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1. Introduction

In 1986, during the problem session at the West Coast Number Theory

Conference, the second author stated the following:

Conjecture 1. Let n be an integer � 2, and let f(x) = 1+x+x2+� � �+xn.
Then f 0(x) is irreducible over the rationals.

He noted then that the conjecture is true if n = p � 1 � 2 or if n = pr

where p is a prime and r a positive integer. Calculations showed the

conjecture also held for n � 100. Recently, in a study of more general

polynomials, the �rst author [2] obtained further irreducibility results for

f(x); in particular, he established irreducibility in the case that n+ 1 is a

squarefree number � 3 and in the case that n = 2p� 1 where p is prime.

The third author independently observed that f (k)(x) is Eisenstein if

n = p � 1 for every integer k 2 [1; n � 1] and, based on some further

computations, conjectured:

Conjecture 2. Let n and k be integers with n � 2 and 1 � k � n � 1,

and let f(x) = 1 + x+ x2 + � � �+ xn. Then f (k)(x) is irreducible over the

rationals.

In 1991, again during the problem session at the West Coast Number

Theory Conference, Je� Lagarias mentioned a class of polynomials asso-

ciated with some work of Eugene Gutkin [5] concerning billiards. Eugene

Gutkin was interested in showing that the polynomials had no roots in

common other than from obvious cyclotomic factors. As a consequence,

Je� Lagarias made the following conjecture attributed to Eugene Gutkin:
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Conjecture 3. Let n be an integer � 4, and let

p(x) = (n� 1)(xn+1 � 1)� (n+ 1)(xn � x):

Then p(x) is (x�1)3 times an irreducible polynomial if n is even and p(x)

is (x� 1)3(x+ 1) times an irreducible polynomial if n is odd.

In this paper, we explain some approaches to these three conjectures.

The connection between Conjectures 3 and the two previous conjectures

is more transparent if one observes that in Conjecture 1 we have f(x) =

(xn+1 � 1)=(x� 1) so that

f 0(x) =
nxn+1 � (n+ 1)xn + 1

(x� 1)2
:

Higher derivatives of f(x) as in Conjecture 2 take a similar form. We

are able to show that Conjectures 1 and 3 hold for almost all n and that

Conjecture 2 holds for most choices of n and k. More precisely, we establish

each of the following theorems.

Theorem 1. Let " > 0. For all but O(t(1=3)+") positive integers n � t,

the derivative of the polynomial f(x) = 1+x+x2+ � � �+xn is irreducible.

Theorem 2. Fix a positive integer k. For all but o(t) positive integers

n � t, the kth derivative of the polynomial f(x) = 1+ x+ x2 + � � �+ xn is

irreducible.

Theorem 3. Fix a positive integer m. There is an N such that if n is a

positive integer � N and f(x) = 1+x+x2+ � � �+xn, then the polynomial

f (n�m)(x) is irreducible.

Theorem 4. Let " > 0. For all but O(t(4=5)+") positive integers n � t,

the polynomial

p(x) = (n� 1)(xn+1 � 1)� (n+ 1)(xn � x);

is such that p(x) is (x � 1)3 times an irreducible polynomial if n is even

and p(x) is (x� 1)3(x+ 1) times an irreducible polynomial if n is odd.

In Theorem 2, our arguments give O(t log log t= log t) in place of o(t).

We would be interested in an upper bound of the type O(t�) for some

� 2 (0; 1) that is independent of k. Our arguments suggest that such a �

exists, but we have been unable to establish this.

The rest of the paper is organized as follows. In the next section, we

give a proof of Theorem 3. The proofs of the remaining theorems above
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that we will present here rely on the location of the p-adic zeroes of the

polynomials. Section 3 establishes some preliminary results based on these

zeroes. As noted at the end of that section, these preliminary results can

be extended to handle certain other classes of polynomials where almost

all polynomials in the class have one non-cyclotomic irreducible factor. In

the remaining sections of the paper, we give proofs of each of the remaining

theorems based on these preliminary results.

Acknowledgment: The authors express their thanks to Andrzej Schinzel

who encouraged the �rst three authors to correspond with one another in

matters related to this research. They also express their gratitude to

Charles Nicol for early remarks concerning this work.

2. A Proof of Theorem 3 and Further Remarks

Consider f(x) as in Theorem 3. If m = 1, then f (n�m)(x) is linear

and, hence, irreducible for every integer n � 1. If m = 2, then f (n�m)(x)

is quadratic and it is a simple matter to show that this quadratic has

imaginary roots. Thus, in this case, f (n�m)(x) is irreducible for every

integer n � 2. It is of some interest to continue by considering the cubics

one obtains in Theorem 3 by setting m = 3. The proof we will present

for Theorem 3 is e�ective so that in theory it is possible to determine for

a �xed m what polynomials of the form f (n�m)(x) are reducible. We will

demonstrate this at the end of the section by showing that for m = 3 the

cubic f (n�m)(x) is irreducible for every integer n � 4.

We turn now to the proof of Theorem 3. Observe that

f (n�m)(x) =

nX
j=n�m

j(j � 1) � � � (j � n+m+ 1)xj�n+m

=

mX
j=0

(n� j)(n� j � 1) � � � (m� j + 1)xm�j:

We set k = n�m and consider the polynomial

Fk(x) =
xmf (k)(1=x)

k!

=

mX
j=0

(k +m� j)(k +m� j � 1) � � � (m� j + 1)

k!
xj

=

mX
j=0

�
k +m� j

m� j

�
xj
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=

mX
j=0

�
k + j

j

�
xm�j :

It suÆces now to show that if k is suÆciently large, then the polynomial

Fk(x) is irreducible.

For a prime p and an integer a, we de�ne �(a) = �p(a) = e where

pejja. We de�ne the Newton polygon of a polynomial F (x) =
Pn

j=0 ajx
j

as the lower convex hull of the points (j; �(aj)) (cf. [3], [6], [15]). We

consider the Newton polygon of a polynomial F (x). Let the lattice points

along the edges be (x0; y0); (x1; y1); : : : ; (xs; ys) with 0 = x0 < x1 < � � � <
xs = degF (x). Then the degree of any irreducible factor of F (x) (over

Z[x]) must be some sum of the di�erences x1 � x0; x2� x1; : : : ; xs� xs�1.

In other words, if r is the degree of an irreducible factor of F (x), then

there are integers j1; : : : ; jt with 1 � j1 < j2 < � � � < jt � s such that

r =
P

t

i=1(xji � xji�1).

The next result is due to Sylvester [13] and was �rst used to obtain

irreducibility results by I. Schur [11]. It is a generalization of Bertrand's

postulate that for every integer m � 1, there is a prime in the interval

(m; 2m] (take k = m).

Lemma 1. Let m and k be positive integers with m � k. Then there is a

prime p � k+1 which divides one of the numbers m+1;m+2; : : : ;m+k.

We will also use an e�ective version of Thue's theorem (it follows with

a little modi�cation from Theorem 4.1 in [1]; also see [12]).

Lemma 2. Let a, b, and d be integers with d 6= 0. Let q be a positive

integer � 3. Then there are �nitely many integer pairs (x; y) for which

axq � byq = d. Furthermore, these pairs can e�ectively be determined.

The following is a combinatorial lemma and follows directly from (5.26)

of [4].

Lemma 3. Let m and k be positive integers. Let Fk(x) be as in the

theorem. Then

Fk(x+ 1) =

mX
j=0

�
k +m+ 1

j

�
xm�j :

Fix a positive integer m. By the comments at the beginning of this

section, we may suppose that m � 3 (and do so). If Fk(x) is reducible,

then it has a factor with degree in the interval [1;m=2]. It suÆces therefore

to show that for each ` 2 [1;m=2], there are only �nitely many k for

which Fk(x) has a factor of degree `. Fix an integer ` 2 [1;m=2], and
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suppose Fk(x) has a factor g(x) in Z[x] of degree `. De�ne q = m in

the case that ` = 1. Otherwise, de�ne q as the largest prime divisor of

m(m � 1) � � � (m � ` + 1). Since m � ` � `, we deduce from Lemma 1

that q � ` + 1. Observe that our choice of q guarantees that q � 3. Let

t 2 f0; 1; : : : ; `� 1g such that q divides m� t.

Suppose now that p > m is a prime dividing k + t + 1 (if no such p

exists, we can skip this part). Let r be the positive integer such that

prjj(k + t+ 1). We claim that q divides r. For t+ 1 � j � m, we deduce

from �
k + j

j

�
=

(k + j)(k + j � 1) � � � (k + 1)

j!

that p, which is > m, divides the numerator of this last expression but not

its denominator. In fact, pr must exactly divide the numerator. On the

other hand, one easily deduces from p > m > t and pj(k + t + 1) that p

does not divide
�
k+t
t

�
. Hence, the Newton polygon of Fk(x) with respect

to the prime p has as its left-most edge the line segment with endpoints

(0; r) and (m � t; 0). Recall that ` � t + 1. Since Fk(x) has the factor

g(x) of degree `, it follows that there must be two lattice points, say (a; b)

and (c; d) with c > a, on the left-most edge of the Newton polygon of

Fk(x) with c� a � `. On the other hand, by considering the slope of the

left-most edge, we see that

jd� bj
c� a

=
r

m� t
=) (m� t)jd� bj = (c� a)r:

The de�nition of q implies c� a � ` < q. Thus, q and c� a are relatively

prime (in the case that q is a prime, this is clear; in the case that ` = 1

where we have de�ned q = m, this follows since c � a � ` = 1 implies

c� a = 1). On the other hand, qj(m� t), so the above equation gives that

q divides r as claimed.

We now make use of Lemma 3. We consider any prime p > m dividing

k+m� t+1, and let r be the positive integer such that pr exactly divides

k + m � t + 1. Observe that since t � ` � 1 � (m=2) � 1, we have

k+m� t+1 6= k+ t+1, so we are in a di�erent situation than the above.

We use an argument similar to the above to show that q divides r in this

situation as well. Here, we have

�
k +m+ 1

j

�
=

(k +m+ 1)(k +m) � � � (k +m� j + 2)

j!
:

The conditions p > m and pr exactly divides k + m � t + 1 with r � 1

imply that for every j with t + 1 � j � m, pr exactly divides
�
k+m+1

j

�
.

5



Also, p does not divide
�
k+m+1

t

�
. We deduce that the Newton polygon of

Fk(x+1) with respect to p contains the line segment with endpoints (0; r)

and (m � t; 0). The same argument as above gives as before that since

Fk(x) (and hence Fk(x+ 1)) has a factor of degree `, q must divide r.

