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1 Introduction

In [8] and [9], I. Schur established four theorems concerning the irreducibility of
certain classes of polynomials over the rationals. The second author [6] general-
ized one of these results to obtain the following.

Theorem 1. Letay, aq, . .., a, denote arbitrary integers withuy| = 1, and let

n xn—l 2

W—F"‘—FCLQ?—FCle—FCLO.

X
f(l') = anm + ap—1

If 0 < |a,| < n, thenf(z) is irreducible unless
(an,n) € {(£5,6), (+7,10)}

in which cases eitheyf(x) is irreducible or f(z) is the product of two irre-
ducible polynomials of equal degree. |if,| = n > 1, then for some choice
ofay,...,a,_1 € Z anday = £1, we have thayf (z) is reducible.

l. Schur (in [8]) obtained this result in the special case that= +1. Further
results along the nature of Theorem 1 are also discussed in [6].

The purpose of this paper is to establish a generalization of a second theorem
of I. Schur. Namely, we prove

Theorem 2. For n an integer> 1, define

A o T
— aTL— —_— .« .. a/ —_— a/
(n—+1)! Yl tg 70
where theu;’s are arbitrary integers withao| = 1. Letk’, k", u, v, andw be
nonnegative integers satisfying

f(z) =an

n+1=Fk2" withk' odd
and
(n+1)n =£k"2"3"  with ged(k”,6) = 1.
Let M = M(n) = min{k’,k"}. If 0 < |a,| < M, then f(z) is irreducible.

Furthermore, the bound/ on|a,| is best possible for every > 2; that is, for
each such, there exist:; as above but witl,, = A/ and with f(z) reducible.

Both authors were supported by the National Security Agency and the second author was
also supported by the National Science Foundation. Research by the first author was done in
partial fulfillment of the requirement for a Ph.D. at the University of South Carolina.



I. Schur [9] dealt with the case again in whigh = +1. He also noted that with
this restriction onu,,, the polynomialf (z) can be reducible in the case that 1
is a power of2 or n = 8. This remark follows from our theorem upon recalling
that8 and9 are the only prime powers (with exponents exceedintpat differ
by 1 (see [2]).

In establishing Theorem 2, we will show the following results:

e If 0 < |a,| < n+1,thenf(x) cannot have a factor of degréen [3,n /2]
except possibly for finitely many paita,,, n).
e If 0 < |a,| < K, thenf(z) cannot have a linear factor.

e If 0 < |a,| < k", thenf(x) cannot have a quadratic factor.

The techniques used for these results will be similar to those used in [6] and
[7]. The above three results show that fox |a,| < M, f(x) is irreducible
except possibly for finitely many paits,,, n). We also show for the exceptional
finite list of pairs(a,,n) that f(z) is irreducible if0 < |a,| < M. Finally, we
will demonstrate that the bound @) in Theorem 2 is sharp i > 2. As we
will note in Section 5, the value a¥/(2) can be replaced byin Theorem 2 and
this then is the best possible bound in this case.

2 The first preliminary result

In this section, we establish
Lemma 1. Letay, ay, . . ., a, denote arbitrary integers withu| = 1, and let
n i
flz) = ; YT

Letk be a positive integex n/2. Suppose there exists a prime> k£ + 2 and a
positive integer- for which

pPlin+Dnn—1)---(n—k+2) and p" { a,.
Thenf(x) cannot have a factor of degrée

Lemma 1 implies that if (x) has a factor of degree then each prime power
p" that divides(n + 1)n - - - (n — k + 2) must also divide:,,. Thus,

11 P | an.

P’ [(nt+1)n(n—1)-(n—k+2)
p>k+2

Our proof of Lemma 1 will be based on the use of Newton polygons and
a theorem of Dumas [3]. If is a prime andn is a nonzero integer, we define



v(m) = v,(m) to be the nonnegative integer such that” | m andp”™+1  m.
We definev(0) = +oo. Considers(z) = > ;27 € Z[z] with a,ag # 0 and
let p be a prime. LetS be the following set of points in the extended plane:

S = {(07 V(an))> (17 V(an—1>)v (2’ V(an—2>)a SRR (77, -1, I/(al))a (n’ V(aﬂ))}'

Consider the lower edges along the convex hull of these points. The left-most
endpoint is(0, »(a,)) and the right-most endpoint {&, v(ag)). The endpoints

of each edge belong t8, and the slopes of the edges increase from left to right.
When referring to the “edges” of a Newton polygon, we shall not allow two
different edges to have the same slope. The polygonal path formed by these
edges is called the Newton polygonwofz) with respect to the primg. We will

refer to the points irt' as spots of the Newton polygon.

