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1. Introduction

E.S. Selmer [5] studied the irreducibility over the rationals of polynomials of the form

xn + "1x
m + "2 where n � m and each "j 2 f�1; 1g. He obtained complete solutions in

the case m = 1 and partial results for m > 1. Ljunggren [1] later extended the problem

to polynomials of the form xn + "1x
m + "2x

p + "3 where again each "j 2 f�1; 1g. He

established

Theorem (Ljunggren). For any distinct positive integers n, m, and p, and for any choice

of "j 2 f�1; 1g, the polynomial

xn + "1x
m + "2x

p + "3;

with its cyclotomic factors removed, either is the identity 1 or is irreducible over the

integers.

The analogous theorem also holds for the case of the trinomials studied by Selmer with

n � m � 0. Similar studies and related problems can be found in [2], [3] and [4]. For

example, in [2], Mikusinski and Schinzel proved that if p is an odd prime then there is

only a �nite number of ratios n=m for which f(x) = xn � pxm � 1 is reducible; and in [3],

Schinzel proved that for n > m the polynomial

g(x) =
xn � 2xm + 1

x(n;m) � 1

is irreducible unless (n;m) is (7k; 2k) or (7k; 5k) in which case

g(x) = (x3k + x2k � 1)(x3k + xk + 1) and (x3k + x2k + 1)(x3k � xk � 1);

respectively.

Consider now

(1) f(x) = xn + "1x
m + "2x

p + "3x
q + "4; with each "j 2 f�1; 1g:
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If we remove the cyclotomic factors of f(x), must the resulting polynomial be 1 or irre-

ducible? This is in fact not the case. A simple example is given by

x7 + x5 + x3 + x2 � 1 =
�
x3 + x� 1

� �
x4 + x+ 1

�
:

An in�nite set of examples is given by

f(x) = (xn � x2 + 1)(xn�2 + x2 + 1) = x2n�2 + xn+2 + xn�2 � x4 + 1

where n represents any integer � 5 with n 6� 0; 3; 4; 6; or 9 (mod 12); here, Ljunggren's

result for trinomials can be used to establish xn � x2 + 1 and xn�2 + x2 + 1 are both

irreducible. In fact, these examples show that if f(x) has �ve terms as above, it may be

reducible and still not have \reciprocal" factors (a factor g(x) 2 Z[x] satisfying g(x) =

�xdeg gg(1=x)). Nevertheless, it is reasonable still to consider f(x) as in (1) with added

restrictions. Our main result is the following �ve term version of Ljunggren's theorem.

Theorem 1. Let f(x) = xn+xm+xp+xq +1 be a polynomial with n > m > p > q > 0.

Then f(x) with its irreducible reciprocal factors removed either is the identity 1 or is

irreducible over the integers.

We do not know if the same result holds with the role of irreducible reciprocal factors

replaced by cyclotomic factors. We were able to show that such a replacement is possible

in the special case that n is exactly one of 2m, 2q, 2p, m + p, p + q, or m + q. We also

have the following examples:

x11 + x8 + x6 + x2 + x+ 1 = (x5 � x3 + 1)(x6 + x4 + x3 + x2 + x+ 1)

and

x12 + x11 + 2x7 + 1 = (x5 + x4 � x3 � x2 + 1)(x7 + x5 + x3 + x2 + 1):

The �rst of these shows that Theorem 1 cannot be extended to polynomials with six non-

zero terms with coe�cients 1. The second example illustrates that we need p 6= q (and

reciprocal considerations would imply we need m 6= p).

