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1. Introduction

Let �1; �2; : : : ; �d be the roots, appearing as many times as their mul-

tiplicity, of a non-zero polynomial A(x) 2 Z[x]. Thus, we may write

(1) A(x) =

dX
j=0

ajx
j = ad

dY
j=1

(x� �j)

where the aj are integers with ad 6= 0. We de�ne the Euclidean norm of A

to be kAk =

 
dP

j=0

jaj j
2

!1=2

. With a positive integer N and a polynomial

A �xed, we will be interested in bounding the size of kQ(x)k given that

Q(x) 2 Z[x] and kAQk � N . Such a bound on kQk is not always possible.

In fact, if A(x) is divisible by a cyclotomic polynomial �m(x), then by

considering w(x) 2 Z[x] for which w(x)�m(x) = xm � 1, we deduce that

the Euclidean norm of

A(x)w(x)(xkm + x(k�1)m + � � � + xm + 1)

for any positive integer k is bounded above by a quantity that is indepen-

dent of k. Hence, whenever A(x) is divisible by a cylcotomic polynomial

and N is su�ciently large, there will be Q(x) 2 Z[x] with arbitrarily large

Euclidean norm and with kAQk � N . It is reasonable, however, to ex-

pect that the Euclidean norm of Q(x) is bounded whenever A(x) is free of

cyclotomic factors. This in fact is the main result of this paper.

Theorem 1. Let A(x) 2 Z[x] be a polynomial having no cyclotomic fac-

tors. Let N � 1. If Q(x) 2 Z[x] and kA(x)Q(x)k � N , then kQk is

bounded by a function depending only on A(x) and N .

The bound on kQk can be made explicit, and this will be clear from the

arguments. There are special cases where such a bound follows from the
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literature. In particular, if A(�)Q(�) = 0 =) A(1=�)Q(1=�) 6= 0, then

Theorem 1 follows from the main result of Schinzel in [9]. More generally,

if A(x) has no roots with absolute value 1, then a theorem of Donaldson

and Rahman [2] would imply Theorem 1. Furthermore, in this case, the

bound on kQk takes a nice form. We explain this use of Donaldson and

Rahman's work in more detail in Section 4.

As a consequence of a more general conjecture of Schinzel [10], it would

follow that if A(x)Q(x) has no cyclotomic factors and kAQk � N , then

kQk is bounded by a function depending only on N . On the other hand,

Schinzel (private communication) has supplied us with the following ex-

ample which shows that the dependence of the bound for kQk on the

polynomial A(x) is necessary in Theorem 1. Let p and q be odd primes

with p > q. Let A(x) = �pq(x)+x�1 and Q(x) = (xp�1)(xq�1)=(x�1).

Then

A(x)Q(x) = xpq + xp+q � xp � xq :

Thus, kAQk = 2, but kQk can be arbitrarily large. It can be shown that

A(x) is xq times an irreducible polynomial which is not cyclotomic. Thus,

the bound on kQk in Theorem 1 must depend on A(x). By applying

classical bounds on norms of factors of polynomials, it is not di�cult to

see that the bound on kQk can be made a function of only the degree of

A(x) and N . Whether the bound on kQk can be made a function of only

kAk and N is unclear.

A second problem we consider in this paper is that of �nding among

all nonzero integer polynomials which are divisible by a given polynomial

A(x), a polynomial with minimum Euclidean norm. Thus, we want a non-

zero element of the principal ideal (A(x)) in Z[x] with smallest possible

Euclidean norm. Similar to our discussion above, it is not di�cult to

produce examples where the polynomial A(x) has a large Euclidean norm

while an obvious multiple of A(x) has decidedly lower Euclidean norm.

We will make use of the notation:

M(A) = jadj

dY
j=1

maxf1; j�j jg (the Mahler measure of A);

kAkmin = minfkPk : P (x) 2 Z[x]; A(x)jP (x); P (x) 6� 0g;

PA = fQA : Q 2 Z[x]; Q(0) 6= 0; jjQAjj = kAkming:

Thus, we are interested in an algorithm for �nding an element of PA.

