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1 Introduction

In [8] and [9], I. Schur established four theorems concerning the irreducibility of
certain classes of polynomials over the rationals. The second author [6] general-
ized one of these results to obtain the following.

Theorem 1. Leta0, a1, . . . , an denote arbitrary integers with|a0| = 1, and let

f(x) = an
xn

n!
+ an−1

xn−1

(n − 1)!
+ · · · + a2

x2

2
+ a1x + a0.

If 0 < |an| < n, thenf(x) is irreducible unless

(an, n) ∈ {(±5, 6), (±7, 10)
}

in which cases eitherf(x) is irreducible or f(x) is the product of two irre-
ducible polynomials of equal degree. If|an| = n > 1, then for some choice
of a1, . . . , an−1 ∈ Z anda0 = ±1, we have thatf(x) is reducible.

I. Schur (in [8]) obtained this result in the special case thatan = ±1. Further
results along the nature of Theorem 1 are also discussed in [6].

The purpose of this paper is to establish a generalization of a second theorem
of I. Schur. Namely, we prove

Theorem 2. For n an integer≥ 1, define

f(x) = an
xn

(n + 1)!
+ an−1

xn−1

n!
+ · · · + a1

x

2
+ a0

where theaj ’s are arbitrary integers with|a0| = 1. Let k′, k′′, u, v, andw be
nonnegative integers satisfying

n + 1 = k′2u with k′ odd

and
(n + 1)n = k′′2v3w with gcd(k′′, 6) = 1.

Let M = M(n) = min{k′, k′′}. If 0 < |an| < M , thenf(x) is irreducible.
Furthermore, the boundM on |an| is best possible for everyn > 2; that is, for
each suchn, there existaj as above but withan = ±M and withf(x) reducible.

Both authors were supported by the National Security Agency and the second author was
also supported by the National Science Foundation. Research by the first author was done in
partial fulfillment of the requirement for a Ph.D. at the University of South Carolina.
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I. Schur [9] dealt with the case again in whichan = ±1. He also noted that with
this restriction onan, the polynomialf(x) can be reducible in the case thatn+1
is a power of2 or n = 8. This remark follows from our theorem upon recalling
that8 and9 are the only prime powers (with exponents exceeding1) that differ
by 1 (see [2]).

In establishing Theorem 2, we will show the following results:

• If 0 < |an| ≤ n + 1, thenf(x) cannot have a factor of degreek in [3, n/2]
except possibly for finitely many pairs(an, n).

• If 0 < |an| < k′, thenf(x) cannot have a linear factor.

• If 0 < |an| < k′′, thenf(x) cannot have a quadratic factor.

The techniques used for these results will be similar to those used in [6] and
[7]. The above three results show that for0 < |an| < M , f(x) is irreducible
except possibly for finitely many pairs(an, n). We also show for the exceptional
finite list of pairs(an, n) thatf(x) is irreducible if0 < |an| < M . Finally, we
will demonstrate that the bound onan in Theorem 2 is sharp ifn > 2. As we
will note in Section 5, the value ofM(2) can be replaced by3 in Theorem 2 and
this then is the best possible bound in this case.

2 The first preliminary result

In this section, we establish

Lemma 1. Leta0, a1, . . . , an denote arbitrary integers with|a0| = 1, and let

f(x) =
n∑

j=0

aj
xj

(j + 1)!
.

Letk be a positive integer≤ n/2. Suppose there exists a primep ≥ k + 2 and a
positive integerr for which

pr|(n + 1)n(n − 1) · · · (n − k + 2) and pr - an.

Thenf(x) cannot have a factor of degreek.

Lemma 1 implies that iff(x) has a factor of degreek, then each prime power
pr that divides(n + 1)n · · · (n − k + 2) must also dividean. Thus,∏

pr‖(n+1)n(n−1)···(n−k+2)
p≥k+2

pr | an.