Proof of Lemma 1Let

n

l
—
S
+
=
=
8
N
I

'(n+1)! i - »
2 a; (j+1>!x jzobjx ,
whereb; = a;(n+1)!/(j+1)!. Note that/’(x) has integer coefficients. To show
that f(x) cannot have a factor of degréeit suffices to show thai’(z) cannot
have a factor of degrefe
Consider the Newton polygon &f(z) with respect to the primg. Note that
the condition

prlin+1)nn—1)--(n—k+2)

implies thatp”|b; for j € {0,1,...,n — k}. Thus, then — k + 1 right-most
spots, (k,v(b,—k)), ..., (n,v(bo)), havey-coordinates greater than or equal to
r. Consider the coordinates of the left-most endp@int(a,)). By the given,
p" 1 a,; thus, they-coordinate of the left-most endpoint is less than

Since the slopes of the edges of the Newton polygoR'(af) increase from
left to right, the spotsj, v(b,—;)) for j € {k — 1,k,k +1,...,n} all lie on or
above edges of the Newton polygon which have positive slope.

The slope of the right-most edge is

v(bo) — v(by)
{50

max
1<j<n

Forl <j <n,

v(bo) —v(b;) = viaog(n+1)!) - ’/<aa' (Tf - 1).!>

(J+ 1)
(n+1)!
< v(n+1)!)— V((j n 1)!>
= WG+



We consider two cases to estimatg; + 1)!)/;.

Case (i).Supposg < p — 1. Sincep is prime and sincé + 1 < p, p1 (5 + 1)..
Thereforey((j +1)!) =0. Soforj <p—1,

V(G +1))

= 0.
J
Case (ii). Supposg > p — 1. Note that
. Jg+1 J+1 j+1  5+1 Jg+1
N — (472 el T A
AGHD) =[]+ [ < e b =
Sincel/j < 1/(p — 1), we deduce
v((7+1)h 1 1 1 1 P
: < + = < + = .
j p—1 jp-1) " p-1 (p-12 (p—1)

By the conditions in the lemma, > k£ + 2. One checks that this implies
p/(p —1)* < 1/k. By combining Cases (i) and (ii), we obtain

s {u(%) fv(bj)} s {u«jww} __r

1
1<j<n j ~ 1<ji<n J (p—12 &k

In other words, the slope of the right-most edge is less thianSince the slopes
of the edges of the Newton polygon increase from left to right, the slope of each
edge of the Newton polygon fdr(z) is less than /k.

The remainder of the proof now follows in a manner similar to that given
for Lemma 2 in [5] which relies on the classical use of a theorem of Dumas
[3] that the edges of the Newton polygon of a factorFifr) with respect ta
must be able to be translated into the edges of the Newton polygb(ugfwith
respect top. The edges in the Newton polygon 6f(z) having slope< 1/k
implies that the lattice points along the edges with positive slope are separated
by a horizontal distance k. The remaining edges withor negative slope have
endpoints among the spdtg v(b,,—;)) with j € {0,1,...,k — 1}. This implies
that /(=) cannot have a factor of degrée O

3 The second preliminary result

In this section, we establish

Lemma 2. Letn be an integer> 6, and letk be an integer ir3, n/2]. Then

H pr>n+1

p"[[(n+1)n(n—1)-(n—k+2)
p>k+2



unless one of the following holds:

n=11 and k=5
n = 26 and k=14
n =17 and k=4
n=11 and k=4
n =10 and k=4
n=29 and k=4
n=3, and k=4
n=17 and k=3
n=29 and k=3
n=3§ and k=3
n="7 and k=3

For the proof of this lemma, we will make use of the following result of
Ecklund, Eggleton, Erd@k, and Selfridge[4].