We will not be able to resolve this problem in general, but an answer

to the problem does follow from Theorem 1 in the case that A(x) has no

cyclotomic factors. In fact, in this case, PA has a �nite number of elements

and they can all be determined. Previously, the �rst author together with

2



Robinson and Wheeler [4] found such an algorithm in the case that A(x)

is irreducible. The more general problem considered here was posed at the

end of that paper.

Similar to their approach, the idea is to �nd an upper bound B on the

degree of the elements of PA. Once this has been accomplished, then the

task of �nding the elements of PA can be seen to be e�ectively computable

as follows. We observe that A is in the ideal (A(x)) so kAk is an upper

bound on kAkmin. This means that the coe�cients of any element of PA

are each bounded in absolute value by kAk. Thus, the elements of PA can

be determined by considering all the polynomials in Z[x] with coe�cients

bounded in absolute value by kAk and with degree at mostB. Those which

are divisible by A(x) and have the smallest Euclidean norm are then the

elements of PA.

Theorem 2. Let A(x) 2 Z[x] be a polynomial having no cyclotomic fac-

tors. Let P (x) 2 PA. Then degP is bounded by a function depending only

on A.

The bound on degP can be made explicit. Indeed, the method de-

scribed above for �nding the elements of PA depends on having more than

an existence proof of a bound on degP .

The bounds in this paper will be functions of other known bounds in

the literature. To be explicit, we will need a quantity B(m;N) satisfying

the following condition:

(C) For any non-zero P (x) 2 Z[x] of degree � m with kPk � N and any

Q(x) 2 Z[x] such that Q(x)jP (x), we have kQk � B(m;N):

We may take, for example, B(m;N) of the form �mN for some appropriate

� (cf. [1], [5], [6], [8]; � = 2 will su�ce), but we allow for the possibility

that a di�erent estimate may be used. We also note that in (C) we may

suppose that B(m;N) is increasing with respect to each of m and N , and

we do so.

2. Preliminaries and Lemmas

Let P 2 Z[x] with P (0) 6= 0. We de�ne the reciprocal polynomial of

P to be P �(x) = xdegPP (1=x) 2 Z[x]. It is clear that if P 2 PA, then

P � 2 PA� . Furthermore, deg P = deg P � and kPk = kP �k. By considering

reciprocal polynomials when necessary, we will be able to suppose that a

polynomial under consideration either has a root inside the unit circle or

has all its roots on the unit circle.

We begin with some lemmas which may be viewed as extensions of two

lemmas appearing in [4]. We de�ne A(x) as in (1). Observe that for

any polynomial f(x), we have kf(x)k = kxf(x)k. It follows that we may
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suppose a0 6= 0 in Theorem 1 and Theorem 2. Set

P (x) =

nX
j=1

cjx
dj

with 0 = d1 < d2 < � � � < dn = degP (x) and each cj non-zero. For �xed

J with 1 � J � n, set

(2) PJ (x) =

JX
j=1

cjx
dj :

Lemma 1. Suppose A(x) is irreducible and has a root with absolute value

< 1. Let N be such that kPk � N , and let J 2 f1; 2; : : : ; n � 1g. If

A(x)jP (x) and A(x) - PJ (x), then

dJ+1 � C(dJ + 2d)

where C = logN= log(M(A)=ja0j).

Here, A(x)jP (x) and P (0) 6= 0, so that a0 6= 0 follows. Observe that

the condition A(x) has a root with absolute value < 1 implies

M(A) > jadj

dY
j=1

j�j j = ja0j:

Thus, the de�nition of C above makes sense.