Our proof of Lemma 1 will be based on the use of Newton polygons and
a theorem of Dumas [3]. Ifp is a prime andm is a nonzero integer, we define
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ν(m) = νp(m) to be the nonnegative integer such thatpν(m) | m andpν(m)+1 - m.
We defineν(0) = +∞. Considerw(x) =

∑n
j=0 ajx

j ∈ Z[x] with ana0 6= 0 and
let p be a prime. LetS be the following set of points in the extended plane:

S = {(0, ν(an)), (1, ν(an−1)), (2, ν(an−2)), . . . , (n − 1, ν(a1)), (n, ν(a0))}.

Consider the lower edges along the convex hull of these points. The left-most
endpoint is(0, ν(an)) and the right-most endpoint is(n, ν(a0)). The endpoints
of each edge belong toS, and the slopes of the edges increase from left to right.
When referring to the “edges” of a Newton polygon, we shall not allow two
different edges to have the same slope. The polygonal path formed by these
edges is called the Newton polygon ofw(x) with respect to the primep. We will
refer to the points inS as spots of the Newton polygon.

Proof of Lemma 1.Let

F (x) = (n + 1)!f(x) =
n∑

j=0

aj
(n + 1)!

(j + 1)!
xj =

n∑
j=0

bjx
j,

wherebj = aj(n+1)!/(j +1)!. Note thatF (x) has integer coefficients. To show
thatf(x) cannot have a factor of degreek, it suffices to show thatF (x) cannot
have a factor of degreek.

Consider the Newton polygon ofF (x) with respect to the primep. Note that
the condition

pr|(n + 1)n(n − 1) · · · (n − k + 2)

implies thatpr|bj for j ∈ {0, 1, . . . , n − k}. Thus, then − k + 1 right-most
spots,(k, ν(bn−k)), . . . , (n, ν(b0)), havey-coordinates greater than or equal to
r. Consider the coordinates of the left-most endpoint(0, ν(an)). By the given,
pr - an; thus, they-coordinate of the left-most endpoint is less thanr.

Since the slopes of the edges of the Newton polygon ofF (x) increase from
left to right, the spots(j, ν(bn−j)) for j ∈ {k − 1, k, k + 1, . . . , n} all lie on or
above edges of the Newton polygon which have positive slope.

The slope of the right-most edge is

max
1≤j≤n

{ν(b0) − ν(bj)

j

}
.

For1 ≤ j ≤ n,

ν(b0) − ν(bj) = ν(a0(n + 1)!) − ν

(
aj

(n + 1)!

(j + 1)!

)

≤ ν((n + 1)!) − ν

(
(n + 1)!

(j + 1)!

)

= ν((j + 1)!).
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We consider two cases to estimateν((j + 1)!)/j.

Case (i).Supposej < p − 1. Sincep is prime and sincej + 1 < p, p - (j + 1)!.
Therefore,ν((j + 1)!) = 0. So forj < p − 1,

ν((j + 1)!)

j
= 0.

Case (ii).Supposej ≥ p − 1. Note that

ν((j + 1)!) =
[j + 1

p

]
+
[j + 1

p2

]
+ · · · <

j + 1

p
+

j + 1

p2
+ · · · =

j + 1

p − 1
.

Since1/j ≤ 1/(p − 1), we deduce

ν((j + 1)!)

j
<

1

p − 1
+

1

j(p − 1)
≤ 1

p − 1
+

1

(p − 1)2
=

p

(p − 1)2
.

By the conditions in the lemma,p ≥ k + 2. One checks that this implies
p/(p − 1)2 < 1/k. By combining Cases (i) and (ii), we obtain

max
1≤j≤n

{
ν(b0) − ν(bj)

j

}
≤ max

1≤j≤n

{
ν((j + 1)!)

j

}
<

p

(p − 1)2
<

1

k
.

In other words, the slope of the right-most edge is less than1/k. Since the slopes
of the edges of the Newton polygon increase from left to right, the slope of each
edge of the Newton polygon forF (x) is less than1/k.