Lemma 3. Letn and k denote positive integers with< k < n/2. Set("!') =
UV where the prime factors @f are all < £ and the prime factors of” are all
>k+1.1fk ¢ {3,5,7andU >V, then(n, k) € S where

S ={(8,4),(20,8), (32,13), (32, 14), (35, 13), (35, 17), (55, 13)}

Proof of Lemma 2 Observe that

11 =11 v
p"'”(n+1)n(n—1)--~(n_k+2) i m+1
p>k+2 pp!?iZ)

Initially, supposeq = k£ + 1 is a prime. Then; divides at mostl of the &
consecutive numberst+1,n,n—1,...,n—k+2. We lets be the integer such that
¢°||("}"). Sinceg divides at most of the numbersi+1,n,n—1,...,n—k+2,
we obtaing® < n + 1. Thus,

1) n+1) [[ »z¢ ] 7= ]] -
PrI("4) () ()
p>k+2 p>k+2 p>k+1
Note that the left-hand side of (1) is still at least the right-hand side of ¢1)-if
is not a prime. We will make use of this inequality then independent of whether
k 4+ 1is prime.
We considert € [3,n/2]. We will show next that, fol: > 6, £ # 7, and
n > 33,

) H P> (n+1)%

pTH("ﬁl)
p>k+1



Then, by combining (1) and (2),

(3) I v>n+1

which will establish Lemma 2 fok > 6, k # 7, andn > 33.
Claim 1: Forn > 33 andk > 6, (n —kt 1) > (n+1)%
Sincen/2 > k > 6, ("/') > ("¢"). It suffices therefore to show that
(n+ Dnn —1)(n —2)(n — 3)(n —4) > 720(n + 1)*.
Dividing by n + 1 and rearranging, the above inequality is equivalent to

(n +2)(n* — 120 — 661n* — 888n — 360)
=n’ — 10n* — 685n* — 2210n? — 2136n — 720 > 0.
Descartes’s Rule of Signs implies thdtr) = z*— 1223 —66122—888x—360 has

only one positive real zero. Sinég32) = —50280 < 0 andh(33) = 5184 > 0,
the claim is easily seen to follow.

Set (";') = UV where the prime factors df are all< k and the prime
factors ofV are all> k + 1. By Lemma 3 fork > 6, k # 7and(n,k) ¢ S,
U < V. Thus,

(”Zl)—UV§v2 V> (”Zl)

By Claim 1,("") > (n+1)* with k as above and > 33. Therefore,

I r=v= (nzl) > (n+1)%

Pl (M)
p>k+1

Thus, (2) and, hence, (3) follow fdr > 6, £ # 7, n > 33, and(n,k) ¢
{(35,13), (35,17), (55,13)}. We check directly that (3) also holds fot, k) €
{(35,13), (35,17), (55,13)}.

Claim2: Forn >34, J[ »" >n+1.

To establish this claim, we consider

T={n+1nn—1n—-2n—-3n—4n—>5}



Remove from T an integer divisible by the largest possible power of 2, an integer
divisible by the largest possible power of 3, an integer divisible by the largest
possible power of 5, and an integer divisible by the largest possible power of 7.
Some of these integers may be the same, but at least three integers remain. Let
a, b, andc denote integers that are not removed. Only one of the seven numbers
in 7" is divisible by 7, and this number was removed; thusabc. At most two

of the seven numbers are divisible hyand one divisible by the largest possible
power of 5 was removed; thu®; 1 abe. Similarly, 3 § abc and2° t abc. So

H . abc - (n—3)(n—4)(n—1>5)
P =5xox16= B5x9x16

One checks that

(n—3)(n —4)(n - 5)
5x 9 x 16

>n+1 < n®—12n% — 673n — 780 > 0.

Seth(x) = 23— 1222 — 673z — 780. By Descartes’s Rule of Signs(z) has only
one positive real root. Sindg(33) < 0 andh(34) > 0, h(n) > 0 for n > 34.
Claim 2 follows.

