = 5

n = 10 and k = 5

n = 9 and k = 4

n = 18 and k = 3

n = 10 and k = 3

n = 9 and k = 3

n = 8 and k = 3
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n = 6 and k = 3

n = 2` + 1 and k = 2

n = 2` and k = 2;

where ` represents an arbitrary positive integer.

Although the proof of Theorem 2 does not require an inequality stronger than (1), we

note that Lemma 4 holds if the right-hand side of (1) is replaced by 2n. One easily checks

that each value for the pair (n; k) in the list above gives rise to a choice of n and k for

which (1) does not hold. After establishing Lemma 4, the proof of the irreducibility of the
polynomials f(x) in Theorem 2 will almost be complete. To handle the remaining cases of

n and k given above, we will appeal once again to the use of Newton polygons. This will

be done in Section 4.

3. The Proof of Lemma 4

Throughout this section, we let n and k denote positive integers with 2 � k � n=2. Our
goal in this section is to establish Lemma 4. As mentioned in the previous section, Lemma
4 will be a fairly direct consequence of the work in [7]. There we �nd the following result:

Lemma 5. Set
�
n
k

�
= UV where the prime factors of U are all � k and the prime factors

of V are all � k + 1. If k 62 f3; 5; 7g and U > V , then (n; k) 2 S where

S = f(9; 4); (21; 8); (33; 13); (33; 14); (36; 13); (36; 17); (56; 13)g :

Now, consider k � 4. Observe that since n � 2k,
�
n
k

�
�
�
n
4

�
> n2 provided

n(n � 1)(n � 2)(n� 3) � 24n2 > 0:

The left-hand side above can be written as

n(n+ 1)
�
n(n� 7) � 6

�
which is clearly positive since n � 2k � 8. Hence, we obtain

Lemma 6. For k � 4,
�
n
k

�
> n2.

For k � 4 and k 62 f5; 7g, we deduce from the above two lemmas that if (n; k) 62 S, then

Y
prjjn(n�1)���(n�k+1)

p�k+1

pr =
Y

prjj(nk)
p�k+1

pr �
s�

n

k

�
> n:

In other words, for such (n; k), (1) holds. One checks directly that each pair (n; k) 2 S

also satis�es (1) with the exception of the pair (9; 4). Thus, we have
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Lemma 7. If k � 4 and k 6= 5 and k 6= 7, then (1) holds unless (n; k) = (9; 4).

We are left now with determining when (1) holds with k 2 f2; 3; 5; 7g. One can deal

with k = 5 and k = 7 in a fairly simple manner. We explain the argument for k = 5

and leave the analogous argument for k = 7 to the reader. We remove from the set

T = fn; n�1; n�2; n�3; n�4g the integer divisible by the largest power of 2, the integer
divisible by the largest power of 3, and the integer divisible by 5. Two of these may be
the same; but in any case, at least two, say a and b, of the �ve integers will remain in T .

Since the integer divisible by the largest power of 2 was removed from T , we deduce that

16 - ab. Similarly, 9 - ab and 5 - ab. Hence,Y
prjjn(n�1)���(n�4)

p�6

pr � ab

24
� (n� 3)(n� 4)

24
:

It is easy to verify that this last expression is > n for n � 32. It follows that (1) holds
for k = 5 and n � 32. One checks directly that (1) holds for k = 5 and n 2 f11g [
f13; 14; : : : ; 31g.

Next, we consider k = 3. We will use the following result which was established by
G.C. Gerono in 1857 (cf. [5, p. 744]).

Lemma 8. The only solutions to the equation jpr � qsj = 1, where p and q are primes
and r and s are integers greater than one, are (p; r; q; s) = (3; 2; 2; 3) and (2; 3; 3; 2).

The next lemma is well-known and follows immediately from Lemma 8.

Lemma 9. If n > 9, then there exists a prime p > 3 such that pjn(n� 1).

Lemma 10. If k = 3 � n=2, then (1) holds unless n 2 f6; 8; 9; 10; 18g.
Proof. One checks (1) directly for k = 3 and 6 � n � 18. We therefore only consider
n � 19. Let u be the greatest positive integer such that 2u divides one of n, n � 1, and
n�2. Let v be the greatest positive integer such that 3v divides one of n, n�1, and n�2.
Note that exactly one member of fn; n � 1; n � 2g, say m1, is divisible by 2u, and one of
these quantities, say m2, is divisible by 3v. The numbersm1 and m2 may not be distinct,
but there must be at least one number, saym3, among n, n�1, and n�2 which is di�erent
from m1 and m2. Observe that either m3 = m or m3 = 2m where m is a positive integer
having each of its prime divisors > 3.