For the proof of Lemma 1, we let RJ denote the resultant of A(x) and

PJ (x). Let � denote the number of roots of A(x) having absolute value

< 1. We use well known properties of resultants [11] to obtain

1 � jRJ j = jadj
dJ

dY
j=1

jPJ (�j)j

= jadj
dJ

Y
j�jj<1

jP (�j)� PJ (�j)j
Y

j�kj�1

jPJ (�k)j

� jadj
dJ

Y
j�jj<1

 
j�j j

dJ+1

nX
h=J+1

jchj

! Y
j�kj�1

 
j�kj

dJ

JX
i=1

jcij

!

�

�
ja0j

M(A)

�dJ+1  nX
h=J+1

jchj

!�

M(A)dJ

 
JX
i=1

jcij

!d��

:

Dividing by (ja0j=M(A))
dJ+1 and taking logarithms of both sides gives

(3) dJ+1 �
logM(A)

log (M(A)=ja0j)
dJ +

log

��Pn
h=J+1 jchj

�� �PJ
i=1 jcij

�d���
log (M(A)=ja0j)

:

4



Now
nX

h=J+1

jchj �

nX
h=J+1

jchj
2 � N2:

Similarly,
JX
i=1

jcij � N2:

Hence, it is clear by (3) that

dJ+1 �
logM(A)

log (M(A)=ja0j)
dJ +

2d logN

log (M(A)=ja0j)
:

By well known properties of Mahler measure, we obtain M(A) �M(P ) �

kPk � N . Since

C =
logN

log (M(A)=ja0j)
�

logM(A)

log (M(A)=ja0j)
� 1;

we deduce

dJ+1 � CdJ + 2dC

as required.

Lemma 2. Let N � 1, and let A(x) 2 Z[x] as in (1). Assume that

A(x) is irreducible and has at least one root inside the unit circle. If there

exists Q(x) 2 Z[x] such that kAQk � N , then kQk is bounded above by

a constant depending only on A(x) and N (and independent of Q and its

degree). More speci�cally,

kQk � NB(2dN4CN2

; N);

where C = logN= log (M(A)=ja0j).

Proof. We may suppose that Q(0) 6= 0 and do so. We set P (x) =

A(x)Q(x). We consider 3 cases.

CASE 1: A(x) - PJ(x) for all J 2 f1; 2; : : : ; n� 1g.

We may apply Lemma 1 for each J 2 f1; 2; : : : ; n� 1g to obtain that

dJ+1 � C(dJ + 2d):

Recall that d1 = 0 and, as shown above, C � 1. By induction on J , we

have

(4) deg P = dn � 2d

nX
j=1

Cj � 2dnCn:
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But then n � kPk2 � N2 implies that degP � 2dN2CN2

. By Condition

(C), we obtain

kQk � B(2dN2CN2

; N):

The right side is less than the bound given in the lemma, so in this case

we are through.

CASE 2: A(x)jPJ (x) for some J and dJ+1 � dJ � 2dN2CN2

for all J �

n� 1.

Since n � N2, summing the inequality on J and using that d1 = 0, we

obtain deg(A(x)Q(x)) � 2dN4CN2

. Here, we deduce that

kQk � B(2dN4CN2

; N);

completing the argument in this case.

CASE 3: For some J � n� 1, dJ+1 � dJ > 2dN2CN2

.

Let r be the number of J 's for which dJ+1� dJ exceeds 2dN2CN2

. Let

1 � J1 < J2 < � � � < Jr � n � 1 be such that J 2 fJ1; J2; : : : ; Jrg if and

only if dJ+1 � dJ > 2dN2CN2

. We show that A(x)jPJ(x) for each J 2

fJ1; J2; : : : ; Jrg. Assume otherwise, and let i 2 f1; 2; : : : ; rg be minimal

such that A(x) - PJi(x). Let J
0 2 f1; 2; : : : ; Ji � 1g be maximal such that

A(x)jPJ0(x); if no such J 0 exists, we set J 0 = 0 and PJ0(x) = P0(x) = 0.