Let p1; : : : ; ps denote the distinct primes � m. Let

T = fpe11 pe22 � � �pess : 0 � ej � q � 1 for each jg:

By the above, k+m� t+1 = auq and k+ t+1 = bvq for some integers a

and b in T and some integers u and v. We deduce that (u; v) is a solution

to the diophantine equation axq � byq = m � 2t. Note that m � 2t > 0

and that q and t only depend on m and `. For each choice of a and b

in T , we deduce from Lemma 2 that there are only �nitely many k with

k +m� t+ 1 = auq and k + t+ 1 = bvq as above. Since T is a �nite set,

there are only �nitely many Fk(x) with a factor in Z[x] of degree `. This

completes the proof of Theorem 3.

We end this section by establishing that the cubics obtained by taking

derivatives of f(x) as in Theorem 3 are all irreducible.

Theorem 5. Let f(x) = 1 + x+ x2 + � � �+ xn. For every integer n � 4,

the polynomial f (n�3)(x) is irreducible.

As in our arguments above (with m = 3), we consider

Fk(x) = x3 +

�
k + 1

1

�
x2 +

�
k + 2

2

�
x+

�
k + 3

3

�
:

We want to show that Fk(x) is irreducible for all k � 1. In the argument

for Theorem 3, we have m = q = 3, ` = 1, and t = 0. We deduce that

k+4 = au3 and k+1 = bv3 for some positive integers a, b, u, and v with a

and b divisors of 36. Such k are determined from the diophantine equation

au3 � bv3 = 3.

Since one of k + 4 = au3 and k + 1 = bv3 is odd, at least one of a and

b is odd. We show further that only the cases where a and b are both not

divisible by 9 are of interest to us (in other words, we need only consider a

and b divisors of 12). If 33e+2 exactly divides k+ 1 for some non-negative

integer e, then the Newton polygon of Fk(x) with respect to 3 consists of

a line segment with endpoints (0; 3e+1) and (3; 0). This segment contains

no lattice points other than the endpoints. Hence, Fk(x) is irreducible. An

analogous argument works when 33e+2 exactly divides k+4 by considering

Fk(x+1) rather than Fk(x). It follows then that a and b must be divisors

of 12.

Our next two lemmas appear in [7], Theorem 5 on page 220 and Theo-

rem 6 on page 225.
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Lemma 4. If d > 1, the equation u3 + dv3 = 1 has at most one integer

solution with uv 6= 0. If such a solution exists, then necessarily u + v
3
p
d

is the fundamental unit in the ring Z[
3
p
d].

Lemma 5. The complete set of solutions to the diophantine equation

2u3 � v3 = 3 is given by (u; v) = (1;�1) and (u; v) = (4; 5), and the

complete set of solutions to the diophantinve equation 4u3 � v3 = 3 is

given by (u; v) = (1; 1).

Lemma 4 will be used to examine solutions to

u3 � 2v3 = 1; u3 � 4v3 = 1; u3 � 9v3 = 1;

u3 � 18v3 = 1; and u3 � 36v3 = 1:

We will want uv 6= 0. Integer solutions to these correspond to integer

solutions to u3 + 2(�v)3 = 1 and u3 + 4(�v)3 = 1. Lemma 4 asserts that

there is at most one solution to u3+2(�v)3 = 1 with uv 6= 0. Apparently,

this is given by (u; v) = (�1;�1). Similarly, the equation u3�9v3 = 1 has

(u; v) = (�2;�1) as its only solution with uv 6= 0. Now, we apply Lemma

4 to the second equation. Observe that 1+ 3
p
4� ( 3

p
4)2 is a unit in Z[ 3

p
4]

in the interval (0; 1). If the fundamental unit in Z[ 3
p
4] were of the form

u + v
3
p
4 with u and v integers satisfying u3 + 4v3 = 1, then there would

be some positive integer t for which

�
u+ v

3
p
4
�t
= 1 +

3
p
4� (

3
p
4)2:

Expanding the left side and writing it in terms of the basis f1; 3
p
4; 3
p
4
2g,

we see that v will be a divisor of the coeÆcient of 3
p
4 and a divisor of the

coeÆcient of 3
p
4
2
. We deduce that v divides 1 and, hence, is �1. Since

u3+4v3 = 1, we easily obtain a contradiction. Therefore, the fundamental

unit in Z[ 3
p
4] cannot be of the form stated in Lemma 4, and we deduce

that there are no solutions to u3 + 4(�v)3 = 1 with uv 6= 0. A similar

argument can be used to show that each of the equations u3�18v3 = 1 and

u3�36v3 = 1 do not have integer solutions with uv 6= 0. For this purpose,

one can check that 1 � 3 3
p
18 + ( 3

p
18)2 is a unit in the ring Z[ 3

p
18] and

1 + 3 3
p
36� ( 3

p
36)2 is a unit in the ring Z[ 3

p
36] and that each is between

0 and 1.

Lemma 5 is only part of Theorem 6 in [7, p. 225]. The �rst sentence of

Lemma 5 is stated explicitly. The second sentence follows by considering

4u3 + (�v)3 = 3 in Theorem 6. Theorem 6 in [7] implies that there is at

most one solution to this diophantine equation. Apparently, it is given by

(u; v) = (1; 1).
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Given the restrictions on a and b above, we show next that the only

solutions to au3 � bv3 = 3 with u and v positive arise from one of the

following:

(i) (a; b) = (4; 1) and (u; v) = (1; 1),

(ii) (a; b) = (6; 3) and (u; v) = (1; 1),

(iii) (a; b) = (2; 1) and (u; v) = (4; 5),

(iv) (a; b) = (1; 3) and (u; v) = (3; 2).

To simplify matters, we restrict ourselves to a � b. If a < b and au3�bv3 =
3 with u and v positive, then also b(�v)3 � a(�u)3 = 3. Thus, we can

make the restriction a � b provided we also consider solutions with both

u and v negative. Given our restrictions on a and b, we get that there are

only six cases to consider.

Case 1: (a; b) = (1; 1). Here, we want solutions to u3 � v3 = 3. Since

we are considering u and v to have the same sign, we have uv > 0. Then

the factor u2+uv+v2 of u3�v3 is � 3 with equality if and only if uv = 1.

We easily deduce that u3 � v3 = 3 has no solutions in integers u and v

with uv > 0.

Case 2: (a; b) = (2; 1). Here, we are interested in solutions of 2u3�v3 =
3 with uv > 0. We apply Lemma 5 above to obtain the unique solution

(u; v) = (4; 5).

Case 3: (a; b) = (4; 1). From Lemma 5, the only solution to 4u3�v3 =

3 is (u; v) = (1; 1).

Case 4: (a; b) = (3; 3). If 3u3 � 3v3 = 3, then u3 � v3 = 1. Since we

require uv > 0, the factor u2+uv+v2 of u3�v3 is � 3 so that u3�v3 = 1

has no solutions in integers u and v with uv > 0.

Case 5: (a; b) = (6; 3). If 6u3 � 3v3 = 3, then 2u3 � v3 = 1. As

noted above, Lemma 4 implies u3� 2v3 = 1 has only the solution (u; v) =

(�1;�1). Interchanging the roles of u and v and changing the signs of u

and v, we deduce that 2u3 � v3 = 1 has only the solution (u; v) = (1; 1)

(assuming uv > 0).

Case 6: (a; b) = (12; 3). If 12u3 � 3v3 = 3, then 4u3 � v3 = 1. From

the comments after Lemma 4 above, it follows that there are no integer

solutions to 4u3 � v3 = 1 with uv 6= 0.

Case 7: (a; b) = (3; 1). Here, 3u3 � v3 = 3 so that v = 3v0 for some

integer v0. Substituting we obtain u3 � 9(v0)3 = 1. Lemma 4 implies that
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the only solution to this equation is (u; v0) = (�2;�1). We deduce that

(u; v) = (�2;�3). Since u and v are both negative, this gives rise to a

solution with the roles of a and b interchanged. We obtain the solution

indicated by (iv).

Case 8: (a; b) = (6; 1). Here, 6u3 � v3 = 3 so that v = 3v0 and we

obtain 2u3�9(v0)3 = 1. Cubes modulo 9 are congruent to one of 0, 1, and

�1. We easily deduce by working modulo 9 that no such u and v0 exist.

Case 9: (a; b) = (12; 1). Here, 12u3 � v3 = 3 so that v = 3v0 and we

obtain 4u3�9(v0)3 = 1. As in the previous case, an easy argument modulo

9 shows no solutions exist.

Case 10: (a; b) = (3; 2). Here, 3u3 � 2v3 = 3 so that v = 3v0 and we

obtain u3� 18(v0)3 = 1. From the comments after Lemma 4, there are no

such u and v0.

Case 11: (a; b) = (4; 3). Here, 4u3 � 3v3 = 3 so that u = 3u0 for
some integer u0, and we obtain 36(u0)3 � v3 = 1. Equivalently, (�v)3 �
36(�u0)3 = 1. From the comments after Lemma 4, there are no such u0

and v.

We deduce from (i)-(iv) that we only need to consider the four possibilities

k + 1 = 1, k + 1 = 3, k + 1 = 27, and k + 1 = 125. One checks the latter

three directly to see that Fk(x) is irreducible. We are not allowing k = 0

so the �rst possibility does not really arise. This completes the proof of

Theorem 5.

3. Preliminary Results

For p a prime, we let j jp represent the p-adic norm on Q and let Qp

denote the completion of the rationals with respect to this norm. We

denote by �p(a) the value of � log jajp= log p where we interpret �p(0) as

1. Both j jp and �p extend in a natural way to the algebraic closure

of Qp . We drop the subscripts when using �p when it is clear what the

prime p under consideration is. We make use of the Newton polygon of a

polynomial f(x) =
P

n

j=0 ajx
j with coeÆcients in some extension of Qp ; as

in the previous section, this Newton polygon is de�ned as the lower convex

hull of the points (j; �(aj)). Throughout the remainder of this paper, we

work in an algebraic closure of Qp unless noted otherwise or unless it is

clear from the context that we are working in C . As references, we mention

the books of Gouvêa [3], Koblitz [6], and Weis [15].
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A lemma we will make use of throughout the remainder of the paper is

the following.

Lemma 6. Let � be an mth p-adic root of unity and � 0 an m0th p-adic

root of unity with � 0 6= �. Suppose p - mm0. Then �(� � � 0) = 0.