Next, we show that n(n� 1)(n� 2)=m3 is divisible by a prime > 3. If m3 = n� 2, then
we deduce from Lemma 9 that n(n � 1) is divisible by a prime > 3. Similarly, if m3 = n,
we deduce such a prime exists dividing (n� 1)(n� 2). If m3 = n� 1 and m3 is odd, then
n and n� 2 are even and Lemma 9 implies that (n=2)(n� 2)=2 is divisible by some prime

> 3. If m3 = n� 1 and m3 is even, then n and n� 2 are odd and only one is divisible by
3; hence, there exists a prime > 3 dividing one of n and n� 2. Thus, we have shown that
n(n� 1)(n � 2)=m3 is divisible by a prime > 3. It now follows thatY

p>3

p�p(n(n�1)(n�2)) � 5m3=2 � 5(n� 2)=2 = (5n � 10)=2 > n:

Thus, (1) holds. �

The proof of Lemma 4 now follows from
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Lemma 11. If k = 2 � n=2, then (1) holds unless n = 2` or 2` + 1 for some positive

integer `.

Proof. For k = 2, the inequality (1) is simply

Y
prjjn(n�1)

p�3

pr > n:

One of n or n�1 is odd and, hence, divides the product on the left. If n is not of the form

2` or 2` + 1, then neither n nor n� 1 is a power of 2. Therefore,Y
prjjn(n�1)

p�3

pr � 3(n� 1) > n;

completing the proof. �

4. The Remaining Cases for Theorem 2

We set

F (x) = n!f(x) =

nX
j=0

bjx
j where bj = aj (n!=j!) :

From Section 2, Theorem 2 holds provided we can show that if 0 < janj � n and F (x)
has a factor of degree k 2 [2; n=2], then either an = �5, n = 6, and k = 3 or an = �7,
n = 10, and k = 5. We therefore assume F (x) has a factor of degree k 2 [2; n=2]. Since
0 < janj � n, Lemma 1 implies that (1) does not hold. Hence, Lemma 4 implies that the
pair (n; k) belongs to a short list of possible values. In this section, we complete the proof
of Theorem 2 by examining each of these possibilities for (n; k).

For n = 12 and k = 5, we observe that Lemma 1 implies that 11jan. Since janj � n = 12,
we deduce an = �11. We consider the Newton polygon of F (x) with respect to 3. Since
we do not know what the values of aj are, we cannot determine precisely what this Newton
polygon looks like. Since an = �11 and a0 = �1, �3(bn) = 0 and �3(b0) = 5. This means
that the left-most spot of the Newton polygon is (0; 0) and the right-most spot is (12; 5).

If we �rst consider the case where aj = 1 for 1 � j � 11, we see that the Newton polygon
consists of the line segment joining (0; 0) to (3; 1) together with the line segment joining
(3; 1) to (12; 5). Since �3(bj ) can only increase by choosing the numbers aj in a di�erent

way, in general if we let the values of aj vary over the integers, the Newton polygon of
F (x) with respect to 3 will consist of precisely these 2 line segments unless 3jan�3. If
3jan�3, then the Newton polygon is simply the segment joining (0; 0) to (12; 5). In either
case, Theorem 5 implies that F (x) cannot have a factor of degree 5 in Z[x], and we obtain

a contradiction.
Now, suppose n = 10 and k = 5. Here, Lemma 1 implies 7jan. Since janj � n = 10,

we obtain an = �7. One checks that the Newton polygon of F (x) with respect to 5 is

the segment joining (0; 0) to (10; 2). The lattice points along this Newton polygon are
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(0; 0), (5; 1), and (10; 2). Hence, Theorem 5 implies that if F (x) is reducible, then it is the

product of two irreducible polynomials of degree 5. Recall that in Theorem 2, we allow
the possibility that an = �7, n = 10, and f(x) (or equivalently F (x)) factors as a product

of two irreducible quintics. Thus, we are done in this case.

If n = 9 and k = 4, then Lemma 1 implies 7jan so that an = �7. The Newton polygon

of F (x) with respect to 3 is simply the line segment joining (0; 0) to (9; 4). We deduce from
Theorem 5 that F (x) cannot have a factor of degree 4 in Z[x], obtaining a contradiction.

If n = 18 and k = 3, then Lemma 1 implies 17jan so that an = �17. The Newton

polygon of F (x) with respect to 3 is the line segment joining (0; 0) to (18; 8). There are

only three lattice points on the Newton polygon, namely (0; 0), (9; 4), and (18; 8). Hence,
F (x) cannot have a factor of degree 3 in Z[x].