Claim 3: Forn > 30, H pr>n+ 1.
prl("3)
p>T7
The argument is similar to the argument given for Claim 2. Let

T={n+1,nn—-1n-—2mn-—3}

Remove frondl” an integer divisible by the largest possible power of 2, an integer
divisible by the largest possible power of 3, and an integer divisible by the largest
possible power of 5. Again, some of these numbers may be the same, but at least
two numbers remain, sayandb. Thus,ab > (n — 2)(n — 3). Also, 5 { ab,

32t ab, and2*  ab. We obtain that

ab (n—2)(n—3)

> > 1
1(_[H)p—3><8— T

Pl

p>T7

providedn? — 29n — 18 > 0. The latter inequality is easily deduced for> 30,
implying the claim.
Claim 4: Forn > 12withn ¢ {17,26}, [[ »">n+1.
plI("T)
p=6

We begin in a similar manner to the previous arguments7lagnote the set
{n+1,n,n —1,n — 2}, and remove an integer divisible by the largest possible
power of 2, an integer divisible by the largest possible power of 3, and an integer



divisible by the largest possible power of 5. At least one integer remaing, say
Let b, ¢, d denote the other three integers. An argument similar to Claim 2 and
Claim 3 would give

The above inequality is not strong enough. We modify the argument establishing
the lemma, by considering two cases.

First, we suppose one of the numbéys, or d is divisible by a prime; > 7.
In this case, one gets an extra factor7ohbove so that the product is at least
7(n — 2)/6. One checks that this is greater than- 1 for n > 21, establishing
the claim in this case far > 21.

Next, we suppose 1 bed for each primep > 7; that is, b, ¢, andd are
divisible only by the primeg, 3, and5. At most one ob, ¢, andd is divisible by
5. Letb andc denote two that are not. Thus, the only prime divisors ahdc
are2 and3 and bothb andc occur amondn +1,n,n —1,n — 2}. It follows that
one of{b,c}, {b/2,¢/2}, and{b/3,c/3} consists of two consecutive integers,
one a power of two and one a power of three. We use that the only pairs of such
consecutive positive integers arg 2), (2,3), (3,4), and(8,9); this is a result
due to G. C. Gerono in 1857 (see [2]). ko> 12 as in the claim, this leads to
only three possibilities fon, namelyn = 17, n = 18, andn = 26.

Given the two cases just considered, the full strength of the claim follows by
a direct calculation of the product fa2 < n < 20.

Claim 5: Forn > 6, H p" >n+ lunlessn € {7,8,9,17}.
pI("5Y)
p=>5

This claim is established along lines similar to the previous claim. We omit
the details.

We combine the information just obtained. The inequality in Lemma 2 fol-
lows with the indicated exceptions by a computation. More specifically, for
5 < k <n/2and10 < n < 33, the inequality was checked and the only
case in these ranges where the inequality did not hold was$ob andn = 11.

The exceptions to the inequality given in Lemma 2, which arise when combin-
ing the claims above, are easily checked to in fact not satisfy the inequality of
Lemma 2. This completes the proof of that lemma. O

4 The elimination of possible degrees of factors

We first show the following result.

Result 1. For 0 < |a,| < M(n), f(x) cannot have a factor of degréein
[3,n/2], where M (n) is as given in Theorem 2. Furthermore,0if< |a,| <
n + 1, then f(z) cannot have a factor of degréein [3,n/2] except possibly if



(n, k) € S where

S = {(11,5),(26,4), (17,4), (11, 4), (10, 4),
(9,4),(8,4),(17,3),(9,3),(8,3),(7,3) }.

The setS corresponds to the list of exceptions given in Lemma 2. Assume that
f(z) has a factor of degreein [3,n/2]. Lemma 1 implies that

4) 1T P < anl.
p"|[(n+1)n(n—1)--(n—k+2)

p>k+2

If (n,k) ¢ S, we deduce from Lemma 2 that,| > n + 1. Suppose now that
(n,k) € S. Using direct computations, we checked that fork) € S the

inequality
11 P> M

p"||(nt+1)n(n—1)-(n—k+2)
p>k+2

holds. We deduce then thiat,| > M and Result 1 follows.