The lemma follows from Lemma 2.12 of [14]. It is also easily established by

observing that �(� 0)�1�1 is a root ofPmm
0�1

j=0 (x+1)j , a monic polynomial

with constant term relatively prime to p. We will make particular use of

the lemma with � 0 = �1.
The next result, an essential ingredient to our arguments for Theorems

1 and 2, is based on the work of the �rst author in [2].

Proposition 1. Let w(x) =
Pn+1

j=0 ajx
j 2 Z[x] with an+1 6= 0, and let m

and r be integers with m > 0, r � 0, n + 1 = m + r. Let p be a prime

such that pjm, p > r, and p - an+1. Write m = p`m0 where �p(m
0) = 0.

Suppose that w(x) � an+1(x
m � 1)xr (mod p`) and that, for each � 6= 1

such that �m
0

= 1, we have �p(w(�)) = `. Let w(x) = g(x)h(x) be a

factorization of w(x) in Z[x]. Let

A =
X

g(�)=0

�
� � 1

�

�
; B =

X
h(
)=0

�

 � 1




�
;

C =
X

g(�)=0

(1� �) and D =
X

h(
)=0

(1� 
);

where the sums are over the distinct roots of g(x) and h(x) and where we

consider A and B only in the case that a0 6= 0. Then A, B, C, and D are

rational numbers satisfying:

(i) if r = 0, then each of �(A), �(B), �(C), and �(D) is positive,

(ii) if r > 0, p`jja0, and gcd(`; r) = 1, then either �(A) > 0, �(C) > 0,

pjh(0), and D 6= 0 or �(B) > 0, �(D) > 0, pjg(0), and C 6= 0.

Comment: We have de�ned A, B, C, and D as sums over distinct roots

of g(x) or h(x). The conclusions of the proposition, however, hold even if

any of these sums is taken over the roots counted to their multiplicities.

The same proof below, word for word, can be used to establish this.

Proof. First, we observe that each of A, B, C, and D is rational; this

follows as each is a symmetric function of the roots of either g(x) or h(x)

both of which contain rational coeÆcients. Note that the rational values

of A, B, C, and D depend only on the coeÆcients of g(x) and h(x). It

follows that these values are independent of whether we view the roots

� of g(x) and the roots 
 of h(x) as complex numbers or as lying in an

algebraic closure of Qp .

10



We begin by determining information about the p-adic location of the

zeroes of w(x). Let � be an m0th root of unity di�erent from 1. We

determine next the Newton polygon of f(x) = w(x + �). Write f(x) =P
n+1
j=0 bjx

j and observe that b0 = f(0) = w(�). We deduce that the left-

most endpoint of the Newton polygon of f(x) is (0; �(w(�))) = (0; `). Also,

the conditions in the lemma imply that there is a v(x) 2 Z[x] for which

w(x) = a(xm+r � xr)+ p`v(x) where a = an+1. Note that p - a. It follows

that

f(x) = a
�
(x+ �)m+r � (x+ �)r

�
+ p`v(x+ �)

= a

m+rX
j=0

��
m+ r

j

�
�m+r�j �

�
r

j

�
�r�j

�
xj + p`v(x+ �)

= a

m+rX
j=0

��
m+ r

j

�
�
�
r

j

��
xj�r�j + p`v(x+ �)

where
�
r

j

�
is zero if j > r. We use that �(x + y) � minf�(x); �(y)g with

equality when �(x) 6= �(y). We deduce

�(bj) � min

�
`; �

��
m+ r

j

�
�
�
r

j

���
;

and equality holds if the minimum is not `. For 1 � j � r, the conditions

p`jm and p > r imply that
�
m+r
j

�
�
�
r

j

�
(mod p`), and we obtain �(bj) � `.

For j > r, we have
�
r

j

�
= 0. One easily checks that

�

��
m+ r

pu

��
= `� u for 1 � u � `

and

�

��
m+ r

j

��
� `� u if pu � j < pu+1 and 1 � u � `� 1:

Furthermore, this last inequality holds also for u = 0 provided j is re-

stricted to r < j < p. We deduce that �(bpu) = ` � u for 1 � u � ` and

that �(bj) � `�u for pu � j < pu+1 and 0 � u � `�1. Also, �(bj) � 0 for

p` < j � n+ 1. It follows that the Newton polygon of f(x) has left-most

edges joining the points (0; `) and (pu; ` � u) for 1 � u � `. (It is easy

to see that the right-most edge is the segment with endpoints (p`; 0) and

(n+ 1; 0), but we will not need this fact.)

We use the classical connection between Newton polygons of a poly-

nomial and the p-adic roots of the polynomial. We deduce that f(x) has

11



exactly p roots � with �(�) = 1=p and, for each u 2 f1; ; 2; : : : ; ` � 1g,
exactly pu+1�pu roots � with �(�) = 1=(pu+1�pu). We view these roots

as forming ` sets, each set containing roots with equal �-values. Note that

since p - m0, p does not ramify in Qp(�). We deduce that the roots in any

one set are distinct roots of the same irreducible factor of f(x) over Qp(�).

Observe that � is a root of w(x) if and only if �� � is a root of f(x).

If we view the roots of f(x) in the form � � � and consider the ` sets

of roots formed as above, we see that w(x) has ` \clusters" around �

of roots with the property that if � and �0 belong to the same cluster,

then �(�� �) = �(�0� �) > 0. Furthermore, the roots in any one of these

clusters are distinct roots of the same irreducible factor of w(x) over Qp(�)

and, hence, of the same irreducible factor of w(x) over Q . In other words,

if one root from a cluster is a root of g(x) (or h(x)), then all the roots

from that cluster are roots of g(x) (or h(x), respectively).

The above holds for each � 6= 1 satisfying �m
0

= 1. There are m0 � 1

such � forming (m0 � 1)� ` clusters of roots of w(x). We show next that

these are disjoint clusters. This is clearly true of clusters formed from the

same �; in other words, if � and �0 are roots with �(� � �) 6= �(�0 � �),

then clearly � 6= �0. Now, suppose � is in a cluster around � and in a

cluster around � 0 where � 6= � 0, � 6= 1, � 0 6= 1, �m
0

= 1, and (� 0)m
0

= 1.

Then it follows that

�
�
(� 0��)�

�
= �

�
� 0(���)��(��� 0)

�
� minf�

�
� 0(���)

�
; �
�
�(��� 0)

�
g > 0:

Lemma 6 implies that �(� 0 � �) = 0. Since �(�� �) > 0 and �(�) = 0, we

also deduce �(�) = 0. We therefore obtain a contradiction, and we can

conclude that the (m0 � 1)� ` clusters consist of distinct roots.

The total number of roots in these (m0� 1)� ` clusters is (m0� 1)� p`.

Since w(x) has m+ r = m0p` + r roots, we have yet to account for p` + r

roots of w(x). By considering the Newton polygon of w(x) and using the

condition w(x) � a(xm� 1)xr (mod p`), we deduce that w(x) has exactly

r roots � with the property that �(�) > 0. Note that the other roots � of

w(x) necessarily satisfy �(�) = 0. In a manner similar to the above (but

easier), we deduce that each of the r roots around 0 does not belong to

any of the above clusters of roots. These r roots around 0 form a cluster as

before except that we cannot in general deduce that these roots necessarily

are roots of the same irreducible factor of w(x) over Qp(�) (or over Q).

The condition gcd(`; r) = 1 in (ii) implies that the left-most edge of the

Newton polygon of w(x) contains only the lattice points at its endpoints,

namely (0; `) and (r; 0). Since p does not ramify in Qp (�), we deduce that

in this case the cluster of r roots around 0 are distinct roots of a single

irreducible factor of w(x) over Qp(�).

12



We show now that the remaining p` roots of w(x) form a cluster of

roots around 1. The argument for roots around 1 is analogous to the

case for � above (just set � = 1) except that we cannot obtain here that

�(b0) = �(w(1)) = `. On the other hand, the condition w(x) � a(xm�1)xr
(mod p`) implies �(b0) = �(w(1)) � `. The argument proceeds as before,

and we deduce that there are p` roots � of w(x) with the property that

�(��1) > 0 (we could say more, but this is all we will need). As before, it

is easy to argue that these p` roots around 1 are distinct from the roots of

w(x) belonging to other clusters. We cannot, however, deduce that these

roots are distinct or that they are roots of the same irreducible factor of

w(x) over Qp(�) (or over Q).

We now apply the information we have established about the location

of the zeroes of w(x). We consider the case that r = 0. Then there are

no roots in the cluster described above around 0. It follows that the roots

of g(x) consist of complete clusters around � for some choices of � 6= 1

together with possibly some of the p` roots around 1; likewise for h(x). If

C1; C2; : : : ; Cs denote the clusters around � 6= 1 which contain roots of g(x)

and C0 denotes the roots in the cluster around 1 that are roots of g(x),

then we deduce that

�(C) � min
0�j�s

�
�

� X
�2Cj

(1� �)

��
:

Observe that

�

� X
�2C0

(1� �)

�
� min

�2C0

�
�(1� �)

	
> 0:

For each j 2 f1; 2; : : : ; sg, we de�ne �j as the m0th root of unity such that

the roots of Cj are those around �j, and we writeX
�2Cj

(1� �) =
X
�2Cj

�
(1� �j)� (� � �j)

�
= jCj j(1� �j)�

X
�2Cj

(� � �j):

Since jCj j by construction is a multiple of p, we deduce that each of the

terms in this last expression has �-value > 0. It follows now that �(C) > 0.

The same argument gives �(D) > 0. Since r = 0 and w(x) � a(xm � 1)xr

(mod p`), we deduce that a0 6= 0 so that A and B are de�ned. Also, in

this case, �(�) = 0 for each root � of g(x) and �(
) = 0 for each root 
 of

h(x). De�ne �1; : : : ; �s as before, and let �0 = 1. We use that

�(A) � min
0�j�s

�
�

� X
�2Cj

�
� � 1

�

���

� min
0�j�s

�
�

� X
�2Cj

�
(� � �j) +

� � �j

��j
+

�
�j �

1

�j

���
:
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Following along lines similar to our argument that �(C) > 0, we deduce

that �(A) > 0. An analogous argument gives �(B) > 0.