The remainder of the proof now follows in a manner similar to that given
for Lemma 2 in [5] which relies on the classical use of a theorem of Dumas
[3] that the edges of the Newton polygon of a factor ofF (x) with respect top
must be able to be translated into the edges of the Newton polygon ofF (x) with
respect top. The edges in the Newton polygon ofF (x) having slope< 1/k
implies that the lattice points along the edges with positive slope are separated
by a horizontal distance> k. The remaining edges with0 or negative slope have
endpoints among the spots(j, ν(bn−j)) with j ∈ {0, 1, . . . , k − 1}. This implies
thatF (x) cannot have a factor of degreek.

3 The second preliminary result

In this section, we establish

Lemma 2. Letn be an integer≥ 6, and letk be an integer in[3, n/2]. Then∏
pr‖(n+1)n(n−1)···(n−k+2)

p≥k+2

pr > n + 1
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unless one of the following holds:

n = 11 and k = 5

n = 26 and k = 4

n = 17 and k = 4

n = 11 and k = 4

n = 10 and k = 4

n = 9 and k = 4

n = 8 and k = 4

n = 17 and k = 3

n = 9 and k = 3

n = 8 and k = 3

n = 7 and k = 3.

For the proof of this lemma, we will make use of the following result of
Ecklund, Eggleton, Erd̋os, and Selfridge[4].

Lemma 3. Letn andk denote positive integers with2 ≤ k ≤ n/2. Set
(

n+1
k

)
=

UV where the prime factors ofU are all ≤ k and the prime factors ofV are all
≥ k + 1. If k /∈ {3, 5, 7} andU > V , then(n, k) ∈ S where

S = {(8, 4), (20, 8), (32, 13), (32, 14), (35, 13), (35, 17), (55, 13)}.
Proof of Lemma 2.Observe that∏

pr‖(n+1)n(n−1)···(n−k+2)
p≥k+2

pr =
∏

pr‖(n+1
k )

p≥k+2

pr.

Initially, supposeq = k + 1 is a prime. Thenq divides at most1 of the k
consecutive numbersn+1, n, n−1, . . . , n−k+2. We lets be the integer such that
qs‖(n+1

k

)
. Sinceq divides at most1 of the numbersn+1, n, n−1, . . . , n−k+2,

we obtainqs ≤ n + 1. Thus,

(1) (n + 1)
∏

pr‖(n+1
k )

p≥k+2

pr ≥ qs
∏

pr‖(n+1
k )

p≥k+2

pr =
∏

pr‖(n+1
k )

p≥k+1

pr.

Note that the left-hand side of (1) is still at least the right-hand side of (1) ifk+1
is not a prime. We will make use of this inequality then independent of whether
k + 1 is prime.

We considerk ∈ [3, n/2]. We will show next that, fork ≥ 6, k 6= 7, and
n ≥ 33,

(2)
∏

pr‖(n+1
k )

p≥k+1

pr > (n + 1)2.
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Then, by combining (1) and (2),

(3)
∏

pr‖(n+1
k )

p≥k+2

pr > n + 1

which will establish Lemma 2 fork ≥ 6, k 6= 7, andn ≥ 33.

Claim 1: Forn ≥ 33 andk ≥ 6,

(
n + 1

k

)
> (n + 1)4.

Sincen/2 ≥ k ≥ 6,
(

n+1
k

) ≥ (n+1
6

)
. It suffices therefore to show that

(n + 1)n(n − 1)(n − 2)(n − 3)(n − 4) > 720(n + 1)4.

Dividing by n + 1 and rearranging, the above inequality is equivalent to

(n + 2)(n4 − 12n3 − 661n2 − 888n − 360)

= n5 − 10n4 − 685n3 − 2210n2 − 2136n − 720 > 0.

Descartes’s Rule of Signs implies thath(x) = x4−12x3−661x2−888x−360 has
only one positive real zero. Sinceh(32) = −50280 < 0 andh(33) = 5184 > 0,
the claim is easily seen to follow.

Set
(

n+1
k

)
= UV where the prime factors ofU are all≤ k and the prime

factors ofV are all≥ k + 1. By Lemma 3 fork ≥ 6, k 6= 7 and(n, k) /∈ S,
U ≤ V . Thus,

(
n + 1

k

)
= UV ≤ V 2 =⇒ V ≥

√(
n + 1

k

)
.