We consider the polynomial (P (x)� PJ0(x)) =xdJ0+1 . This polynomial is

a multiple of A(x) and has norm � kPk � N . By Lemma 1 with this

polynomial in the place of P (x), we deduce

dJ+1 � dJ0+1 � C(dJ � dJ0+1 + 2d) for J 0 < J � Ji:

We appeal to the argument we gave for (4) to obtain

dJi+1 � dJ0+1 � 2dN2CN2

:

This contradicts that

dJi+1 � dJ0+1 � dJi+1 � dJi > 2dN2CN2

:

Therefore, we obtain that A(x)jPJ(x) for each J 2 fJ1; J2; : : : ; Jrg.

Let k0 = 0, and let kj = dJj+1 for each j 2 f1; 2; : : : ; rg. Replacing

these dJj+1 with their respective kj 's in A(x)Q(x) we get

A(x)Q(x) =

nX
j=1

cjx
dj =

rX
j=0

hj(x)x
kj ;

for some hj(x) 2 Z[x] with deg hj(x) = dJj+1 � dJj+1 for j 2 f1; 2; : : : ; r�

1g, degh0(x) = dJ1 and deghr(x) = dn � dJr+1. Now kL+1 � (kL +
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deg hL(x)) > 2dN2 CN2

as L varies over f0; 1; : : : ; r � 1g. Also, since

A(x)jPJ (x) for each J 2 fJ1; J2; : : : ; Jrg and since A(x)jP (x), we ob-

tain that A(x)jhj(x) for all j 2 f0; 1; : : : ; rg. Therefore, for each j 2

f0; 1; : : : ; rg, there exists wj(x) 2 Z[x] satisfying

hj(x) = A(x)wj(x):

Thus,

Q(x) =

rX
j=0

wj(x)x
kj :

For each j 2 f0; 1; : : : ; rg, the coe�cients of A(x)wj(x) are among the

coe�cients of A(x)Q(x). Hence,

khj(x)k = kA(x)wj(x)k � kA(x)Q(x)k � N:

By the choice of the kj's, we note that if hj(x) =
Pk

i=1 bix
ni , then

nJ+1 � nJ � 2dN2 CN2

for all J 2 f1; 2; : : : k � 1g. Since each hj(x)

is a polynomial with norm � N , we are in a position to apply Case 1 or 2

to each hj(x). We deduce that

kwj(x)k � B(2dN4CN2

; N) for j 2 f0; 1; : : : ; rg:

Now r + 1 � n � N2 implies that

kQk2 =

rX
j=0

kwjk
2 � N2B2(2dN4CN2

; N):

Thus, in this case, we also get that the lemma follows.

If A(x) has a root with absolute value > 1, one can still apply Lemma

2 by considering reciprocal polynomials. In other words, one considers

A�(x) and notes that kA(x)Q(x)k = kA�(x)Q�(x)k. The bound is the

same as that given in Lemma 1 except that A needs to be replaced by A�

in the de�nition of C. Lemma 2, however, does not handle the case when

A(x) has roots only on the unit circle. In order to deal with this case, we

introduce two new lemmas.

Lemma 3. Suppose the roots of A(x) are distinct and have absolute value

� 1. Suppose further that no root of A(x) is a root of unity. Let N

be such that kPk � N , and let J 2 f1; 2; : : : ; n � 1g. If A(x)jP (x) and

A(x) - PJ (x), then

dJ+1 � dJ � 2ddd
2
+dN2dkAk2d

2�2d:
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Proof. Let Q(x) = P (x)=A(x) and write

Q(x) =

mX
j=0

qjx
j with q0qm 6= 0:

We de�ne qj = 0 for j 62 [0;m]. Recall from (2) that PJ (x) =
PJ

j=1 cjx
dj :

Now for all k such that dJ < k < dJ+1, we have

(5) 0 = a0qk + a1qk�1 + � � � + adqk�d

since the right-hand side is simply the coe�cient of xk in the product

A(x)Q(x) = P (x). Thus, the sequence fqigdJ�d<i<dJ+1 is a linear re-

currence of order d. In order to bound the elements of this sequence we

expand 1=A(x) in a formal power series. Since all the roots of A(x) are

distinct, we have

Q(x) = P (x)

dX
j=1

�
�1

�jA0(�j)