For (ii), we have shown that the cluster of r roots around 0 are roots

of a single irreducible factor of w(x) over Qp(�). Hence, these r roots are

either roots of g(x) or roots of h(x). Suppose the cluster of roots around

0 are roots of h(x). Then each root � of g(x) belongs to a cluster around

a root of unity so that the arguments above give �(A) > 0 and �(C) > 0.

Since p - an+1, the leading coeÆcient of h(x) is not divisible by p and we

deduce that �(h(0)) =
P

h(
)=0 �(
). Since h(x) has roots from the cluster

of roots around 0, we obtain �(h(0)) > 0 so that pjh(0). If S is the set of

r roots clustered around 0, then we consider

X

2S

(1� 
) = r �
X

2S


:

Since �(
) > 0 for each 
 2 S, the sum on the right has a positive �-value.

Since p > r > 0, �(r) = 0. It follows that �
�P


2S(1�
)
�
= 0. Hence, the

arguments in the previous paragraph now imply �(D) = 0. In particular,

we must have D 6= 0. A similar argument can be used in the case that the

cluster of roots around 0 are roots of g(x). The proposition follows. �

For the proof of Theorem 4, we will make use of three results similar to

Proposition 1. They are as follows:

Proposition 2. Let w(x) =
Pn+1

j=0 ajx
j 2 Z[x] with an+1 6= 0. Let p

be an odd prime such that pj(n + 1) and p - an+1. Write n + 1 = p`m0

where �p(m
0) = 0. Suppose that w(x) � an+1(x

n+1 � 1) (mod p`) and

that, for each � 6= �1 such that �m
0

= 1, we have �p(w(�)) = `. Let

w(x) = g(x)h(x) be a factorization of w(x) in Z[x]. Let

A =
X

g(�)=0

�
� � 1

�

�
; B =

X
h(
)=0

�

 � 1




�
;

C 0 =
X

g(�)=0

(1� �2) and D0 =
X

h(
)=0

(1� 
2);

where the sums are over the distinct roots of g(x) and h(x) and where we

consider A and B only in the case that a0 6= 0. Then A, B, C 0, and

D0 are rational numbers satisfying �(A) > 0, �(B) > 0, �(C 0) > 0, and

�(D0) > 0.

Proposition 3. Let w(x) =
P

n+1
j=0 ajx

j 2 Z[x] with an+1 6= 0. Let p be an

odd prime such that pjn and p - an+1. Write n = p`m0 where �p(m0) = 0.

Suppose that w(x) � an+1(x
n � 1)(x + 1) (mod p`) and that, for each
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� 6= 1 such that �m
0

= 1, we have �p(w(�)) = `. Let w(x) = g(x)h(x) be a

factorization of w(x) in Z[x]. De�ne A, B, C 0, and D0 as in Proposition

2. Then A, B, C 0, and D0 are rational numbers satisfying �(A) > 0,

�(B) > 0, �(C 0) > 0, and �(D0) > 0.

Proposition 4. Let w(x) =
P

n+1
j=0 ajx

j 2 Z[x] with an+1 6= 0. Suppose

w(x) is a reciprocal polynomial so that w(x) = �xn+1w(1=x). Let p be an

odd prime such that pj(n � 1), pjan+1, and p - an. Write n � 1 = p`m0

where �p(m
0) = 0. Suppose that w(x) � an(x

n�1 � 1)x (mod p`) and

that, for each � 6= �1 such that �m
0

= 1, we have �p(w(�)) = `. Let

w(x) = g(x)h(x) be a factorization of w(x) in Z[x]. De�ne A, B, C 0, and
D0 as above. Then A, B, C 0, and D0 are rational numbers such that if

AB = 0, then at least one of �(C 0) > 0 and �(D0) > 0 holds.

Proofs of Propositions 2, 3, and 4 can be given along the lines of the

argument presented here for Proposition 1. To aid the reader, we brie
y

describe certain aspects of these proofs. As in the proof of Proposition 1,

the roots of w(x) in each of the above results can be grouped in clusters. In

each of Propositions 2, 3, and 4, around each of the m0�2 (ifm0 is even) or
m0�1 (if m0 is odd) di�erent � satisfying � 6= �1 and �m0

= 1, there are p`

roots which form various clusters, with each cluster of roots belonging to

the same irreducible factor of w(x) and each cluster containing a multiple

of p di�erent roots. In the case of Proposition 2, there are p` other roots of

w(x) forming a cluster around 1 and, if m0 is even, p` other roots forming

a cluster around �1; each of these clusters contains roots that are not

necessarily roots of the same irreducible factor of w(x). This is suÆcient

to establish Proposition 2. There are similar clusters of size p` around

each of 1 (for all m0) and �1 (if m0 is even) in the case of Proposition

4. However, in this case there are two additional roots to account for;

one of these two roots � satis�es �(�) > 0 and the other root �0 satis�es
�(�0) < 0. If AB = 0, one can show that the roots � and �0 are either both
roots of g(x) or are both roots of h(x). If the former holds then �(D0) > 0,

and if the latter holds then �(C 0) > 0. In Proposition 3, there is one cluster

with p` roots around 1 containing roots that are not necessarily roots of

the same irreducible factor of w(x). There are also p` + 1 roots around

�1 (if m0 is even) or one such root (if m0 is odd) forming clusters with the

roots in each cluster being roots of the same irreducible factor of w(x);

one cluster contains p+1 roots (if m0 is even) or 1 root (if m0 is odd) and
the remaining clusters contain a multiple of p di�erent roots of w(x). It

follows easily that �(A) > 0, �(B) > 0, �(C 0) > 0, and �(D0) > 0.

There is a variety of results analogous to the propositions in this section

that can be established by similar means. Note that in Proposition 1 we
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dealt with a sum C of terms of the form 1 � � whereas the remaining

propositions dealt with a sum C 0 involving terms of the form 1 � �2. As

will be evident later, C is of value in establishing Theorem 1 as the term

1� � is 0 when � is one of the cyclotomic roots of nxn+1 � (n+ 1)xn + 1

(i.e., when � = 1), the numerator of f 0(x). Similarly, C 0 is helpful in

establishing Theorem 4 since 1� �2 is 0 when � is one of the cyclotomic

roots of p(x) (i.e., when � = �1). More generally, one can make use of

Ck =
X

g(�)=0

(1� �k) and Dk =
X

h(
)=0

(1� 
k)

in dealing with certain classes of polynomials for which the cyclotomic

roots are known to be roots of xk � 1. The proofs presented in the fol-

lowing sections will help illustrate applications of such propositions to the

irreducibility of the non-cyclotomic parts of polynomials of a given form.

4. A Proof of Theorem 1

Let n � 2. We wish to show that nxn+1 � (n + 1)xn + 1 is (x � 1)2

times an irreducible polynomial in Z[x]. It suÆces to show the same for

the reciprocal of nxn+1 � (n + 1)xn + 1, and for this purpose we de�ne

w(x) = xn+1 � (n + 1)x + n. We consider n � 2 and w(x) = g(x)h(x)

where g(x) and h(x) are in Z[x], deg g(x) � 1, deg h(x) � 1, and g(1) 6= 0.

Note that deg g(x) � 1 is possible since the product of the roots of w(x)

is �n so that w(x) has a root di�erent from 1. Since w(x) is monic, we

may suppose that each of g(x) and h(x) are monic and do so. Our goal is

to show h(x) = (x� 1)2.

We make use of A and B of Proposition 1 but not of C and D. If � is a

root of g(x), then � and g(0)=� are algebraic integers. Also, if 
 is a root

of h(x), then 
 and h(0)=
 are algebraic integers. Since g(0)h(0) = n, we

deduce that nAB is a rational integer. We will see momentarily that if

B = 0, then h(x) = (x � 1)2. In addition, we show that if B 6= 0, then

upper and lower bounds on the value of njABj can be obtained which are

inconsistent for all but O(t(1=3)+") positive integers n � t. The proof of

Theorem 1 will then be complete.

Since (xn+1 � 1)=(x� 1) has distinct roots on the unit circle and since

the derivative of a polynomial has roots inside the convex hull of the

roots of the polynomial (cf. [9, Problem 31 on page 108]), the roots of

(nxn+1 � (n+ 1)xn + 1)=(x� 1)2 have absolute value < 1. It is clear that

1 is a root of w(x) with multiplicity 2. It follows that the remaining roots

of w(x) have absolute value > 1. Observe that w0(x) only has cyclotomic

roots. It follows that the n� 1 roots of w(x) with absolute value > 1 are

distinct.

16



Now, we establish that if B = 0, then h(x) = (x�1)2. We show instead

the contrapositive. Suppose h(x) 6= (x � 1)2. Since g(1) 6= 0, (x � 1)2

is a factor of h(x). The comments above imply that each of g(x) and

h(x) must have a root with absolute value > 1. Furthermore, the absolute

value of the product of the roots of either of these polynomials exceeds

1. Thus, g(0) and h(0) each has absolute value > 1. Note that g(0) and

h(0) must be relatively prime since a common divisor p would divide both

g(0)h(0) = n and the coeÆcient of x in the product g(x)h(x), namely

n+ 1, which is clearly impossible.

We apply Proposition 1 with m = n and r = 1. We consider �rst a

prime divisor p of h(0). Note then that pjm and p - g(0). We let ` and

m0 be de�ned as in the proposition. Since n � 0 (mod p`), we obtain

w(x) �
�
xn � 1

�
x (mod p`). Suppose �m

0

= 1 and � 6= 1. Then �n = 1 so

that w(�) = n(1� �). Since �(1� �) = 0, we obtain �(w(�)) = �(n) = `.

Observe that the conclusions of Proposition 1 (ii) now follow as w(0) =

n 6= 0 and r = 1 imply the hypotheses in Proposition 1 (ii) hold. Since

p - g(0), we deduce that �(A) > 0. On the other hand,

A+B =
X

w(�)=0

�
�� 1

�

�
=

n+ 1

n
;

where we have used here that the roots of w(x) other than 1 are distinct

and that the summand above is 0 when � = 1 (so that we can consider

the sum above as a sum over roots of w(x) with each root appearing to

its multiplicity). Since pjn, we have �((n+ 1)=n) < 0. Since �(A) > 0, we

obtain B 6= 0. Thus, we can deduce that if B = 0, then h(x) = (x� 1)2.