Recall thatn + 1 = £'2* wherew is an integer> 0 and (k’,2) = 1. Also,
(n 4+ 1)n = k"2"3" wherev is an integer> 1 andw is an integer> 0 and
(k",6) = 1. SinceM = min{k’, £}, the following results implyf(z) cannot
have a quadratic or linear factor for< |a,| < M.

Result 2. If 0 < |a,| < ¥/, thenf(z) cannot have a linear factor.
Result 3. If 0 < |a,| < k", thenf(z) cannot have a quadratic factor.

The proofs of these two results are straight forward. They follow as a conse-
guence of (4) holding fok = 1 and2 and since the product on the left of (4) is
simply £" in the casé = 1 andk” in the casé: = 2.

5 Reducible examples

Finally, we show that for every, > 2, if |a,| = M(n) = min{t’,k”} and
lag| = 1, then there exist integets,_1, a,,_2, . . ., a; such thatf(x) is reducible.
In particular, we will show the following:

e If |a,| = k' and|ay| = 1, thena,,_1, a, o, ...,a; can be chosen such that
x + 2 (orz — 2) is a factor off ().

o If |a,| = k" < k' and|ay| = 1, thena,,_1, a,o, ..., a; can be chosen such
thatz? — 3x — 6 is a factor off(z).

Note that whem = 2, then f(z) is a quadratic polynomial. It follows from
Result 2 thatf(z) is irreducible for0 < |a,| < 3 and|ag| = 1. Furthermore,
by our first construction below, when,| = 3 and|ay| = 1, a; can be chosen



so thex + 2 (or z — 2) is a factor off (). This justifies our final remarks in the
introduction concerning/(2).

For our arguments, we will make use of the following result which can be
found in [1].

Lemma 4. Letn be a positive integer, and lgtbe a prime. Then

n— sp(n)

N =
vp(n!) p—

Y

wheres, (n) denotes the sum of the basdigits ofn.

First we show that there exist integers 1, a,_»,...,a; such thatc + 2 or
x — 2 (whichever we choose) is a factor 6fx) when|a,| = k¥’ and|ay| = 1.
Leta, = k', a9 = 1, anda,_» = a,_3 = --- = ap = 0 (the cases,, = —k’

or/anday = —1 can be treated similarly). Then
(n+ DIf(z) = K'2" 4+ ap_1ch 12" + arc17 + o,

wherec,_1 = n+1 = k2% ¢y = (n+ 1)!, andec; = ¢y/2. To establish that
f(£2) = 0 for some choice of integers,_; anday, it suffices to show that each
of the equations

2" e, x4 2cy =2"K  and 2" lc,_1x + 2¢1y = ¢

is solvable in integers: andy. The second of these is clearly solvable with
x = 0 andy = 1. For the first, we use that the equation is solvable if and
only if ged(2" ¢, _1,2¢c;) divides2"k’. Asc,_; = 2"k, it suffices to show
v5(2¢1) < n. By Lemma 4,

v(2c1) =wa((n+ 1)) =n+1—s(n+1) <n,

so the existence af,_; anda; as above follows.

Now, we consider the case that,| = £ < k' and|as] = 1 and show
how to obtainz? — 3z — 6 as a factor off(x). One checks that the condition
k" < k' implies2|n and3|(n + 1). Therefore, we consider = 2*m > 8 and
n + 1 = 3*m/ wherek, ¢, m, andm’ are positive integers angtd(mm/,6) = 1
(there is no restriction here on the sizenof:’). We show that it;, = mm/, then

there exist integers,,_1, a,_», ..., a; such that the polynomial
n n—1 T
y————— ] —— - - Z 11
T T L T
is divisible by the quadratig(z) = 2% — 3z — 6 (the cases,, = —mm’ or/and
ap = —1 can be treated similarly). To do this, we multiply the polynomial of

degreen above by(n + 1)!, replaces,, with mm/’, and divide through bynm' to
obtain the polynomial