�
1

1� x=�j

= P (x)

1X
h=0

xh
dX

j=1

���hj

�jA0(�j)

=

1X
k=0

xk
X
i

di�k

ci

dX
j=1

��
�(k�di)
j

�jA0(�j)

=

1X
k=0

xk
dX

j=1

���kj

�jA0(�j)

X
i

di�k

ci�
di
j :

Thus,

qk =

dX
j=1

�PJ0(�j)

�jA0(�j)
��kj for 1 � J 0 � n� 1 and dJ0 � k < dJ0+1:

Since j�j j � 1 for each j, we deduce that

(6) jqkj �

JX
i=1

jcij

dX
j=1

1=jA0(�j)j for all k < dJ+1:

Let BJ denote the right-hand side of (6). In the sequence fqigdJ�d<i<dJ+1
there are dJ+1�dJ contiguous subsequences of length d. And, there are at

most (2BJ + 1)
d
distinct d�vectors hqk�d+1; : : : ; qki satisfying jqij � BJ

for k � d+ 1 � i � k. Assume that

(7) dJ+1 � dJ > (2BJ + 1)
d
:
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Then there are two d-vectors

~v1 = hqk1�d+1; : : : ; qk1i and ~v2 = hqk2�d+1; : : : ; qk2i

with dJ � k1 < k2 < dJ+1 such that ~v1 = ~v2. From (5), we see

that for dJ < k < dJ+1, the value of qk is determined by the previ-

ous d values of qj . Thus, fqjgk1�d<j<dJ+1 is cyclic with cycle length

! � k2 � k1. Now, we form an in�nite number of multipliers Qt(x) such

that kQt(x)A(x)k = kQ(x)A(x)k. This is done by splicing in t copies of

the vector hqdJ+1�!; : : : ; qdJ+1�1i into the coe�cient vector for Q between

qdJ+1�1 and qdJ+1. More precisely, we have

Qt(x) =

dJ+1�!�1X
j=0

qjx
j +

0
@ dJ+1�1X
j=dJ+1�!

qjx
j

1
A (1 + x! + � � � + x!t)

+ x!t
mX

j=dJ+1

qjx
j

and

Qt(x)A(x) =

JX
j=1

cjx
dj + x!t

nX
j=J+1

cjx
dj :

Note that kQtAk = kQAk � N and

(Qt(x)�Q(x))A(x) = (x!t � 1)

nX
j=J+1

cjx
dj :

There are no roots of unity among �1; : : : ; �d. Hence, A(x)j
Pn

j=J+1 cjx
dj .

But A(x)jP (x) implies now that A(x)jPJ(x), a contradiction. Thus (7)

does not hold so that

dJ+1 � dJ � (2BJ + 1)
d
:

One easily gets that

dJ+1 � dJ �

0
@2(N2 � 1)

dX
j=1

1

jA0(�j)j
+ 1

1
A
d

:

Since all the roots of A are distinct, A and A0 are relatively prime. Let

R denote the resultant of A� (the reciprocal polynomial for A(x)) and

A0� (the reciprocal polynomial for A0(x)). The roots of A� are 1=�j for

1 � j � d. If for some j, 1=�j is a root of A0�, then �j is a root of A0,

contradicting that A and A0 are relatively prime. Thus, A� and A0� are
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relatively prime, and the resultant is non-zero. We consider a value of

i 2 f1; 2; : : : ; dg. Then by an argument of resultants (cf. [7, Proposition

1.6]) and the fact that j�ij � 1, we have

1 � jRj � djA0�(1=�i)jkA
0�kd�1kA�kd�1 � djA0(�i)jkA

0kd�1kAkd�1:

We use that kA0k �
�Pd

j=1 d
2jaj j

2
�1=2

� dkAk. Then

1

jA0(�i)j
� ddkAk2d�2:

This holds for each i 2 f1; 2; : : : ; dg so that

dJ+1 � dJ �
�
2(N2 � 1)dd+1kAk2d�2 + 1

�d
� 2ddd

2+dN2dkAk2d
2�2d:

This completes the proof of the lemma.