Now, suppose B 6= 0. Since g(1) 6= 0, we still have that g(0) has

absolute value > 1. If we repeat the argument in the previous paragraph

but this time considering a prime p dividing g(0) (so that the roles of g(x)

and h(x) and the roles of A and B are switched), we obtain A 6= 0. In

addition, we see that for each prime divisor p of n (so p divides h(0) or

g(0)), these arguments give from Proposition 1 (ii) that either �(A) > 0

or �(B) > 0. We deduce that at least one of the rational integers g(0)A

and h(0)B is a multiple of p. Thus, if pjn, then pjnAB.
Next, we show that if pj(n+ 1), then p2jnAB. Since we now have that

AB 6= 0, we will get the lower bound

(1) njABj �
� Y

pj(n+1)

p

�2�Y
pjn

p

�
:

We apply Proposition 1 with m = n + 1 and r = 0. Thus, p is a prime

divisor ofm. Again, we let ` andm0 be de�ned as in the proposition. Since
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n � �1 (mod p`), we obtain w(x) � xn+1 � 1 (mod p`). If �m
0

= 1, then

�n+1 = 1 so that w(�) = (n+1)(1��). If also � 6= 1, then �(1��) = 0 and

we obtain �(w(�)) = �(n+ 1) = `. Thus, we can apply Proposition 1 (i).

We obtain �(A) > 0 and �(B) > 0. Therefore, each of the rational integers

g(0)A and h(0)B is a multiple of p. It easily follows that the integer nAB

is divisible by p2, and we obtain (1).

To obtain an upper bound for njABj, we use the following result about
the complex zeroes of w(x).

Lemma 7. If n � 2 and rei� (with r; � 2 R) is a root of w(x) = xn+1 �
(n+ 1)x+ n, then jr � 1j < (5=n) logn.

The result is essentially contained in [2] and [8]. It can be established by

observing w(�) = 0 implies j�n+1j � j(n+ 1)�� nj � (2n+ 1)j�j so that

j�j � (2n+ 1)1=n = exp

�
log(2n+ 1)

n

�
� 1+

2 log(2n+ 1)

n
� 1 +

5 logn

n
:

Observe that since the roots of w(x) other than 1 have absolute value > 1,

Lemma 7 implies that for all integers n � 2, if rei� 6= 1 is a root of w(x),

then 0 < r � 1 < (5=n) logn.

Next, we show that

(2) jAj � 10 logn and jBj � 10 logn:

Using � to denote the conjugate of �, we can rearrange the terms in the

de�nition of A to obtain

A =
X

g(�)=0

�
� � 1

�

�
:

Since g(�) = 0 implies � is a root of w(x), we deduce that if � = rei�,

then ����� � 1

�

���� = r � 1

r
� 10 logn

n
:

The �rst inequality in (2) now follows. The second inequality is deduced

in an analogous manner. From (2), we obtain the estimate

(3) njABj � 100n(logn)2:

Since AB 6= 0, we deduce from (1) and (3) that� Y
pj(n+1)

p

�2�Y
pjn

p

�
� 100n(logn)2:

Since n � t, it follows thatY
pj(n+1)

p� t1=3(log t)2=3 or
Y
pjn

p� t1=3(log t)2=3:

Theorem 1 is now a consequence of the following
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Lemma 8. Let � > 0. For n a positive integer, de�ne Q(n) =
Q

pjn p.
Then for every " > 0, the number of n � t for which Q(n) � t� is O(t�+").

Proof. Observe that Q(n) is always squarefree. For each squarefree num-

ber m = p1p2 � � � ps � t� where each pj denotes a prime with p1 < p2 <

� � � < ps, the number of n � t for which Q(n) = m is is equal to the

number of solutions in positive integers x1; x2; : : : ; xs to

x1 log p1 + x2 log p2 + � � �+ xs log ps � log t:

We consider the pj which are � p
log t �rst. Suppose pk is the largest of

these. Clearly k � p
log t and each xj is � 2 log t. Thus, the number of

choices for x1; x2; : : : ; xk is � (2 log t)
p
log t � exp

�
2
p
log t log log t

�
. Now,

each remaining pj satis�es pj >
p
log t so that log pj > (1=2) log log t.

Hence,

�
xk+1+xk+2 + � � �+ xs

� log log t
2

� xk+1 log pk+1 + xk+2 log pk+2 + � � �+ xs log ps � log t:

Let N denote the greatest integer � 2 log t=(log log t). Then the number

of choices for xk+1; xk+2; : : : ; xs is bounded by the number of solutions

to xk+1 + xk+2 + � � � + xs � N in positive integers xk+1; xk+2; : : : ; xs.

Equivalently, we seek a bound on the number of solutions to

yk+1 + yk+2 + � � �+ ys � N � (s� k)

in non-negative integers yk+1; yk+2; : : : ; ys. Each such solution corresponds

to a unique non-negative binary number consisting of � N�1 digits given

by yk+1 ones, followed by 1 zero, followed by yk+2 ones, followed by 1 zero,

and so on (ending with ys ones). It follows that there are � 2N choices

for xk+1; xk+2; : : : ; xs as above. Thus, the number of possibilities for the

s positive integers x1; x2; : : : ; xs is

� exp
�
2
p
log t log log t

�
� 22 log t=(log log t) � exp

�
2 log t

log log t

�
� t":

This is a bound on the number of n � t for which Q(n) = m for some

given squarefree m � t�. Letting m vary, the lemma follows. �

5. A Proof of Theorem 2

Let n denote a positive integer, and set

f(x) = 1 + x+ x2 + � � �+ xn:
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Our goal is to show that for each positive integer k and for most n � t, the

polynomial f (k)(x) is irreducible. As in the previous section, we will make

use of Proposition 1. The main diÆculty we will encounter is in showing

that the condition �(w(�)) = ` is satis�ed in Proposition 1. Indeed, already

for k = 2, it is the case that in many instances �(w(�)) 6= ` when the

other conditions of Proposition 1 hold. Thus, it will become necessary

to bound the number of times �(w(�)) 6= `. For this purpose, we will

introduce an auxiliary polynomial u(x) (see the discussion after Lemma

14) that depends on k and r but not on n and which has the property that

�(w(�)) 6= ` if and only if �(u(�)) > 0. This allows us to obtain the bound

we need on the number of times �(w(�)) 6= `, and we proceed by applying

Proposition 1 as in the previous section.

We begin with a lemma which is easily established by induction. The

details of the proof are left to the reader.

Lemma 9. Let k be a positive integer � n� 1. Then

f (k)(x) =

n+1X
j=n�k+1

(�1)n+1�j
�

k

n+ 1� j

�� n+1Y
i=n�k+1

i6=j

i

�
xj + (�1)k+1k!

(x� 1)k+1
:

We also make use of

Lemma 10. Let n and k be positive integers with k � n� 1. Then each

root of f (k)(x) has absolute value < 1.

Proof. Observe that the roots of f(x) are on the unit circle fz : jzj = 1g
and that f(x) has no repeated roots. As in Section 4, we use that the

roots of the derivative of a polynomial in R[x] lie in the convex hull of the

roots of the polynomial. It follows that all the derivatives of f(x) have

only roots with absolute value < 1. �

Lemma 11. Let n and k be positive integers with k � n� 1. Let j be an

integer satisfying n� k + 1 � j � n+ 1. Then

�
k

n+ 1� j

�� n+1Y
i=n�k+1

i6=j

i

�

is divisible by k!.

Proof. Observe that

n+1Y
i=n�k+1

i6=j

i =

� n+1Y
i=j+1

i

�� j�1Y
i=n�k+1

i

�
;
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a product of n+1�j consecutive integers times a product of k�(n+1�j)
positive integers. The �rst of these products on the right is therefore

divisible by (n+ 1� j)! and the second is divisible by (k � (n+ 1� j))!.

It follows that

�
k

n+ 1� j

�� n+1Y
i=n�k+1

i6=j

i

�

=
k!

(n+ 1� j)!(k � (n+ 1� j))!

� n+1Y
i=j+1

i

�� j�1Y
i=n�k+1

i

�

is an integer multiple of k!. The lemma follows. �

Lemma 11 is not really necessary for what follows. But it makes matters

slightly easier. Note that it follows from Lemma 11 that if � is a root of

f (k)(x), then 1=� is an algebraic integer.

Lemma 12. Let n and k be positive integers with k � n� 1. Let m be an

integer satisfying n� k + 1 � m � n+ 1. Set r = n+ 1�m. Then

(�1)n+k�m
�

k

n+ 1�m

�� n+1Y
i=n�k+1

i6=m

i

�
� �k! (mod m);

and there is a constant �(k; r) depending only on r and k and independent

of n such that

1

m

�
(�1)n+k�m

�
k

n+ 1�m

�� n+1Y
i=n�k+1

i6=m

i

�
+ k!

�
� �(k; r) (mod m):

Proof. Consider the function

F (x) = (x+ r)(x+ r � 1) � � � (x+ 1)� (x� 1)(x� 2) � � � (x� (k � r)):

Observe that

F (m) =

n+1Y
i=n�k+1

i6=m

i:

The constant term of F (x) is (�1)k�rr!(k � r)! = (�1)k+m�n�1(n+ 1 �
m)!(k+m�n�1)!. Thus, F (m) � (�1)k+m�n�1(n+1�m)!(k+m�n�1)!
(mod m). Writing

�
k

n+1�m
�
as k!=((n+1�m)!(k+m�n� 1)!), the �rst

congruence in the lemma follows.
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Observe that (�1)n+k�m
�

k

n+1�m
�
= (�1)r+k�1

�
k

r

�
. The above shows

that F (x) = f0 + f1x+ G(x)x2 where (�1)r+k�1
�
k

r

�
f0 = �(k!), f1 is the

coeÆcient of x in F (x) (which depends only on r and k), and G(x) 2 Z[x].

Since

(�1)n+k�m
�

k

n+ 1�m

�� n+1Y
i=n�k+1

i6=m

i

�
+ k!

is the same as (�1)r+k�1
�
k

r

�
F (m) + k!, we deduce that the expression

on the left-hand side of the second congruence is congruent modulo m to

(�1)r+k�1
�
k

r

�
times f1. The lemma follows. �

We �x a positive integer k and consider n � k + 1. Let w(x) be

(�1)k�1=k! times the reciprocal polynomial of the numerator of f (k)(x)

in Lemma 9. In other words, we set

w(x) = xn+1 +
1

k!

n+1X
j=n�k+1

(�1)n+k�j
�

k

n+ 1� j

�� n+1Y
i=n�k+1

i6=j

i

�
xn+1�j :

This can be rewritten as

w(x) = xn+1 +
1

k!

kX
j=0

(�1)k+j�1

�
k

j

�� Y
0�i�k
i6=j

(n+ 1� i)

�
xj :

Note that Lemma 11 implies w(x) 2 Z[x].