If n = 10 and k = 3, we use Lemma 1 to deduce that 5jan. Since 0 < janj � 10, we

deduce here that an = �5 or an = �10. In either case, we consider the Newton polygon

of F (x) with respect to 3. If 3 - an�1, then the Newton polygon consists of 2 edges, one
joining (0; 0) to (1; 0) and the other joining (1; 0) to (10; 4). If 3jan�1, then the Newton
polygon consists of exactly 1 edge joining (0; 0) to (10; 4). In either case, we again deduce
that F (x) cannot have a cubic factor in Z[x].

If n = 9 and k = 3, Lemma 1 implies that an = �7. As before, one can show that
F (x) cannot have a cubic factor in Z[x] by considering the Newton polygon of F (x) with
respect to 3.

If n = 8 and k = 3, Lemma 1 implies that an = �7, and one shows that F (x) cannot
have a cubic factor in Z[x] by considering the Newton polygon of F (x) with respect to 2.

For n = 6 and k = 3, Lemma 1 implies that an = �5. Theorem 2 allows for the
possibility that an = �5, n = 6, and k = 3, so we are done in this case.

Now, suppose that n = 2` + 1 for some positive integer ` and that k = 2. Lemma 1
implies that n divides an. Since 0 < janj � n, we deduce that an = �n. We consider

g(x) = anx
n +

n�1X
j=0

(n!=j!)xj ;

so that g(x) is the polynomial F (x) with aj = 1 for 0 � j � n � 1. As we have already

seen in the cases above, the Newton polygon of g(x) with respect to a prime is related to
the Newton polygon of F (x) with respect to that prime. We consider the Newton polygon
of g(x) with respect to 2. We now justify that this Newton polygon consists of two line
segments, one joining (0; 0) to (1; 0) and one joining (1; 0) to (n; n� 2). Clearly (0; 0) and

(1; 0) are spots obtained in the construction of the Newton polygon of g(x) with respect
to 2. The right-most spot is (n; �2(n!)), and

�2(n!) =
hn
2

i
+
hn
4

i
+ � � � = 2l�1 + 2l�2 + � � �+ 2 + 1 = 2l � 1 = n� 2:

Since (1; 0) and (n; n�2) are spots, the slope of the right-most edge of the Newton polygon

of g(x) with respect to 2 is � (n� 2)=(n� 1). To show that the line segment joining (1; 0)
and (n; n � 2) is an edge of this Newton polygon, it su�ces to show that the slope of the
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right-most edge is � (n� 2)=(n� 1). Since (0; 0) and (1; 0) are spots, the right-most edge

has slope

max
1�j�n�1

�
�2(n!) � �2(n!=j!)

j

�
= max

1�j�n�1

�
�2(j!)

j

�
:

For any positive integer j, �2(j!) = [j=2] + [j=4] + � � � < j. Thus, �2(j!) � j � 1, and

max
1�j�n�1

�
�2(j!)

j

�
� max

1�j�n�1

�
j � 1

j

�
=
n� 2

n� 1
:

This completes the justi�cation that the Newton polygon of g(x) with respect to 2 consists

of a line segment joining (0; 0) to (1; 0) together with a line segment joining (1; 0) to

(n; n� 2).

We now concern ourselves with the Newton polygon of F (x) with respect to 2. Note

that the spots associated with the Newton polygon of F (x) with respect to 2 lie on or
above the edges of the Newton polygon of g(x) with respect to 2. The interior of the
triangle T with vertices (0; 0), (1; 0), and (n; n � 2) will in general contain many lattice
points. We will show that none of these lattice points can be a spot associated with the
Newton polygon of F (x) with respect to 2. It will then follow that if (1; 0) is not a spot
associated with the Newton polygon of F (x) with respect to 2, then this Newton polygon
is simply the line segment joining (0; 0) to (n; n� 2). On the other hand, if (1; 0) is a spot
associated with the Newton polygon of F (x) with respect to 2, then the Newton polygon
of F (x) with respect to 2 is the same as the Newton polygon of g(x) with respect to 2.
Since n is odd, gcd(n; n � 2) and gcd(n � 2; n � 1) are both 1 so that in any case the
only lattice points on the edges of the Newton polygon of F (x) with respect to 2 are the
endpoints of its edges. This will easily imply that F (x) cannot have a quadratic factor.