By Claim 1,
(

n+1
k

)
> (n + 1)4 with k as above andn ≥ 33. Therefore,

∏
pr‖(n+1

k )
p≥k+1

pr = V ≥
√(

n + 1

k

)
> (n + 1)2.

Thus, (2) and, hence, (3) follow fork ≥ 6, k 6= 7, n ≥ 33, and (n, k) /∈
{(35, 13), (35, 17), (55, 13)}. We check directly that (3) also holds for(n, k) ∈
{(35, 13), (35, 17), (55, 13)}.

Claim 2: Forn ≥ 34,
∏

pr‖(n+1
7 )

p≥9

pr > n + 1.

To establish this claim, we consider

T = {n + 1, n, n − 1, n − 2, n − 3, n − 4, n − 5}.
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Remove from T an integer divisible by the largest possible power of 2, an integer
divisible by the largest possible power of 3, an integer divisible by the largest
possible power of 5, and an integer divisible by the largest possible power of 7.
Some of these integers may be the same, but at least three integers remain. Let
a, b, andc denote integers that are not removed. Only one of the seven numbers
in T is divisible by 7, and this number was removed; thus,7 - abc. At most two
of the seven numbers are divisible by5, and one divisible by the largest possible
power of 5 was removed; thus,25 - abc. Similarly,33 - abc and25 - abc. So

∏
pr‖(n+1

7 )
p≥9

pr ≥ abc

5 × 9 × 16
≥ (n − 3)(n − 4)(n − 5)

5 × 9 × 16
.

One checks that

(n − 3)(n − 4)(n − 5)

5 × 9 × 16
> n + 1 ⇐⇒ n3 − 12n2 − 673n − 780 > 0.

Seth(x) = x3−12x2−673x−780. By Descartes’s Rule of Signs,h(x) has only
one positive real root. Sinceh(33) < 0 andh(34) > 0, h(n) > 0 for n ≥ 34.
Claim 2 follows.

Claim 3: Forn ≥ 30,
∏

pr‖(n+1
5 )

p≥7

pr > n + 1.

The argument is similar to the argument given for Claim 2. Let

T = {n + 1, n, n − 1, n − 2, n − 3}.
Remove fromT an integer divisible by the largest possible power of 2, an integer
divisible by the largest possible power of 3, and an integer divisible by the largest
possible power of 5. Again, some of these numbers may be the same, but at least
two numbers remain, saya andb. Thus,ab ≥ (n − 2)(n − 3). Also, 5 - ab,
32 - ab, and24 - ab. We obtain that

∏
pr‖(n+1

5 )
p≥7

pr ≥ ab

3 × 8
≥ (n − 2)(n − 3)

24
> n + 1

providedn2 − 29n− 18 > 0. The latter inequality is easily deduced forn ≥ 30,
implying the claim.

Claim 4: Forn ≥ 12 with n /∈ {17, 26},
∏

pr‖(n+1
4 )

p≥6

pr > n + 1.

We begin in a similar manner to the previous arguments. LetT denote the set
{n + 1, n, n − 1, n − 2}, and remove an integer divisible by the largest possible
power of 2, an integer divisible by the largest possible power of 3, and an integer
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divisible by the largest possible power of 5. At least one integer remains, saya.
Let b, c, d denote the other three integers. An argument similar to Claim 2 and
Claim 3 would give ∏

pr‖(n+1
4 )

p≥6

pr ≥ a

6
≥ n − 2

6
.

The above inequality is not strong enough. We modify the argument establishing
the lemma, by considering two cases.

First, we suppose one of the numbersb, c, or d is divisible by a primeq ≥ 7.
In this case, one gets an extra factor of7 above so that the product is at least
7(n − 2)/6. One checks that this is greater thann + 1 for n ≥ 21, establishing
the claim in this case forn ≥ 21.