Let m be an integer with n� k + 1 � m � n+ 1, and let p be a prime

divisor ofm with p > k (if it exists). De�ne r, ` andm0 as in Proposition 1.
It follows from the �rst congruence in Lemma 12 that w(x) � (xm � 1)xr

(mod p`). The de�nition of m implies that 0 � n+ 1�m = r � k < p.

Except for the condition that �(w(�)) = `, the conditions of Proposition 1

are clearly satis�ed. In addition to the condition �(w(�)) = `, we will want

that either both A and B are non-zero or both C and D are non-zero. We

address these matters next.

Since w(x) � (xm � 1)xr (mod p`), there is a polynomial v(x) in Z[x]

such that w(x) = (xm � 1)xr + p`v(x). Setting x = � where �m
0

= 1,

we deduce �(w(�)) � `. We will not be able to prove in general that

�(w(�)) = `, but instead we will show that typically this is the case.

Lemma 13. Let u(x) =
P

s

j=0 bjx
j 2 Z[x]. Let p be a prime not dividing

bs. Then there exist � s di�erent numbers � such that for some positive

integer m0 relatively prime to p, we have �m
0

= 1 and �(u(�)) > 0.

Proof. Let x1; x2; : : : ; xs be the s not necessarily distinct p-adic roots of

u(x). If � is as in the lemma, then �(��xi) > 0 for some i 2 f1; 2; : : : ; sg.
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If � and � 0 are distinct roots of unity as in the lemma and i is such that

both �(� � xi) > 0 and �(� 0 � xi) > 0, then we would have �(� � � 0) > 0,

contradicting Lemma 6. Hence, for each i 2 f1; 2; : : : ; sg, there is at most

one � as in the lemma for which �(� � xi) > 0. The lemma follows. �

Lemma 14. Let u(x) =
P

s

j=0 bjx
j 2 Z[x] with u(1) 6= 0, let z �

maxfju(1)j; jbsj; 2g, and let m0 be a positive integer. Then there is a con-

stant c (depending only on u(x)) such that there are � cm0=(log z) di�er-
ent primes p satisfying gcd(p;m0) = 1, p > z, and there is a � for which

�m
0

= 1, u(�) 6= 0, and �(u(�)) > 0.

Proof. Let H(x) be the part of xm
0 � 1 which is coprime to u(x); in other

words, H(x) = (xm
0 � 1)= gcd(u(x); xm

0 � 1). Let R denote the resultant

of H(x) and u(x). Then R is a non-zero integer which can be expressed

as a product of numbers of the form u(�) where �m
0

= 1 and u(�) 6= 0. It

follows that R is divisible by the product of the primes p in the lemma.

If we consider the � m0 complex roots of H(x) (all with absolute value

1), we see that R is bounded by
�Ps

j=0 jbj j
�m0

. Thus, if P denotes the

number of primes p in the lemma, then

zP �
� sX

j=0

jbjj
�m0

:

It follows that P � m0= log z, implying the lemma. �

We describe next the polynomials u(x) that we will use in Lemma 14.

We return to our discussion of w(x) and consider � 6= 1 for which �m
0

= 1.

Since �n+1 = �n+1�m = �r and r � k, we can view w(�) as a polynomial

in � of degree � k which has, by Lemma 12, each coeÆcient divisible bym.

We multiply this polynomial by k!=m and use the second congruence in

Lemma 12 to deal with the coeÆcient of �r modulo m. For the remaining

coeÆcients, observe that

Y
0�i�k
i6=j;i6=r

(n+ 1� i) � (�1)k�r(k � r)!r!

r � j
(mod m):

Note that �(k � r) � r � j � r so that this last expression is a rational

integer. We deduce now that if

y1(x) = �(k; r)xr + (�1)r�1
X

0�j�k
j 6=r

�
k

j

��
(�1)j(k � r)!r!

r � j

�
xj ;
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then (k!=m)w(�)�y1(�) = my2(�) for some polynomial y2(x) 2 Z[x]. The

coeÆcients of y1(x) only depend on r and k, and the coeÆcient of xj for

j 6= r and 0 � j � k in y1(x) is clearly non-zero. Recall that w(1) = 0.

Under the conditions of Proposition 1, �(��1) = 0, so the factor of x�1 in
w(x) does not a�ect the value of �(w(�)). We divide y1(x) by the highest

power of x � 1 that divides it and call the quotient u(x). Observe that

�(w(�)) > ` if and only if �(y1(�)) > 0 if and only if �(u(�)) > 0. The

advantage of dealing with u(x) over w(x) is that u(x) depends only on k

and r and not on n. With k still �xed, we let r = n+ 1�m vary from 0

to k to obtain k + 1 di�erent polynomials u(x). The idea now is to show

that in many instances �(u(�)) = 0.

With k and r �xed, we de�ne a pair (m0; p), with m0 a positive integer

and p a prime not dividing m0, as a bad pair (rather than a bad apple)

if there is a � 6= 1 for which �m
0

= 1 and �(u(�)) > 0. For t > 0,

we determine an upper bound for the number of bad pairs (m0; p) with
p`m0 � t for some positive integer `. The number p`m0 will correspond to

m in Proposition 1. Observe that we do not require that � be a primitive

m0th root of unity. This introduces some complications in bounding the

number of bad (m0; p).
For a given m0, we can use Lemma 14 to bound the number of primes p

for which �(u(�)) > 0, but we must deal with the possibility not covered

by Lemma 14 that u(�) = 0. We show next that there are at least three

choices of r 2 f0; 1; : : : ; kg, in the case k 6= 2, for which u(x) has no

cyclotomic factors. We will use the following preliminary result.

Lemma 15. For each positive integer k � 15, there exist at least two

distinct primes in the interval (k=2; k � 2].

Proof. The result was veri�ed directly for 15 � k < 200. Now, suppose

k � 200. Note that 1:96k=2 < k � 2. We show that for each x � 100

there is a prime in the interval (x; 1:4x]; the lemma then follows since then

there is a prime in the interval (k=2; 1:4k=2] and a prime in the interval

(1:4k=2; 1:96k=2] � (1:4k=2; k � 2]. De�ne #(x) =
P

p�x log p. We make

use of the estimate from Rosser and Schoenfeld [10] that

x

�
1� 1

logx

�
< #(x) < x

�
1 +

1

2 logx

�
for all x � 41:

To establish there is a prime in (x; 1:4x] for x � 100, it suÆces therefore

to show

1:4x

�
1� 1

log(1:4x)

�
� x

�
1 +

1

2 logx

�
:

This is a simple matter to verify; indeed, the inequality above holds for all

x � 100 follows from the fact that it holds for x = 100. �
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Lemma 16. Let k be an integer with k = 3 or k � 5. For each r 2
fk � 2; k � 1; kg, the polynomial u(x) de�ned above has no cyclotomic

divisors.

Proof. We work in the �eld of complex numbers. Fix k and r as in the

lemma. By the de�nition of u(x), we know that 1 is not a root of u(x). We

assume now that u(x) has a root which is a root of unity. Then u(�) = 0

for some � 6= 1 satisfying �d = 1 for some positive integer d. We take d

minimal and note that d � 2. We justify �rst that d 6= 2.

If d = 2, then �1 is a root of u(x) and, hence, also of y1(x). One

checks directly that y1(�1) 6= 0 in the case that k = 3 and r = 1. For

the remaining choices of k and r, we use the de�nition of y1(x) together

with the a formula for �(k; r). In particular, the de�nition of y1(x) and

the choice of r imply that, for k � 5, if y1(�1) = 0, then �(k; r) > 0.

From the proof of Lemma 12, we see that �(k; r) is (�1)r+k�1
�
k

r

�
times

the coeÆcient f1 of x in

F (x) = (x+ r)(x+ r � 1) � � � (x+ 1)� (x� 1)(x� 2) � � � (x� (k � r)):

When r = k, every coeÆcient of F (x) is positive and we easily deduce

that �(k; r) < 0. Now, suppose r = k � 2 and k � 5 (we have already

dealt with k = 3). Since the coeÆcient of x in the expanded product

(x+2)(x+ 1)(x� 1)(x� 2) is zero and its constant term is 4, we see that

f1 is simply 4 times the coeÆcient of x in (x + r)(x + r � 1) � � � (x + 3).

Thus, f1 > 0, and we conclude that �(k; r) < 0. It remains to consider

the case that r = k � 1. One checks directly that in this case

f1 = (k � 1)!�
k�1X
j=1

(k � 1)!

j
= �

k�1X
j=2

(k � 1)!

j
:

Since k � 3, we obtain �(k; r) = �(k; k�1) < 0. We deduce that u(�1) 6=
0 so that d > 2.

The de�nition of u(x) implies that we must also have y1(�) = 0. Using

the de�nition of y1(x), we consider the expression y1(�)=((k � r)!r!�r) as

a sum of k + 1 terms and observe that it is an element of Q(�) which is

an extension of degree �(d) over Q . Thus, we can rewrite the expression

as a polynomial in f1; �; : : : ; ��(d)�1g with rational coeÆcients. Call this

polynomial �(�).

We consider �rst the case that k � 15. By Lemma 15, there are two

primes in the interval (k=2; k � 2]. Call these primes p1 and p2. We show

that at least one of these two primes does not divide d. Since � is a root

of y1(x), a non-zero polynomial of degree k, we deduce that the degree of
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the minimal polynomial for � (in Q [x]) is � k. Hence, �(d) � k. On the

other hand, each of p1 and p2 is > k=2. If p1 and p2 are both factors of d,

then we would have

k � �(d) � �(p1p2) = (p1 � 1)(p2 � 1) >

�
k

2
� 1

�2

;

which is easily seen to be impossible for the k under consideration. Thus,

either p1 or p2 does not divide d. Now, �x p to be a prime in (k=2; k � 2]

which does not divide d. Consider j0 = r� p 2 f0; 1; : : : ; kg. Observe that
for each j 2 f0; 1; : : : ; kg we have

�p < r � k � r � j � r < 2p:

It follows that in the sum de�ning y1(x), the expression r� j in the sum-

mand is divisible by p if and only if j = j0. Since p 2 (k=2; k], we get that

pjjk!. Since r � k, we clearly have that pj(k � r + p)!. We obtain

�
k

j0

�
=

k!