Now, we show that the lattice points strictly inside the triangle T are not spots asso-
ciated with the Newton polygon of F (x) with respect to 2. The point (n; n � 2) is the
right endpoint of the right-most edge of this Newton polygon. The line passing through
(n; n� 2) and a point interior to T has slope > (n� 2)=n. In particular, this implies (1; 1)
is not inside T . Since the spots associated with the Newton polygon of F (x) with respect

to 2 are the points of the form (n � j; �2(bj )), it su�ces to show

max
1�j�n�2

�
�2(b0) � �2(bj )

j

�
� n� 2

n
:

Since �2(a0) = �2(�1) = 0 and �2(aj ) � 0, we need only show

(2) max
1�j�n�2

�
�2(n!) � �2(n!=j!)

j

�
� n� 2

n
:

Observe that this is stronger than the earlier inequality we obtained with (n�2)=n replaced

by (n � 2)=(n � 1). Since n� 2 = 2` � 1, we obtain for 1 � j � n� 2 that

�2(j!) =

�
j

2

�
+

�
j

4

�
+ � � �+

�
j

2`�1

�
� j

�
1

2
+

1

4
+ � � �+ 1

2`�1

�
=
j
�
2`�1 � 1

�
2`�1

=
j(n� 3)

n� 1
:
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Thus,
�2(n!)� �2(n!=j!)

j
=
�2(j!)

j
� n� 3

n� 1
<
n� 2

n
for 1 � j � n� 2:

Hence, (2) follows.

Now, suppose that n = 2` for some positive integer ` and that k = 2. Here, Lemma 1
implies an = �(n � 1). We de�ne g(x) as above. Since an is odd, the left-most endpoint

of the Newton polygon of g(x) with respect to 2 is (0; 0). Since

�2(n!) = [n=2] + [n=4] + � � � = 2`�1 + 2`�2 + � � � + 2 + 1 = 2` � 1;

the right-most endpoint of the Newton polygon of g(x) with respect to 2 is (n; 2` � 1) =

(n; n� 1). Analogous to the previous case, the slope of the right-most edge of the Newton

polygon of g(x) with respect to 2 is

max
1�j�n

�
�2(n!) � �2(n!=j!)

j

�
= max

1�j�n

�
�2(j!)

j

�
� max

1�j�n

�
j � 1

j

�
=
n� 1

n
:

We deduce that the Newton polygon of g(x), and hence of F (x), with respect to 2 consists
of the line segment joining (0; 0) to (n; n � 1). Since gcd(n; n � 1) = 1, we conclude F (x)
cannot have a quadratic factor.

This completes the proof of Theorem 2.

5. The Proof of Theorem 3

The proof of Theorem 3 will mainly be based on the ideas already presented in the proof
of Theorem 2. The possibility that f(x) has a linear factor or has a factor of degree k � 8
will not involve any new ideas, and we shall not elaborate much on these details. There
are however two aspects of the arguments here that will be di�erent, one which deals with
the possibility that f(x) has a factor of degree k 2 [3; 7] and one which deals with the
possibility that f(x) has a quadratic factor.

As before we set F (x) =
Pn

j=0 bjx
j with bj = n!aj=j!, and assume that F (x) has a

factor of degree k 2 [1; n=2]. Lemma 2 was an immediate consequence of Lemma 1. A

stronger result than Lemma 2 that also follows immediately from Lemma 1 is the following.

Lemma 12. If F (x) has a linear factor in Z[x], then njan.
The above lemma clari�es the situation when k = 1. To establish Theorem 3, we only

need to show now that if n is su�ciently large, then any f(x) as in the statement of the

theorem cannot have a factor of degree k 2 [2; n=2]. To deal with large values of k, we

use a variant of (1). Speci�cally, Lemma 1 implies that if F (x) is as in the statement of
Theorem 3, then F (x) cannot have a factor of degree k if

(3)
Y

prjjn(n�1)���(n�k+1)
p�k+1

pr > Cn3=2:

13



We consider k 2 [8; n=2]. Lemma 5 (with n su�ciently large) implies

Y
prjjn(n�1)���(n�k+1)

p�k+1

pr �
s�

n

k

�
�
s�

n

8

�
;

and it easily follows that (3) holds in this case.

Next, we consider k 2 [3; 7]. We will make use of a result of K. Mahler which we state

in the form given in [15].