Next, we supposep - bcd for each primep ≥ 7; that is, b, c, andd are
divisible only by the primes2, 3, and5. At most one ofb, c, andd is divisible by
5. Let b andc denote two that are not. Thus, the only prime divisors ofb andc
are2 and3 and bothb andc occur among{n+1, n, n−1, n−2}. It follows that
one of{b, c}, {b/2, c/2}, and{b/3, c/3} consists of two consecutive integers,
one a power of two and one a power of three. We use that the only pairs of such
consecutive positive integers are(1, 2), (2, 3), (3, 4), and(8, 9); this is a result
due to G. C. Gerono in 1857 (see [2]). Forn ≥ 12 as in the claim, this leads to
only three possibilities forn, namelyn = 17, n = 18, andn = 26.

Given the two cases just considered, the full strength of the claim follows by
a direct calculation of the product for12 < n ≤ 20.

Claim 5: Forn ≥ 6,
∏

pr‖(n+1
3 )

p≥5

pr > n + 1 unlessn ∈ {7, 8, 9, 17}.

This claim is established along lines similar to the previous claim. We omit
the details.

We combine the information just obtained. The inequality in Lemma 2 fol-
lows with the indicated exceptions by a computation. More specifically, for
5 ≤ k ≤ n/2 and 10 ≤ n ≤ 33, the inequality was checked and the only
case in these ranges where the inequality did not hold was fork = 5 andn = 11.
The exceptions to the inequality given in Lemma 2, which arise when combin-
ing the claims above, are easily checked to in fact not satisfy the inequality of
Lemma 2. This completes the proof of that lemma.

4 The elimination of possible degrees of factors

We first show the following result.

Result 1. For 0 < |an| < M(n), f(x) cannot have a factor of degreek in
[3, n/2], whereM(n) is as given in Theorem 2. Furthermore, if0 < |an| ≤
n + 1, thenf(x) cannot have a factor of degreek in [3, n/2] except possibly if
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(n, k) ∈ S where

S = {(11, 5),(26, 4), (17, 4), (11, 4), (10, 4),

(9, 4), (8, 4), (17, 3), (9, 3), (8, 3), (7, 3)}.
The setS corresponds to the list of exceptions given in Lemma 2. Assume that
f(x) has a factor of degreek in [3, n/2]. Lemma 1 implies that

(4)
∏

pr‖(n+1)n(n−1)···(n−k+2)
p≥k+2

pr ≤ |an|.

If (n, k) /∈ S, we deduce from Lemma 2 that|an| > n + 1. Suppose now that
(n, k) ∈ S. Using direct computations, we checked that for(n, k) ∈ S the
inequality ∏

pr‖(n+1)n(n−1)···(n−k+2)
p≥k+2

pr ≥ M

holds. We deduce then that|an| ≥ M and Result 1 follows.
Recall thatn + 1 = k′2u whereu is an integer≥ 0 and(k′, 2) = 1. Also,

(n + 1)n = k′′2v3w wherev is an integer≥ 1 andw is an integer≥ 0 and
(k′′, 6) = 1. SinceM = min{k′, k′′}, the following results implyf(x) cannot
have a quadratic or linear factor for0 < |an| < M .

Result 2. If 0 < |an| < k′, thenf(x) cannot have a linear factor.

Result 3. If 0 < |an| < k′′, thenf(x) cannot have a quadratic factor.

The proofs of these two results are straight forward. They follow as a conse-
quence of (4) holding fork = 1 and2 and since the product on the left of (4) is
simplyk′ in the casek = 1 andk′′ in the casek = 2.

5 Reducible examples

Finally, we show that for everyn > 2, if |an| = M(n) = min{k′, k′′} and
|a0| = 1, then there exist integersan−1, an−2, . . . , a1 such thatf(x) is reducible.
In particular, we will show the following:

• If |an| = k′ and|a0| = 1, thenan−1, an−2, . . . , a1 can be chosen such that
x + 2 (or x − 2) is a factor off(x).

• If |an| = k′′ < k′ and|a0| = 1, thenan−1, an−2, . . . , a1 can be chosen such
thatx2 − 3x − 6 is a factor off(x).