Lemma 4. Let N � 1, and suppose A(x) has distinct roots with each of

absolute value � 1. Suppose further that no root of A(x) is a root of unity.

If Q(x) 2 Z[x] is such that kAQk � N , then

kQk � N B(2ddd
2+dN2d+2kAk2d

2�2d; N):

Proof. Again we view P (x) as the product of the polynomials A(x) and

Q(x). As in Lemma 2, we consider 3 cases.

CASE 1: A(x) - PJ(x) for all J 2 [1; n � 1].

We use Lemma 3 and sum over J . Noting that n � N2, we obtain

degP � 2ddd
2+dN2d+2kAk2d

2�2d:

Therefore Q(x) satis�es condition (C) with m = 2ddd
2+dN2d+2kAk2d

2�2d.

Hence,

kQk � B(2ddd
2
+dN2d+2kAk2d

2�2d; N):

CASE 2: A(x)jPJ for some J , and for all J 2 [1; n � 1], dJ+1 � dJ �

2ddd
2+dN2dkAk2d

2�2d.

As above we get here that

kQ(x)k � B(2ddd
2
+dN2d+2kAk2d

2�2d; N):

CASE 3: For some J , dJ+1 � dJ > 2ddd
2+dN2dkAk2d

2�2d.
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By Lemma 3, we get A(x)jPJ(x) for any such J . We appeal to the

argument given in Lemma 2, Case 3. Here the situation is somewhat

simpler as the corresponding hj(x) are clearly divisible by A(x) (since

A(x)jPJ (x) whenever dJ+1 � dJ > 2ddd
2+dN2dkAk2d

2�2d). We deduce

that

kQk � N B(2ddd
2+dN2d+2kAk2d

2�2d; N);

and Lemma 4 follows.

The following lemma can be considered as a characterization of the

multipliers of A(x) which give minimum norm. This lemma is also useful

in reducing the search space of multipliers in the implementation of the

algorithm to �nd the elements of PA.

Lemma 5. Let A(x) be as in (1) of degree d. Let Q(x) =
Pr

j=1 qjx
mj with

0 = m1 < m2 < � � � < mr and each qj 6= 0. If jjA(x)Q(x)jj = jjA(x)jjmin,

then mJ+1 �mJ � d for each J 2 f1; 2; : : : ; r � 1g. Furthermore,

degQ(x) � (jjQjj2 � 1)d:

Proof. Let P (x) = A(x)Q(x). Then kPk = kAkmin. Assume mJ+1 �

mJ > d for some J 2 f1; 2; : : : ; r � 1g. Let QJ =
PJ

j=1 qjx
mj . Then

Q(x) =
Pr

j=J+1 qjx
mj +QJ(x) implies

A(x)Q(x) = A(x)

rX
j=J+1

qjx
mj +A(x)QJ(x):

Now deg(A(x)QJ(x)) = d + mJ < mJ+1. Therefore, the coe�cients of

A(x)Q(x) are the disjoint union of the coe�cients of A(x)
Pr

j=J+1 qjx
mj

and the coe�cients of A(x)QJ(x). Hence, jjA(x)QJ (x)jj < kPk, giving a

contradiction. Thus, mJ+1 �mJ � d.

It is clear that r � jjQjj2. Now, mJ+1 � mJ � d for each J 2

f1; 2; : : : ; r � 1g and m1 = 0 imply that

degQ(x) =

r�1X
J=1

(mJ+1 �mJ ) �

r�1X
J=1

d = (r � 1)d � (jjQjj2 � 1)d;

establishing the lemma.