Lemma 13. Let c and v be two positive constants, and let

p1; : : : ; pr; pr+1; : : : ; pr+r0 ; pr+r0+1; : : : ; pr+r0+r00

be �nitely many distinct primes. Denote by � an in�nite sequence of distinct triples

fP (k); Q(k); R(k)g (k = 1; 2; 3; : : : )

where P (k), Q(k), and R(k) are integers as follows,

P (k) 6= 0; Q(k) 6= 0; R(k) 6= 0; P (k) +Q(k) +R(k) = 0;

�
P (k); Q(k)

�
=
�
P (k); R(k)

�
=
�
Q(k); R(k)

�
= 1:

Put

H(k) = max
���P (k)

��; ��Q(k)
��; ��R(k)

��� ;
and write P (k), Q(k), and R(k) as products of integers,

P (k) = P
(k)
1 P

(k)
2 ; Q(k) = Q

(k)
1 Q

(k)
2 ; R(k) = R

(k)
1 R

(k)
2 ;

where P
(k)
1 has no prime factors distinct from pr+1; : : : ; pr+r0 , Q

(k)
1 has no prime factors

distinct from pr+r0+1; : : : ; pr+r0+r00 , and R
(k)
1 has no prime factors distinct from p1; : : : ; pr.

If ���P (k)
2 Q

(k)
2 R

(k)
2

��� � cH(k)v (k = 1; 2; 3; : : : );

then v � 1.

We make use of the above lemma to establish the following.

Lemma 14. Let a be a �xed non-zero integer, and let N be a �xed positive integer. Let

" > 0. If n is su�ciently large (depending on a, N , and "), then the largest divisor of
n(n+ a) which is relatively prime to N is � n1�".

Proof. We show that there are only �nitely many positive integers n satisfying P where
P = P(n) denotes the property that the largest divisor of n(n+ a) relatively prime to N
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is < n1�". For each positive integer n satisfying P, we consider d = gcd(a; n). Thus, n is

associated with a pairwise relatively prime triple fP;Q;Rg as in Lemma 13 with

P = (n+ a)=d; Q = �a=d; and R = �n=d:

Observe that d is uniquely determined by Q and hence n is uniquely determined by Q

and R. In other words, there is a one-to-one correspondence between n satisfying P and

the triples fP;Q;Rg arising from such n. For each triple fP;Q;Rg, we consider H =

maxfjP j; jQj; jRjg. Let p1; : : : ; ps be the complete list of distinct prime divisors of N . We

momentarily �x an ordering of these primes and integers r and r0 with 0 � r � r+ r0 � s.

With the ordering and r and r0 �xed, we consider triples fP;Q;Rg arising from n as above
and write

P = P1P2; Q = Q1Q2; and R = R1R2

where P1 has no prime factors distinct from pr+1; : : : ; pr+r0 , Q1 has no prime factors
distinct from pr+r0+1; : : : ; ps, and R1 has no prime factors distinct from p1; : : : ; pr. Setting
r00 = s� r � r0, c = jaj2, and v = 1� ", we obtain from Lemma 13 that there can be only
�nitely many triples fP;Q;Rg satisfying

jP2Q2R2j � jaj2H1�":

Since d � jaj, we deduce

jaj2H1�" � jaj2
�n
d

�1�"
� jajn1�":

Thus, there are only �nitely many n for which jP2Q2R2j � jajn1�". We now let the
ordering on the primes p1; : : : ; ps vary as well as the values of r and r0 noting that there
are only a �nite number (depending on a and N) of possible orderings and values of r
and r0 to consider. Observe that if n satis�es property P, then the largest divisor of
PQR relatively prime to N is < jajn1�". In particular, there is an ordering of the primes
p1; : : : ; ps and values of r and r

0 for which jP2Q2R2j � jajn1�". As we have just seen, there
can be only �nitely many such n. �

Now, we make an argument similar to that used by Erd}os in [8]. For each prime p � k,
consider sp equal to an element from fn; n � 1; : : : ; n � k + 1g with �p(sp) as large as

possible. Let
S = fn; n� 1; : : : ; n� k + 1g � fsp : p � kg:

Since k � 3, the set S contains at least one element, say s, and there are at least two

additional integers, say m and m + a, among the numbers n; n � 1; : : : ; n � k + 1. For
each p � k, we have removed a multiple of p, namely sp, from fn; n� 1; : : : ; n� k + 1g in
obtaining S so that there are at most [k=p] multiples of p that can be in S. The de�nition

of sp in fact implies that there are at most [k=pj] multiples of pj in S for each j � 1. Thus,

�p

 Y
u2S

u

!
�

1X
j=1

�
k

pj

�
= �p(k!) for p � k:
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In particular, for such p, �p(s) � �p(k!). We deduce

Y
prjjs
p�k+1

pr � s

k!
:

Let N =
Q

p�k p and recall k � 7. By Lemma 14, provided n (and hence n � k + 1) is

su�ciently large, Y
prjjm(m+a)

p�k+1

pr � n3=4 � 2(7!)n1=2:

Since s � n � k + 1 > n=2, it follows that (3) holds. Hence, (3) holds for n su�ciently

large and for all k 2 [3; n=2].