Note that whenn = 2, thenf(x) is a quadratic polynomial. It follows from
Result 2 thatf(x) is irreducible for0 < |an| < 3 and |a0| = 1. Furthermore,
by our first construction below, when|an| = 3 and|a0| = 1, a1 can be chosen
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so thex + 2 (or x − 2) is a factor off(x). This justifies our final remarks in the
introduction concerningM(2).

For our arguments, we will make use of the following result which can be
found in [1].

Lemma 4. Letn be a positive integer, and letp be a prime. Then

νp(n!) =
n − sp(n)

p − 1
,

wheresp(n) denotes the sum of the basep digits ofn.

First we show that there exist integersan−1, an−2, . . . , a1 such thatx + 2 or
x − 2 (whichever we choose) is a factor off(x) when|an| = k′ and|a0| = 1.
Let an = k′, a0 = 1, andan−2 = an−3 = · · · = a2 = 0 (the casesan = −k′

or/anda0 = −1 can be treated similarly). Then

(n + 1)!f(x) = k′xn + an−1cn−1x
n−1 + a1c1x + c0,

wherecn−1 = n + 1 = k′2u, c0 = (n + 1)!, andc1 = c0/2. To establish that
f(±2) = 0 for some choice of integersan−1 anda1, it suffices to show that each
of the equations

2n−1cn−1x + 2c1y = 2nk′ and 2n−1cn−1x + 2c1y = c0

is solvable in integersx and y. The second of these is clearly solvable with
x = 0 and y = 1. For the first, we use that the equation is solvable if and
only if gcd(2n−1cn−1, 2c1) divides 2nk′. As cn−1 = 2uk′, it suffices to show
ν2(2c1) ≤ n. By Lemma 4,

ν2(2c1) = ν2((n + 1)!) = n + 1 − s2(n + 1) ≤ n,

so the existence ofan−1 anda1 as above follows.
Now, we consider the case that|an| = k′′ < k′ and |a0| = 1 and show

how to obtainx2 − 3x − 6 as a factor off(x). One checks that the condition
k′′ < k′ implies2|n and3|(n + 1). Therefore, we considern = 2km ≥ 8 and
n + 1 = 3`m′ wherek, `, m, andm′ are positive integers andgcd(mm′, 6) = 1
(there is no restriction here on the size ofmm′). We show that ifan = mm′, then
there exist integersan−1, an−2, . . . , a1 such that the polynomial

an
xn

(n + 1)!
+ an−1

xn−1

n!
+ · · · + a1

x

2!
+ 1

is divisible by the quadraticq(x) = x2 − 3x − 6 (the casesan = −mm′ or/and
a0 = −1 can be treated similarly). To do this, we multiply the polynomial of
degreen above by(n + 1)!, replacean with mm′, and divide through bymm′ to
obtain the polynomial

xn + 3` an−1

m
xn−1 + 3`2kan−2x

n−2 + · · ·
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+ 3`−12k−1(n − 1)!a2x
2 + 3`2k−1(n − 1)!a1x + 3`2k(n − 1)!.

Takean−1 = mr, an−2 = s, an−3 = an−4 = · · · = a3 = 0, a2 = −y, and
a1 = w + y and rewrite this polynomial as

g(x) = xn + 3`rxn−1 + 3`2ksxn−2 − 3`−12k−1(n − 1)!yx2

+ 3`2k−1(n − 1)!(w + y)x + 3`2k(n − 1)!.

It suffices now to show that there exist integersr, s, y, andw such thatg(x) is
divisible byq(x).

For j ≥ 0, define integerscj andbj by

xj ≡ cj + bjx (mod q(x)).

Note that forj ≥ 1 we have

(5) xj+1 ≡ 3xj + 6xj−1 (mod q(x)).

It follows that, forj ≥ 1, we have

(6) cj+1 = 3cj + 6cj−1 and bj+1 = 3bj + 6bj−1.

Letting

A =

(
0 1
6 3

)
,

we obtain from (6) and an induction argument that, for eachj ≥ 0, we have

Aj =

(
cj bj

cj+1 bj+1

)
.