Ap—1 — —
g+ 3 4 3925, g
m

10



+ 37128 (n — Dlaga® + 3281 (n — 1)layz 4 3725 (n — 1)

Takea,_ 1 = mr, a,_2 = 8, Gp_3 = Ap_y = -~ = a3 = 0, a3 = —y, and
a; = w + y and rewrite this polynomial as

g(x) = 2™ + 3fra" ! + 352Fspm 2 — 307 12R 1 (n — 1) lya?
+ 392" (n — DY (w + y)x + 3°2%(n — 1)1
It suffices now to show that there exist integers, y, andw such thaty(x) is
divisible by ¢(x).
Forj > 0, define integers; andb; by
2/ =c;+bjx  (mod g(x)).
Note that for; > 1 we have
(5) 2t =327 4 6277 (mod q(x)).

It follows that, for; > 1, we have

(6) Cj+1 = 3Cj + 6Cj_1 and bj+1 = 3[)] + 6bj_1.

0 1
=5 3);

we obtain from (6) and an induction argument that, for each0, we have

A — ( G b ) _
Cit1 bjm

Next, we obtain some results concerning the values @f), v, (b;), v5(c;), and
v3(b;). An induction argument gives that, fgr> 1, we have

A = (g g) (mod 4).

Hence, it follows that, foy > 1, we have

Letting

(7) Vz(Cj) =1 and I/g(bj) = 0.

We claim that for all; > 0 we have

. 1
(8) vy(c;) > % and 1) > JT
Forj = 0 andj = 1, one checks directly that (8) holds. From (6), we deduce

v3(cjt1) = min{ws(c;), vs(cj—1)} +1

11



and
v3(bj41) = min{ws(b;), v3(bj-1)} + 1.

An easy induction argument implies (8) holds. Using &t A7) = det(A),
we obtain

(9) Cjijrl - Cj+1bj = :|:6J

Given (8), we deduce that, fgr> 0, at least one of;(c;) = j/2 andvs(cjy1) =
(7+1)/2 holds. Only one ofi/2 and(j + 1)/2 can be an integer. It follows that

(10) vs(c;) = % if j is even

Note that parity considerations also imply from (8) thatc,;) > (j + 1)/2if j
is odd and thats(b;) > j/2if j is even.

Observe that? = 3z + 6 (mod ¢(r)). We obtain from the definition af,
andb,, that

() = (bn + 3°rby 1 + 32%sb, 5 + 32" w(n — 1))
+ ¢+ 3ren 1 4+ 328 s, o + 3725 (n — 1)I(1 — y)

modulog(z). We will show that for some, s, y, andw,
e+ 3ren_y +32%sc, o +32F(n —DI(1 —y) =0

and
by + 3°rb, 1 + 32Fsb, 5 + 32" Tw(n — 1) = 0.

It will follow then that, g(x) = 0 (mod ¢(x)). We first show that there are
integersr, s, andy such that

3rcn 1 +32Fsc, 5 = —(c, + 328 (n — 1)I(1 —y)).
The above equation has integer solutiorads if
ged(3fc,1,3 2%, 9) | (cn + 328 (n — DI(1 — y)).

Sincen + 1 = 3w’ and, from Lemma 4y3((n + 1)!) < (n + 1)/2, we obtain
v3(32%(n — 1)!) < n/2. Also sincen is even, (10) impliess(c,) = n/2. It
follows that there is an integersuch that

Vs (Cn + 3Z2k(n — 1)'(1 — y)) > min{ug(?)ecn,l), V3(3£Cn,2)}.
Fix such ay. From (7) andk > 1, we obtain
Vo (cn +3%F(n — 1)1(1 — y)) > min{vy(3%cn_1), 12(3°2%¢,_2)}.

Note that (9) implies that and3 are the only prime factors possibly in common
with ¢,,_; andc,,_,. It follows that there are integerg ands, such that

(11) o+ 3ocn_1 + 328s0c, o + 3725(n — DI(1 — y) = 0.