In the above arguments, it is clear that we could in fact establish a considerably stronger
inequality than (3). The more delicate case which we now consider is when k = 2 � n=2.
To clarify how the bound in (3) arises and hence our bound on janj in Theorem 3, we

de�ne  =  (n) = Cn1=2, the ratio of the right-hand side of (3) to n. We write g(x) =

anx
n+
Pn�1

j=0 (n!=j!)x
j . As before (in dealing with the possibility that f(x) has a quadratic

factor in Theorem 2), we want to relate the Newton polygon of g(x) with respect to 2 with
the Newton polygon of F (x) with respect to 2. In this case, the Newton polygon of g(x)
with respect to 2 cannot be described as precisely. Observe that Lemma 1 implies that the
largest odd factor of n(n� 1) divides an. De�ne non-negative integers r, s, m, and m0 by

n(n� 1) = 2rm and janj = 2sm0m where 2 - m0m:

From
n(n� 1) = 2rm = 2r�s(2sm) � 2r�sjanj � 2r�sn (n);

we deduce

r � s > log2

�
n� 1

 

�
= log2

�
n

 

�
+O(1=n):

In particular, r > s and r is greater than the right-hand side above.

We consider two cases depending on whether n is odd or even. First, suppose n is odd

and su�ciently large. The de�nition of s implies that (0; s) is the left-most spot of the
Newton polygon of g(x) with respect to 2. Since n is odd, (1; 0) is also a spot obtained in the
construction of this Newton polygon. The de�nition of r implies we can write n�1 = 2rw

for some positive odd integer w. Observe that m = wn so that 2sm � janj � n implies

w �  and s � log2

�
 

w

�
:

Let D denote the number of times the digit 1 occurs in the binary expansion of w. It is

an easy exercise to show that

D = w �
hw
2

i
�
hw
4

i
� � � � :
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Let 
 denote the greatest integer � log2w. If D = 
 + 1, then necessarily w = 2
+1 � 1

and we deduce D = log2(w + 1). On the other hand, if D 6= 
 + 1, then D � 
 � log2w.
Thus, in any case, we deduce

w �
hw
2

i
�
hw
4

i
� � � � � log2(w + 1):

Thus,

�2(n!) = �2((n � 1)!) =

�
2rw

2

�
+

�
2rw

4

�
+ � � �+

�
2rw

2r

�
+

�
2rw

2r+1

�
+ � � �

= 2r�1w + 2r�2w + � � �+ 2w + w +
hw
2

i
+
hw
4

i
+ � � �

= 2rw �w +
hw
2

i
+
hw
4

i
+ � � �

= n� 1� w +
hw
2

i
+
hw
4

i
+ � � �

= n�E;

where

2 � E = 1 + w �
hw
2

i
�
hw
4

i
� � � � � 1 + log2(w + 1):

Note that the bound on s given above implies

s+E � 1 + log2  + log2

�
1 +

1

w

�
� 2 + log2  :

From this we obtain from the previous bound on r � s that

r � 2s�E = (r � s) � (s +E) � log2 n� 2 log2  � 2 +O(1=n):

The de�nition of  now implies

(4) r � 2s�E � �2� 2 log2C +O(1=n):

We will make use of this inequality momentarily but note here that the condition C < 1=
p
2

in Theorem 3 implies that the right-hand side of (4) is > �1.
The right-most spot of the Newton polygon of g(x) with respect to 2 is (n; n� E). In

dealing with the analogous situation in the proof of Theorem 2, we had n = 2` + 1, s = 0,
and E = 2. We were able to describe precisely the Newton polygon of g(x) with respect
to 2. In particular, we showed that the right-most edge had slope � (n� 2)=(n� 1). That

same argument works here. Let ` be the line passing through the spot (n; n � E) and

having slope (n� 2)=(n� 1). Then every spot obtained in the construction of the Newton
polygon of g(x) with respect to 2 is on or to the left of `. Since n�1 = 2rw and n!=(n�j)!
has n� 1 as a factor for j 2 f2; 3; : : : ; ng, each spot (j; �2(n!=(n� j)!)) for such j is on or

above the line y = r. Since n is su�ciently large, r > s. Thus, each spot other than the

two left-most spots (0; s) and (1; 0) is in the closed region R in the plane bounded above
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y = r and to the left of `. Observe that E � 2 and the de�nition of ` imply that both