Next, we obtain some results concerning the values ofν2(cj), ν2(bj), ν3(cj), and
ν3(bj). An induction argument gives that, forj > 1, we have

Aj ≡
(

2 3
2 3

)
(mod 4).

Hence, it follows that, forj > 1, we have

(7) ν2(cj) = 1 and ν2(bj) = 0.

We claim that for allj ≥ 0 we have

(8) ν3(cj) ≥ j

2
and ν3(bj) ≥ j − 1

2
.

For j = 0 andj = 1, one checks directly that (8) holds. From (6), we deduce

ν3(cj+1) ≥ min{ν3(cj), ν3(cj−1)} + 1
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and
ν3(bj+1) ≥ min{ν3(bj), ν3(bj−1)} + 1.

An easy induction argument implies (8) holds. Using thatdet(Aj) = det(A)j,
we obtain

(9) cjbj+1 − cj+1bj = ±6j.

Given (8), we deduce that, forj ≥ 0, at least one ofν3(cj) = j/2 andν3(cj+1) =
(j +1)/2 holds. Only one ofj/2 and(j +1)/2 can be an integer. It follows that

(10) ν3(cj) =
j

2
if j is even.

Note that parity considerations also imply from (8) thatν3(cj) ≥ (j + 1)/2 if j
is odd and thatν3(bj) ≥ j/2 if j is even.

Observe thatx2 ≡ 3x + 6 (mod q(x)). We obtain from the definition ofcn

andbn that

g(x) ≡ (bn + 3`rbn−1 + 3`2ksbn−2 + 3`2k−1w(n − 1)!
)
x

+ cn + 3`rcn−1 + 3`2kscn−2 + 3`2k(n − 1)!(1 − y)

moduloq(x). We will show that for somer, s, y, andw,

cn + 3`rcn−1 + 3`2kscn−2 + 3`2k(n − 1)!(1 − y) = 0

and
bn + 3`rbn−1 + 3`2ksbn−2 + 3`2k−1w(n − 1)! = 0.

It will follow then that, g(x) ≡ 0 (mod q(x)). We first show that there are
integersr, s, andy such that

3`rcn−1 + 3`2kscn−2 = −(cn + 3`2k(n − 1)!(1 − y)).

The above equation has integer solutionsr ands if

gcd(3`cn−1, 3
`2kcn−2) | (cn + 3`2k(n − 1)!(1 − y)).

Sincen + 1 = 3`m′ and, from Lemma 4,ν3((n + 1)!) < (n + 1)/2, we obtain
ν3(3

`2k(n − 1)!) ≤ n/2. Also sincen is even, (10) impliesν3(cn) = n/2. It
follows that there is an integery such that

ν3

(
cn + 3`2k(n − 1)!(1 − y)

) ≥ min{ν3(3
`cn−1), ν3(3

`cn−2)}.
Fix such ay. From (7) andk ≥ 1, we obtain

ν2

(
cn + 3`2k(n − 1)!(1 − y)

) ≥ min{ν2(3
`cn−1), ν2(3

`2kcn−2)}.
Note that (9) implies that2 and3 are the only prime factors possibly in common
with cn−1 andcn−2. It follows that there are integersr0 ands0 such that

(11) cn + 3`r0cn−1 + 3`2ks0cn−2 + 3`2k(n − 1)!(1 − y) = 0.
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We will use later thatr0 is odd which follows from (7), the above equation, and
the fact thatk ≥ 1 andn ≥ 3. We fix r0 ands0 (andy) as above and note that
for any integert we have

cn + 3`cn−1

(
r0 +2kcn−2t

)
+ 3`2kcn−2

(
s0− cn−1t

)
+ 3`2k(n−1)!(1−y) = 0.

We set
r = r0 + 2kcn−2t and s = s0 − cn−1t

and seekt andw so that

bn + 3`rbn−1 + 3`2ksbn−2 + 3`2k−1w(n − 1)! = 0.

In other words, we want

3`2k−1w(n − 1)! + 3`2k
(
cn−2bn−1 − cn−1bn−2

)
t

+ bn + 3`r0bn−1 + 3`2ks0bn−2 = 0.