(r � p)!(k � r + p)!
2 Z =) p does not divide

�
k

j0

�
:

If we consider the k+1 non-zero terms in y1(x)=((k� r)!r!xr), we see that

the constant term �(k; r)=((k�r)!r!) may have denominator divisible by p

(and, in fact, does though this is not needed) and the denominator of the

coeÆcient of xj
0�r = x�p is divisible by p. No other denominators will be

divisible by p.

We justify momentarily that ��p when expressed as a polynomial in �

of degree � �(d) includes a term �i with i > 0 and with coeÆcient not

divisible by p. More precisely, we show that ��p� b = pG(�) is impossible

if b 2 Z and G(x) 2 Z[x]. It will then follow that �(�) has at least

one coeÆcient which can be expressed as a rational number (possibly 0)

with denominator not divisible by p plus a non-zero rational number with

denominator divisible by p. This coeÆcient is clearly non-zero. It follows

that �(�) 6= 0, and we deduce that y1(�) 6= 0. This is a contradiction.

Hence, u(x) does not have a cyclotomic factor for k � 15.

Assume that there exist b 2 Z and G(x) 2 Z[x] such that ��p � b =

pG(�). By applying the automorphisms of Q (�) �xing Q , we may replace

� in this equation with any primitive root of xd � 1 = 0. Since d > 2, we

deduce that there are �1 and �2 primitive roots of xd � 1 = 0 with �1 6= �2

satisfying �
�p
1 � b = pG(�1) and �

�p
2 � b = pG(�2). Subtracting, we obtain

�
�p
2 � �

�p
1 = p

�
G(�2) � G(�1)

�
. Setting �3 = �

p

1�
�p
2 2 Q (�), we easily

deduce that NQ(�)=Q(�3 � 1) is a multiple of p. Since �3 � 1 is a root of
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1+(x+1)+(x+1)2+ � � �+(x+1)d�1, a monic polynomial with constant

term d, we obtain a contradiction. Thus, the lemma is established in the

case that k � 15.

For k � 14, the polynomials u(x) were computed explicitly using Maple

V (Release 4) and it was determined that if k = 3 or 5 � k � 14, then

each u(x) has no cyclotomic factors. The lemma follows. �

For each k � 2, we ideally will want three of the polynomials u(x),

as r varies, to be free of cyclotomic divisors. Lemma 16 shows that such

polynomials exist unless k = 2 or k = 4. In the case k = 4, a simple

computation veri�es that u(x) has no cyclotomic divisors if r 2 f1; 3; 4g.
For k = 2, we will not have three such u(x). In this case, u(x) has no

cyclotomic divisors if r = 0 or if r = 2. In the case r = 1, we have

u(x) = �x � 1 which has the cyclotomic factor x+ 1. As a consequence,

we will make a slightly di�erent argument in the case k = 2.

Suppose now that u(x) is a polynomial as above having no cyclotomic

factors. We consider n � t with t suÆciently large. We also suppose that

p > z � k with z suÆciently large (as in Lemma 14). For a positive integer

d > 1, we de�ne S(d) to be the set of primes p not dividing d for which

there is a primitive dth root of unity � such that �(u(�)) > 0. Observe that

if (m0; p) is a bad pair, then p 2 S(d) for some d dividingm0. Furthermore,

if p 2 S(d) and � is a primitive dth root of unity for which �(u(�)) > 0,

then for every positive integer m00, we have �dm
00

= 1 so that (dm00; p) is a
bad pair. It is not diÆcult to see that every bad pair can be obtained in

this manner; in other words, every bad pair is of the form (dm00; p) where
p 2 S(d) and m00 is a positive integer. Since we are only interested in bad

pairs (m0; p) with p`m0 � t for some positive integer `, we only need to

consider bad pairs (dm00; p) that satisfy pdm00 � t. In other words, for a

given d > 1 and a given p 2 S(d), there are � m00 � t=(dp) bad pairs

(dm00; p) for us to consider.

The fact that we are only interested in p > z produces another restric-

tion on the m0 we are considering. This is apparent in the statement of

Lemma 14. If we set " to be a positive number < 1=c, then Lemma 14

implies there are no primes p in S(d) whenever d � " log z. This gives us

Lemma 17. Given the notation above, the number of bad pairs (m0; p)
for which p > z and pm0 � t is bounded by

X
d>" log z

X
p2S(d)
p>z

t

dp
:

We now prove
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Lemma 18. Given the notation above, the number of bad pairs (m0; p)
for which p > z and pm0 � t is � t log log t=

p
z log z.

Proof. We rewrite the sum in Lemma 17 as S1 + S2 where

S1 =
X

" log z<d�pz log z

X
p2S(d)
p>z

t

dp
and S2 =

X
d>
p
z log z

X
p2S(d)
z<p�t

t

dp
:

We use Lemma 14 to estimate the number of p 2 S(d) which are > z to

deduce that

S1 �
X

" log z<d�pz log z

X
p2S(d)
p>z

t

dz
�

X
d�pz log z

t

z log z
� tp

z log z
:

To estimate S2, we observe that Lemma 13 implies that each prime p can

appear in at most k di�erent sets S(d). Since each d in the summand for

S2 is >
p
z log z, we deduce

S2 =
X

d>
p
z log z

X
p2S(d)
z<p�t

t

dp
�
X

z<p�t

kt

p
p
z log z

� t log log tp
z log z

:

The lemma follows. �

Consider a pair (m0; p) which is not bad. Suppose w(x) = g(x)h(x)

with A, B, C, and D de�ned as in Proposition 1 except with each root

in the sums appearing to their multiplicities. Note the comment after

Proposition 1. Suppose that pjjm. Observe that the condition p > z � k

implies p divides only one of the k numbers between n� k + 1 and n+ 1,

so pjjQ0�i�k(n+ 1� i). Suppose now that m 6= n+ 1 so r > 0. We can

apply Proposition 1 (ii) as pjjQ1�i�k(n + 1 � i) implies ` = 1. We are

now ready to show

Lemma 19. Suppose that w(x) = g(x)h(x) with A, B, C, and D de�ned

as in Proposition 1. Suppose further that each of g(x) and h(x) has a root

di�erent from 1 and that there is a prime p > k such that pjjQ1�i�k(n+
1� i). Then either AB 6= 0 or CD 6= 0.

Proof. We begin by showing that either A or C is non-zero and either B

or D is non-zero. Observe that

A+ C =
X

g(�)=0

�
1� 1

�

�
:
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The roots � of w(x) other than 1 have absolute value > 1 (by Lemma

10) so that the numbers 1=� are strictly inside the unit circle centered at

the origin in the complex plane. This implies that the real part of each

summand above is non-negative and at least one real part is positive. We

deduce that the right-hand side above is non-zero and, hence, either A or

C is non-zero. Similarly, one obtains that either B or D is non-zero.

If A = 0, then we have C 6= 0 and we assume D = 0. Proposition 1 (ii)

implies �(B) > 0. On the other hand, the de�nition of A and B together

with the coeÆcients of w(x) give

(4) A+B =
X

w(�)=0

�
�� 1

�

�
= �k(n+ 1)

n
:

Since p - k(n+ 1) and A = 0, we deduce that �(A+B) = �(B) � 0. This

apparent contradiction implies that D 6= 0 so that CD 6= 0. A similar

argument can be done to show that if C = 0, then AB 6= 0. The lemma

follows. �

We now give the proof of Theorem 2. We �x k � 2 (the case k = 1 is

covered by Theorem 1). We begin by presenting the argument for k = 3

and k � 5 and then explain the necessary changes in the argument for

k = 2 and k = 4. We consider z suÆciently large and, in particular,

� k. Let t > 0. For m an integer with n � k + 1 � m � n � k + 3,

we consider p such that pjm and p > z (if it exists). For each choice

of r = n � m + 1 2 fk � 2; k � 1; kg, we construct u(x) as above and

count the number of bad pairs corresponding to u(x). We let T denote

the set of n � t for which �(u(�)) > 0 for some such m and p. By

Lemma 18, there are � t log log t=
p
z log z bad pairs (m0; p). With ` and

m0 as in Proposition 1, we see that since p > z and p`m0 � t, we have

` � (log t)=(log p) � (log t)=(log z). The number of n 2 T is bounded by

the number of triples (m0; p; `) with (m0; p) a bad pair for some u(x) (with

r 2 fk � 2; k � 1; kg) and ` � (log t)=(log z). Therefore, we deduce that

jT j � t log log tp
z log z

� log t

log z
=

t(log t) log log tp
z log3 z

:

We will consider those p for which pjjm (in other words, the case when

` = 1). If n � t and n 62 T , then the equation �(w(�)) = ` = 1 holds

whenever n � k + 1 � m � n � k + 3, m = p`m0 = pm0, p - m0, � 6= 1,

and �m
0

= 1. Therefore, we can apply Proposition 1 for these n, m, and

p. However, before doing so, it will be convenient for us to restrict our

attention to n for which n(n� 1) � � � (n� k+ 1) is not divisible by a large
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powerful number (a positive integer d such that if p is a prime divisor of

d, then p2jd). More precisely, we set

T 0 = fn � t : 9 a powerful number d > k!kt1=2

dividing n(n� 1) � � � (n� k + 1)g:

We wish to ignore the elements of T 0; however, �rst we obtain an upper

bound for jT 0j.
Let n 2 T 0, and let p be a prime divisor of d where d is the largest

powerful number dividing n(n� 1) � � � (n� k + 1). Consider those p that

occur as a factor of more than one of n+1�i with i 2 f1; 2; : : : ; kg. Clearly
p � k. For each such p, there are trivially no more than k� 1 di�erent i 2
f1; 2; : : : ; kg such that pjj(n+1�i). Set d(i) = gcd(n+1�i; d), and let d0(i)
denote the largest powerful number dividing d(i). Then

Q
k

i=1(d(i)=d
0(i))

divides
Q

p�k p
k�1. Note that d =

Q
k

i=1 d(i). We deduce that

t1=2 <
d

k!k
�
Qk

i=1 d(i)Q
p�k p

k�1
�

kY
i=1

d0(i)

=
Y

1�i�k

Y
p
ejj(n+1�i)

e�2

pe �
Y

1�i�k

� Y
p
ejj(n+1�i)

e�2

p[e=2]
�3

:

Thus, one of the numbers n + 1 � i with i 2 f1; 2; : : : ; kg is divisible by

the square of an integer > t1=(6k). Hence,

jT 0j � k + k
X

`>t1=(6k)

t

`2
� t(6k�1)=(6k):

Now, we consider n � t with n 62 T [ T 0 and assume that f (k)(x) is

reducible. Lemma 10 implies that f (k)(x) can be expressed as a product

of two polynomials with roots di�erent from 1. It follows that w(x) =

g(x)h(x) where each of g(x) and h(x) are monic polynomials with integer

coeÆcients each having a root di�erent from 1. We �x m 2 fn � k +

1; n� k+ 2; n� k+ 3g, and consider the notation of Proposition 1 (so, in

particular, pjm) with the sums involving A, B, C, and D being taken over

all roots to their multiplicities. Again, we suppose pjjm and p > z � k.