(0; s) and (1; 0) are on or above `. The points (0; s) and (n; n�E) are also spots obtained
in constructing the Newton polygon of F (x) with respect to 2, and the remaining spots in

obtaining this Newton polygon, other than possibly the second spot from the left, must

also lie in the region R. Let (1; u) denote the second spot from the left. The left-most

edge of this Newton polygon will have a negative slope if u < s, but since r > s, the
remaining edges will have positive slopes. In particular, the assumption that F (x) has a

factor of degree k = 2 implies that there are two lattice points, say (a; b) and (c; d), along

an edge of the Newton polygon of F (x) with respect to 2 such that d � b � 1 and either

c� a = 1 or c� a = 2. The right-most edge of the Newton polygon of g(x) with respect

to 2, and hence the right-most edge of the Newton polygon of F (x) with respect to 2, has
slope � (n � 2)=(n � 1) < 1. Since the slopes of the edges increase from left to right, we

obtain (d � b)=(c � a) < 1. Since d� b � 1, we deduce c� a 6= 1. Thus, c� a = 2. Now,

(d� b)=(c� a) < 1 and d� b � 1 imply d� b = 1. Therefore, there must be an edge of the
Newton polygon of F (x) with respect to 2 that has slope 1=2.

We show that the above is impossible by showing that each edge with a positive slope
has slope > 1=2. Let P be the point of intersection of the lines y = r and `. Let `0 denote
the line passing through (0; s) and P , and let t denote its slope. We claim that if an edge
of the Newton polygon of F (x) with respect to 2 has positive slope, then that slope must
be � minft; 1g. To see this, suppose �rst that (1; u) is on or above `0. Then all the spots
in obtaining the Newton polygon of F (x) with respect to 2 lie on or above `0, and we can
deduce that the left-most edge must have slope at least t. Since the slopes of the edges
increase from left to right, we get in this case all the edges have slope � t. Now, suppose
(1; u) is below `0. Then the left-most edge has slope u � s which is either � 0 or � 1.
Every spot lies on or above the line passing through (1; u) and P , and it follows that the
slope of the second left-most edge is at least as large as the slope of the line through (1; u)
and P . But the slope of that line is � t. Hence, every edge with a positive slope has slope
� minft; 1g.

It now su�ces to show that t > 1=2. The coordinates of P and, hence, the slope of `0

can be computed directly. We obtain

t =
(r � s)(n � 2)

(r +E)(n � 1) � n
:

The inequality t > 1=2 is equivalent to

(r � 2s �E)(n � 1) > r � s� n:

Recall that n is su�ciently large and C < 1=
p
2. We deduce from (4) that r � 2s � E is

greater than �1 plus a positive constant (depending on C). On the other hand, it is easy

to see that both r and s must be � logn. Hence, t > 1=2.
We have still to consider the possibility that n is even and su�ciently large. Here,

n = 2rw for some odd integer w. The left-most spot on the Newton polygon of g(x) with
respect to 2 is (s; 0) and the right-most spot is (n; n � E) for some E 2 [1; log2(w + 1)].

Here, the right-most edge of the Newton polygon has slope � (n � 1)=n. Letting ` now

18



denote the line passing through (n; n �E) with slope (n � 1)=n and considering R to be

the set of points on or above y = r and on or to the left of `, we continue as in the case
that n is odd. Here, the situation is somewhat easier since every edge will have a positive

slope. We omit further details.

6. Miscellaneous Remarks

We begin with a proof of Theorem 4. We consider r = 1 in Lemma 1 and observe that

Lemma 1 holds with the condition p - an replaced by p - ana0; in fact, no change (other

than taking r = 1) is required in the proof of Lemma 1 as given. By Theorem 6, for any

integer k 2 [1; n=2], there is a prime p � k + 1 dividing n(n � 1) � � � (n � k + 1). The
condition gcd(ana0; n!) = 1 implies that such a p does not divide ana0. Hence, by Lemma

1 so revised, f(x) cannot have a factor of degree k for any k 2 [1; n=2]. It follows that f(x)

must be irreducible, and hence Theorem 4 is established.
Since Theorem 2 is a generalization of Theorem 1 with the condition janj = 1 being

relaxed, it is reasonable to ask whether an analogous result to Theorem 2 holds with instead
the condition ja0j = 1 in Theorem 1 relaxed. There is certainly irreducibility results that
can be obtained along this line, but nothing as strong as the analog to Theorem 2 can hold
in this case. For example, in Theorem 2, if an = �2 and a0 = 1, we can deduce that f(x)
is irreducible unless f(x) is one of the following:

�(x + 1)2; �(x � 1)2; or � (x + 1)(x � 1):

On the other hand, if a0 = 2 and an is �xed, then there are arbitrarily large n for which
f(x) can be reducible. Speci�cally, we consider n = 2` with ` a positive integer, and we
take a2 = a3 = � � � = an�2 = 0. Observe that �2(n!) = n� 1, and write n! = 2n�1m where
m is an odd integer. We deduce that

n!f(2)

2n
= an + 2`�1an�1 +ma1 +m:

Since m is odd, there exist integers an�1 and a1 for which this last expression above is 0.
Hence, for some a1; a2; : : : ; an�1, f(x) has x � 2 as a factor.

As mentioned in the introduction, an e�ective version of Theorem 3 can be obtained if
we require

0 < janj � n exp

 s
logn

(log log n)3

!
:

We sketch how this can be done. It will be clear from the argument that a slight improve-
ment on this bound is possible, but we do not bother with such details here.

The more di�cult case in Section 5 with k = 2 does not need to be modi�ed (the
estimates there are already e�ective). In fact, the only change that needs to be made is
in the case that k 2 [3; 7] (and now the worse estimate comes from k = 3). To obtain the
above version of Theorem 3, we replace the role of Lemmas 13 and 14 with the following

(the remaining arguments are essentially the same).
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Lemma 130. Let ` be a positive integer. Let a1; : : : ; a` be positive integers with aj � A1

for 1 � j � `� 2 and with each of a`�1 and a` � A2 where A1 and A2 are both � 3. Let
b1; : : : ; b` be integers with each bj having absolute value � B where B � 2. Set

� = b1 log a1 + � � �+ b` log a`:

There is a positive constant c depending only on ` and A1 such that either � = 0 or

j�j > exp
�
�c log2A2 logB log logA2

�
:

Lemma 130 is due to A. Baker [1]. Baker actually proved substantially more, but the

above will su�ce for our purposes. In particular, c can be made explicit. For a discussion

of some other related work, see the section on \New Developments" in [2] and the notes

on page 31 of [21].

Lemma 140. Let a be a non-zero integer, and let N be a �xed positive integer. There
is an e�ectively computable constant n0 = n0(a;N) such that if n � n0, then the largest
divisor of n(n+ a) which is relatively prime to N is

� 2(7!) exp

 s
logn

(log log n)3

!
:

Proof. Let a be as in the lemma, and let p1; : : : ; pr be the complete list of prime divisors of
N . Let n be large, and let m1 and m2 be the largest divisors of n and n+ a, respectively,
which are relatively prime to N . Thus, we can �nd non-negative integers e1; : : : ; er and
f1; : : : ; fr such that

n = pe11 p
e2
2 � � � perr m1 and n+ a = p

f1
1 p

f2
2 � � � pfrr m2:

Set

� = (f1 � e1) log p1 + (f2 � e2) log p2 + � � �+ (fr � er) log pr + logm2 � logm1:

Thus, � = log((n+a)=n) � jaj=n� 1=n. In particular, � 6= 0. Since N is �xed, each pj is
� 1. Also, each ej and fj (and, hence, fj � ej) is � logn. Letting A = maxf3;m1;m2g,
we deduce from Lemma 13 that for some constant c depending only on N ,

1

n
� exp

�
�c log2A log logA log log n

�
:

This inequality implies that

A � 2(7!) exp

 s
logn

(log log n)3

!
;

and the lemma follows. �
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Finally, we comment that in [12], Patrick Harley obtained a complete list of the reducible

polynomials that exist when 2 � an � 10. The case that an is prime has already been
addressed at the end of the introduction. We summarize some of Harley's �ndings by

noting that when an = 4, there are reducible f(x) only of degrees n = 2 and 4; when

an = 6, there are reducible f(x) only of degrees n = 2, 3, 4, and 6; when an = 8, there are

reducible f(x) only of degrees n = 2, 4, and 8; when an = 9, there are reducible f(x) only
of degrees n = 3 and 9; and when an = 10, there are reducible f(x) only of degrees n = 2,

5, and 10.

Acknowledgments: The author thanks P. Moree, A. Schinzel, and the referee for several

of the references below. In particular, the referee pointed out reference [7] and Schinzel
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