By (6), we can rewrite this equation as

3`2k−1w(n − 1)! + 3`2k
(
cn−2bn−1 − cn−1bn−2

)
t(12)

+ (3`r0 + 3)bn−1 + (3`2ks0 + 6)bn−2 = 0.

From (6) and (11), we obtain

(13) (3`r0 + 3)cn−1 + (3`2ks0 + 6)cn−2 + 3`2k(n − 1)!(1 − y) = 0.

Multiplying both sides of (12) bycn−2 and both sides of (13) by−bn−2 and then
adding, we obtain

cn−23
`2k−1(n − 1)!w + cn−23

`2k
(
cn−2bn−1 − cn−1bn−2

)
t(14)

+ (3`r0 +3)
(
cn−2bn−1− cn−1bn−2

)− 3`2k(n−1)!(1−y)bn−2 = 0.

Observe that (13) implies that if (14) holds, then so does (12).
We show that (14) holds for some integersw andt. Sincen = 2km, with k

a positive integer,n is even so thatν3(cn−1) ≥ n/2, ν3(cn−2) = (n − 2)/2, and
ν3(bn−2) ≥ (n − 2)/2. Let

c = cn−23
`2k−1(n − 1)!, c′ = cn−23

`2k
(
cn−2bn−1 − cn−1bn−2

)
,

c′′ = (3`r0 + 3)
(
cn−2bn−1 − cn−1bn−2

)
, and c′′′ = 3`2k(n − 1)!(1 − y)bn−2.

Recall thatν3

(
3`2k(n − 1)!

) ≤ n/2. We deduce

ν3(c) ≤ n

2
+

n − 2

2
= n − 1.
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Observe thatν2(n!) < n (for example, from Lemma 4). Sincen = 2km, we
haveν2(2

k−1(n − 1)!) = ν2(n!) − 1. From (7), we see thatν2(c) ≤ ν2(n!) < n.
Sinceν2(c) is an integer,

ν2(c) ≤ n − 1.

Note that3 divides3`r0 + 3. Sincer0 is odd, 2 divides3`r0 + 3. We obtain from
(9) that

ν2(c
′′) ≥ n − 1 and ν3(c

′′) ≥ n − 1.

Observe that (7) impliesν2(c
′′′) ≥ ν2(c). Next, we show thatν3(c

′′′) ≥ ν3(c).
Recall that sincen is even,

ν3(bn−2) ≥ (n − 2)/2 = ν3(cn−2).

So,

ν3(c
′′′) = ν3(3

`2k(n − 1)!(1 − y)bn−2) ≥ ν3(cn−23
`2k−1(n − 1)!) = ν3(c).

Combining the above, we deduce

ν2(c
′′′ − c′′) ≥ ν2(c) and ν3(c

′′′ − c′′) ≥ ν3(c).

We claim thatgcd(c, c′) dividesc′′′ − c′′. Let p be a prime andu a positive
integer for whichpu|| gcd(c, c′). The above analysis shows that ifp = 2 or p = 3,
thenpu|(c′′′−c′′). Now, consider the case thatp > 3. From (9) and the definition
of c′, we obtain thatpu|cn−2. From (13), we see thatpu must also divide(

(3`r0 +3)cn−1 + 3`2k(n−1)!(1−y)
)
bn−2 − (3`r0 +3)cn−2bn−1 = c′′′ − c′′.

Hence,gcd(c, c′) dividesc′′′ − c′′.
It now follows that there exist integersw andt for whichcw + c′t = c′′′− c′′.

This establishes the existence of integersw andt as in (12) and (14) and, hence,
the existence of integersr, s, y, andw for whichg(x) is divisible byx2−3x−6.

Comment: The above argument for the casek′′ < k′ is hampered somewhat by
the presence of a non-zero coefficient ofx in our choice ofg(x). It can be shown,
however, that there aren (for example,n = 32) for whichk′′ < k′ and for which
f(x), with |an| = k′ and|a0| = 1, has no factorsax2 + c ∈ Z[x] regardless of
the integral values chosen fora1, a2, . . . , an−1.
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