We use Lemma 19 to obtain that either both A and B are non-zero or

both C and D are non-zero.

Suppose that AB 6= 0. Since pjjm where m 2 fn� k+ 1; n� k+ 2; n�
k + 3g and since p > z � k, we deduce that

p
���� Y

1�i�k
(n+ 1� i):
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Since k � 3, we have r = n�m+ 1 � k � 2 > 0. We apply Proposition 1

(ii), noting that ` = 1. We deduce that either �(A) > 0 or �(B) > 0.

Analogous to the proof of Theorem 1, we consider a multiple of AB

that lies in Z. Since n 62 T 0, we can express n(n� 1) � � � (n� k+ 1) as the

product of two positive integers n1 and n2 where n1 is a powerful number,

n1 � k!kt1=2, n2 is squarefree, and gcd(n1; n2) = 1. Note that g(0)A 2 Z,

h(0)B 2 Z, and

(5) g(0)h(0) =
(�1)k�1

k!

Y
1�i�k

(n+ 1� i) =
(�1)k�1n1n2

k!
:

It follows that each prime p dividing the denominator of A or B (as reduced

fractions) must divide n1n2. Suppose p divides the denominator of A or

B and pjn2. Since n2 is squarefree, (5) implies that p divides at most one

of g(0) and h(0). Since g(0)A and h(0)B are integers, we deduce that p

divides at most one of the denominators of A and B. On the other hand, if

p divides exactly one of these denominators, then (4) implies that p divides

n. It follows now that n1nAB 2 Z.

We bound jAj and jBj using an argument similar to that used to obtain

(2). The proof of Lemma 7 is easily modi�ed to give that each root � of

w(x) satis�es

1 � j�j < 1 + Ok

�
logn

n

�
:

Now, the argument for (2) gives that each of A and B is � logn. We

obtain

n1nAB �
�
t1=2

�
t(log t)2 � t2:

In the case that AB 6= 0 we deduce that

(6)

n�k+3Y
m=n�k+1

� Y
pjjm;p>z

p

�
� t2:

We show next that this same inequality holds in the case that CD 6= 0.

Suppose that CD 6= 0. We follow the above argument for the case

AB 6= 0 with the following changes. Both C and D are rational numbers

by Proposition 1 and furthermore algebraic integers since g(x) and h(x)

are monic. Hence, C and D and, hence, CD are in Z. Instead of the

bound on j�j for roots � of w(x) obtained above, we use the weaker bound

j�j � 1. We deduce that each of C and D is � t. Now, (6) follows as

before.

We have shown that if n 62 T [ T 0 and f (k)(x) is reducible, then (6)

holds (where so far we are only considering k = 3 and k � 5). We show
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now that (6) does not hold for very many n � t. To get the result stated

in the theorem, it is in fact suÆcient to show that for almost all m � t,

one has Y
pjjm;p>z

p � m1�(1=(k+2)):

Let T 00 denote the set of m � t for which this inequality does not hold.

Observe that if m 2 T 00, then either (i) m is divisible by the square of

a prime > z, or (ii) m divided by the product above is divisible only by

primes � z. The number of m � t for which (i) holds is

�
X
m�t

X
p>z

p
2jm

1 �
X
p>z

X
m�t
p
2jm

1 �
X
p>z

t

p2
� t

z log z
:

For the number of m � t satisfying (ii), we de�ne S to be the set of such

m which exceed
p
t. The number of remaining m is clearly �

p
t. For each

m 2 S, we have

Y
p�z

Y
1�j<1
p
j jm

p � m1=(k+2) > t1=(2k+4):

Therefore, X
m2S

X
p�z

X
1�j<1
p
j jm

log p >
jSj log t
2k + 4

:

On the other hand, for z suÆciently large,

X
m2S

X
p�z

X
1�j<1
p
j jm

log p �
X

1�m�t

X
p�z

X
1�j<1
p
j jm

log p

�
X
p�z

(log p)

1X
j=1

X
1�m�t
p
j jm

1 �
X
p�z

(log p)

1X
j=1

t

pj
=
X
p�z

t(log p)

p� 1
� 2t log z:

It follows that

jSj � t log z

log t
:

We take z = (log t)10. Combining all the estimates above (including the

ones for T and T 0), we deduce that the number of n � t for which f (k)(x)

is reducible is O(t log log t= log t).

Next, we consider the cases k = 4 and k = 2. The case k = 4 is identical

to the above except that we replace m 2 fn� k + 1; n� k + 2; n� k + 3g
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with m 2 fn� 3; n� 2; ng. Thus, r = n�m+ 1 2 f1; 3; 4g and, as noted
after the proof of Lemma 16, each corresponding u(x) has no cyclotomic

divisors. For k = 2, we consider only m 2 fn�1; n+1g so that r 2 f0; 2g.
The argument is slightly di�erent here as each prime divisor p of n + 1

satisfying p > k does not divide the constant term of w(x). In other words,

with r = 0, we are led to applying Proposition 1 (i) rather than (ii). In

this case, we deduce that each of �(A), �(B), �(C), and �(D) is positive.

For r = 2, one makes use of Proposition 1 (ii) as before. We deduce that

� Y
pjj(n+1);p>z

p

�2� Y
pjj(n�1);p>z

p

�
� t2

instead of (6). The remainder of the argument for k = 2 is the same as

before. Theorem 2 follows.

6. Proof of Theorem 4

We set

w(x) = p(x) = (n� 1)(xn+1 � 1)� (n+ 1)(xn � x):

We begin by describing the location of the complex zeroes of w(x).

Lemma 20. Let n � 2. Then 1 is a root of w(x) with multiplicity 3.

Furthermore, if n is odd, then �1 is a root of w(x) with multiplicity 1.

A proof of Lemma 20 can be given directly by considering the values of

w(x) and its derivatives at 1 and �1. We omit the details.

Lemma 21. Let n � 2. If w(�) = 0, then j�j = 1.

Proof. Observe that if � is not an integer multiple of 2�=(n� 1), then

sin(n+1
2
�)

sin(n�1
2
�)

=
ei(n+1)�=2 � e�i(n+1)�=2

ei(n�1)�=2 � e�i(n�1)�=2
=

ei(n+1)� � 1

ein� � ei�
=

e�i(n+1)� � 1

e�in� � e�i�
:

Denote the left-hand side above by F (�). It follows that if F (�) = (n +

1)=(n � 1), then e�i� is a root of w(x). For each positive integer k <

(n� 1)=2,
2k

n+ 1
<

2k

n� 1
<

2(k + 1)

n+ 1
:

De�ne

Ik =

�
2�k

n+ 1
;
2�k

n� 1

�[�
2�k

n� 1
;
2�(k + 1)

n+ 1

�
:
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Then it is easily checked that F (�) takes on every real value for � 2 Ik. In

particular, for each positive integer k < (n� 1)=2, there is a � 2 Ik such

that F (�) = (n+ 1)=(n� 1) and, consequently, w(e�i�) = 0. If n is even,

then we obtain n� 2 distinct roots of w(x) di�erent from �1 of the form

ei�. If n is odd, then we obtain n� 3 distinct roots of w(x) di�erent from

�1 of the form ei�. Combining this information with Lemma 20 implies

the desired result. �

We consider w(x) = g(x)h(x) as in the propositions. We take g(x) so

that g(1) 6= 0 and g(�1) 6= 0. If p(x) does not factor as in the theorem,

then we can �nd such g(x) and h(x) with each containing at least one root

other than 1 and �1. We assume we have such a factorization of w(x),

and de�ne A, B, C 0, and D0 as in the propositions. Observe that if we

obtain a contradiction for all but O(t(4=5)+") di�erent n � t, then Lemma

20 implies the theorem.

Let p be an odd prime divisor of n + 1, and de�ne ` and m0 as in

Proposition 2. Observe that w(x) � (n�1)(xn+1�1) (mod p`). If � 6= �1
and �m

0

= 1, then w(�)� = (n+ 1)(� � 1)(� + 1). Clearly, �(�) = 0. Also,

Lemma 6 implies that �(��1) = �(�+1) = 0. It follows that �(w(�)) = `.

From Proposition 2, we obtain �(C 0) and �(D0) are positive.
Let p be an odd prime divisor of n, and de�ne ` andm0 as in Proposition

3. Then w(x) � �(xn � 1)(x+ 1) (mod p`). If � 6= 1 and �m
0

= 1, then

w(�) = 2n(� � 1). We deduce that �(w(�)) = `. From Proposition 3, we

obtain �(C 0) and �(D0) are positive.
By Lemma 21, the roots of w(x) have absolute value 1. We easily deduce

that A = B = 0. Let p be an odd prime divisor of n� 1, and de�ne ` and

m0 as in Proposition 4. Then w(x) � �(n + 1)(xn�1 � 1)x (mod p`). If

� 6= �1 and �m
0

= 1, then w(�) = (n � 1)(� � 1)(� + 1). As in the case

pj(n + 1) above, we obtain �(w(�)) = `. From Proposition 4, we obtain

that at least one of �(C 0) > 0 and �(D0) > 0 holds.

Lemma 21 implies that for each root � of w(x), the real part of 1� �2

is positive unless � = �1. Since we are considering g(x) and h(x) to

each have a root other than �1, the real parts of C 0 and D0 are positive.
Also, Lemma 21 implies that C 0 and D0 are each � n. Since the leading

coeÆcient of w(x) is n � 1, we deduce that (n � 1)2C 0D0 is a non-zero

integer with absolute value � (n� 1)2n2.

Combining the above information, we see that if n � t, then

� Y
pj(n+1);p>2

p

�2� Y
pjn;p>2

p

�2� Y
pj(n�1);p>2

p

�

� (n� 1)2jC 0D0j � (n� 1)2n2 � t4:
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Theorem 4 now follows as a consequence of Lemma 8.
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