3. Proofs of the Theorems

Proof of Theorem 1. We use Lemmas 2 and 4 where a bound was given for

kQk when kAQk � N . Observe that one of these two lemmas will apply
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if A(x) is an irreducible non-cyclotomic polynomial. We write ~B(A;N) to

denote a bound given from these two lemmas for kQk.

Write A(x) =
Qm
j=1 fj(x) with each fj(x) irreducible and where re-

peated factors appear as many times as their multiplicity. By the condi-

tions in the theorem, no fj(x) is cyclotomic. For each j 2 f1; 2; : : : ;mg, we

consider A(x) = fj(x) and apply either Lemma 2 or Lemma 4. Applying

these lemmas repeatedly on each fj, we get

jjf2f3 � � � fmQjj � ~B(f1; N)

jjf3f4 � � � fmQjj � ~B(f2; ~B(f1; N))

jjf4f5 � � � fmQjj � ~B(f3; ~B(f2; ~B(f1; N)))

...

and the required bound on kQk follows.

Proof of Theorem 2. Let N = kAk. We set Q(x) = P (x)=A(x). The

polynomial P (x) is a multiple of A(x) with minimal Euclidean norm so

that kA(x)Q(x)k � N . By Theorem 1, jjQjj is bounded by a function

of A(x) and N . Since N = kAk, we deduce that jjQjj is bounded by

a function which depends only on A(x). Also, Lemma 5 implies that

degQ is bounded by a function of jjQjj and d = degA. Thus, degQ is

bounded by a function depending only on A(x). The result now follows

from degP = degQ+ degA.

4. Further Remarks

As mentioned in the introduction, there are also results in the literature

which would help give estimates of the type we have been considering. One

such result which can be found in [2] and [3] is as follows.

Lemma 6. Let Q(x) be a complex polynomial of degree n and � any

complex number. Then

kQk �

�
1 + j�j2 � 2j�j cos

�
�

n+ 2

���1=2
kQ(x)(x� �)k:

From this result, we can obtain the following revision of Theorem 1.

Theorem 3. Let A(x) 2 Z[x] be a polynomial of the form (1) having no

roots on the unit circle. Let N � 1. If Q(x) 2 Z[x] and kA(x)Q(x)k � N ,

then

kQk �
N

jA+(1)j
;

12



where A+(x) = ad
Qd

i=1(x� j�ij).

Proof. By Lemma 6, we have

kadQ(x)k �

�
1 + j�1j

2 � 2j�1j cos

�
�

degQ+ 2

���1=2
kadQ(x)(x� �1)k

�
�
1 + j�1j

2 � 2j�1j
��1=2

kadQ(x)(x� �1)k

�
kadQ(x)(x� �1)k

j1� j�1jj
:

If we replace adQ(x) with adQ(x)(x��1) above and use �2 in place of �1,

we get that

kadQ(x)(x� �1)k

j1 � j�1jj
�
kadQ(x)(x� �1)(x� �2)k

j(1 � j�1j)(1� j�2j)j

so that

kadQ(x)k �
kadQ(x)(x� �1)(x� �2)k

j(1� j�1j)(1� j�2j)j
:

Continuing in this manner, we obtain

jadj kQ(x)k = kadQ(x)k �
kadQ(x)

Qd
i=1(x� �i)kQd

i=1 j1� j�ijj

=
kA(x)Q(x)kQd
i=1 j1 � j�ijj

:

Hence,

kQ(x)k �
kA(x)Q(x)k

jadj
Qn

i=1 j1 � j�ijj
�

N

jA+(1)j
;

completing the proof.

Observe that if j�1j = 1, the expression

�
1 + j�1j

2 � 2j�1j cos

�
�

degQ+ 2

���1=2

gets large as degQ increases. This would cause the bound on kQ(x)k

obtained directly from Lemma 6 to tend to in�nity as degQ tends to

in�nity. Under the condition that A(x) has no roots with absolute value

1, this situation is avoided.
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