12



We will use later that, is odd which follows from (7), the above equation, and
the fact thatt > 1 andn > 3. We fix ry andsy (andy) as above and note that
for any integer we have

en+ 3%y (7"0 + 2kcn_2t) +3%F¢, 5 (30 - cn_lt) + 362"3(71 —DI(1—y) =0.

We set
r =1+ 2%c,_ot and § =89 — Cp_1t

and seek andw so that
bp + 3rb, 1 +3°2%sb, o + 325 Lw(n — 1) = 0.
In other words, we want
32" Mw(n — 1)1+ 32 (cp_abp1 — cpo1by_2)t
+ by, + 37obn—1 + 32" s0b, s = 0.

By (6), we can rewrite this equation as
(12) 32" 'w(n — 1) + 32 (chmabn1 — cuo1bn_s)t

+ (3%70 + 3)bp_1 + (372759 + 6)b,_5 = 0.
From (6) and (11), we obtain
(13) (379 +3)cn1 + (3°2Fsp + 6)cpo + 3725 (n — 1)I(1 —y) = 0.

Multiplying both sides of (12) by, _» and both sides of (13) byb,_, and then
adding, we obtain

(14) cn_23€2k_1(n - 1)'11) + Cn_23£2k (Cn—an—l - Cn_lbn_g)t
+ (370 +3) (Co2bn—1 — Cno1bp_2) — 325 (n— 1){(1 — y)b,_» = 0.

Observe that (13) implies that if (14) holds, then so does (12).

We show that (14) holds for some integersandt. Sincen = 2%m, with k
a positive integer is even so thats(c,—1) > n/2, v3(c,—2) = (n — 2)/2, and
Vg(bn,Q) Z (n - 2)/2 Let

Cc = cn,2352k*1(n — 1)', C/ = Cn,23£2k (Cnfgbnfl — Cnflbnfz),
" = (30 + 3) (Cn2bn_1 — cp_1bns), and ¢” = 32"(n — 1I(1 — y)b,_o.
Recall thatv; (3°2%(n — 1)!) < n/2. We deduce

n— 2
2

=n—1.

n
1/3(6) S § -+
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Observe that,(n!) < n (for example, from Lemma 4). Since = 2*m, we
haver, (287 1(n — 1)!) = vy(n!) — 1. From (7), we see that(c) < 1(n!) < n.
Sincewy(c) is an integer,

va(c) <n—1.

Note that3 divides3‘r, + 3. Sincer, is odd, 2 divides‘r, + 3. We obtain from
(9) that
v(d)>n-1 and 15(d")>n-—1.

Observe that (7) impliess(¢”’) > v,(c). Next, we show thats(c¢”) > v3(c).
Recall that since: is even,

v3(bn—2) > (n —2)/2 = v3(cr2).
So,
v3(d”) = v3(3°28(n — 1)!I(1 — y)bn_2) > v3(ca_232 1 (n — 1)) = 13(c).
Combining the above, we deduce

(" — ") > 1y(e) and (" — ") > 13(c).

We claim thatged(c, ¢') dividesc¢” — ¢”. Let p be a prime and: a positive
integer for whichp"|| ged(c, ¢’). The above analysis shows thapif= 2 orp = 3,
thenp"|(¢” — ). Now, consider the case that- 3. From (9) and the definition
of ¢, we obtain thap|c,_». From (13), we see that' must also divide

((3"r9+3)cn—1 + 328 (n =L —y)) bua — (379 +3)cpsbyy = " — .

Hencegcd(c, ¢) dividesc” — ¢”.

It now follows that there exist integetsandt for which cw + 't = ¢ — .
This establishes the existence of integerandt as in (12) and (14) and, hence,
the existence of integers s, y, andw for which g(z) is divisible byz? — 3z — 6.

Comment: The above argument for the calse< k' is hampered somewhat by
the presence of a non-zero coefficientéh our choice ofy(x). It can be shown,
however, that there are(for exampleyn = 32) for which k” < k£’ and for which
f(x), with |a,,| = k" and|ae| = 1, has no factorax? + ¢ € Z[x] regardless of
the integral values chosen fey, as, ..., a,_1.
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