A more general theorem than Theorem 1 exists, and its proof would follow easily from

the arguments given below. We emphasize Theorem 1 mainly because of its simplicity. The

more general result replaces the condition that the coe�cients of f(x) in (1) are positive

with the condition that when the product of the polynomial and its reciprocal polynomial

is expanded there are no cancellation in terms. More precisely, we can show

Theorem 2. Let f(x) = xn+ �1x
m+ �2x

p+ �3x
q + �4 be a polynomial with n > m > p >

q > 0 and each �j = �1. Suppose that the sum of the absolute values of the coe�cients in

the product

(xn + �1x
m + �2x

p + �3x
q + �4)

�
�4x

n + �3x
n�q + �2x

n�p + �1x
n�m + 1

�
is equal to 25. If f(x) = 
(x)	(x) where 
(x) and 	(x) are polynomials with integer

coe�cients, then at least one of 
(x) and 	(x) is a reciprocal polynomial.

Schinzel in [4] gives a general result which shows that any theorem similar to those

stated above can be e�ectively established. Using this result directly involves performing
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a tremendous number of computations; we estimated establishing Theorem 1 directly in

this manner would require over 10200 steps. Nevertheless, Schinzel's result is quite general

giving a method of determining how all polynomials factor with Euclidean norm less than

a prescribed amount.

The methods used in this paper are essentially the same as those of Ljunggren. He pre-

sented some key ideas introducing reciprocal polynomials into the problem of determining

how polynomials with small Euclidean norm factor. The proof he gave of his theorem above

involved consideration of several cases depending on the relative sizes of the exponents n,

m, and p. In the case of Theorem 1 (or Theorem 2), we were able to bypass considering

as many cases, mainly because the coe�cients are more restrictive. We make no pretense

here, however, of developing new approaches; this paper is merely a note that a �ve term

version of Ljunggren's theorem does in fact exist. We give a proof of Theorem 1 below; a

proof of Theorem 2 can be made with very few changes.

2. Proof of Theorem 1

Suppose f(x) = 
(x)	(x) where 
(x) and 	(x) are polynomials with integer coe�-

cients. We show that at least one of 
(x) and 	(x) is a reciprocal polynomial. We explain

�rst why this will imply Theorem 1. Suppose this has been established and f(x) has more

than two non-reciprocal irreducible factors (not necessarily distinct). Let u(x) denote one

of these. The polynomial w(x) = xdeg uu(1=x) will also be a non-reciprocal irreducible

polynomial. If w(x)jf(x), then we consider 
(x) and 	(x) such that f(x) = 
(x)	(x),

u(x) - 	(x), and w(x) - 
(x). If � is a root of u(x), then 
(�) = 0 and 
(1=�) 6= 0 so

that 
(x) is a non-reciprocal polynomial. Similarly, 	(x) is non-reciprocal, and we arrive

at a contradiction to what we are about to show. If w(x) - f(x), we consider a second non-

reciprocal irreducible factor of f(x), say v(x), where possibly v(x) = u(x) if u(x)2jf(x). If

w(x) = xdeg vv(1=x) divides f(x), then we can repeat the above argument replacing the role

of u(x) with v(x). So suppose now that both xdeg uu(1=x) and xdeg vv(1=x) are not factors

of f(x). In this case, we consider 
(x) and 	(x) such that f(x) = 
(x)	(x), u(x)j
(x),

and v(x)j	(x). As before, we deduce that each of 
(x) and 	(x) is non-reciprocal, leading

to a contradiction.

Now, let r = deg
 and s = deg	. Write

f1(x) = xr
(x�1)	(x) =

nX
i=0

cix
i and f2(x) = xs	(x�1)
(x):

We have

f2(x) = xnf1(x
�1) =

nX
i=0

cix
n�i

and

f1(x)f2(x) = 
(x)	(x)
�
xn
(x�1)	(x�1)

�
(2)

= (xn + xm + xp + xq + 1)
�
xn + xn�q + xn�p + xn�m + 1

�
:
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On the other hand,

(3) f1(x)f2(x) =

 
nX

i=0

cix
i

! 
nX

i=0

cix
n�i

!
:

Equating the coe�cients of x2n and xn in the two expressions for f1(x)f2(x) we �nd

c0cn = 1 and c20 + c21 + � � � + c2n = 5:

Thus,

c0cn = 1 and c21 + c22 + � � � + c2n�1 = 3:

We deduce that three of the ci's with i 2 f1; 2; : : : ; n � 1g, say ck1 ; ck2 and ck3 with

k1 < k2 < k3, must be �1 and the other ci's are equal to 0. Furthermore,

(cn + ck3 + ck2 + ck1 + c0)
2
= f1(1)f2(1) = 25

so that

c0 = ck1 = ck2 = ck3 = cn = 1 or c0 = ck1 = ck2 = ck3 = cn = �1:

We may suppose the former occurs and do so. Thus,

f1(x) = xn + xk3 + xk2 + xk1 + 1 and f2(x) = xn + xn�k1 + xn�k2 + xn�k3 + 1:

We suppose as we may that n � m+q, since otherwise we may replace f(x) with xnf(1=x)

(so that the role of m gets replaced by n� q, the role of p gets replaced by n� p, and the

role of q gets replaced by n �m). It su�ces also to take n � k1 + k3, since otherwise we

can interchange the role of f1(x) and f2(x) (replacing k3 with n� k1, k2 with n� k2, and

k1 with n� k3). From (2), we deduce that

f1(x)f2(x) = x2n + x2n�q + x2n�p + x2n�m + xn+m + xn+p(4)

+ xn+q + xn+m�q + xn+m�p + xn+p�q + 5xn + � � � :

From (3), we obtain

f1(x)f2(x) = x2n + x2n�k1 + x2n�k2 + x2n�k3 + xn+k3 + xn+k2(5)

+ xn+k1 + xn+k3�k1 + xn+k3�k2 + xn+k2�k1 + 5xn + � � � :

In (4) and (5), the terms shown are those having an exponent of x being at least n.

The condition n � m+ q implies that the second largest exponent in (4) is 2n� q. The

condition n � k1+ k3 implies that the second largest exponent in (5) is 2n� k1. It follows

that k1 = q.

The sum of the exponents greater than n in the expanded product of f1(x)f2(x) given

in (4) is 14n + 2m � 2q. The sum of those exponents greater than n in the expanded
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product of f1(x)f2(x) given in (5) is 14n + 2k3 � 2k1. We deduce that k3 � k1 = m � q.

Since k1 = q, we obtain k3 = m.

Making the substitutions k1 = q and k3 = m in (5) and comparing the resulting

exponents with (4), we see that

f2n� p; n + p; n +m� p; n+ p� qg = f2n� k2; n+ k2; n+ k3 � k2; n+ k2 � k1g:

The largest element in the representation of the set given on the left is either 2n � p or

n+ p, and similarly the largest element on the right is either 2n� k2 or n+ k2. So one of

2n� p and n+ p must equal one of 2n� k2 and n+ k2.

If 2n� p = 2n� k2 or n+ p = n+ k2, then k2 = p. In this case, we obtain hk1; k2; k3i =

hq; p;mi. Thus,

f1(x) = xn + xm + xp + xq + 1 = f(x)

so that

(6) hk1; k2; k3i = hq; p;mi =) 
(x) = xr
(x�1):

If 2n � p = n + k2 or n + p = 2n � k2, then k2 = n � p. Comparing exponents in (4)

and (5) with this additional substitution, we deduce that

fn+m� p; n + p � qg = fn+ k3 � k2; n+ k2 � k1g = fm+ p; 2n � p� qg:

If n + m � p = m + p, then n = 2p so that k2 = n � p = p, and we can apply (6). If

n +m � p = 2n � p � q, then n = m + q so that k3 = m = n � q and k1 = q = n �m.

Thus, hk1; k2; k3i = hn�m;n� p; n� qi. An argument analogous to the argument for (6)

gives in this case that 	(x) = xs	(x�1).

This completes the proof of the theorem.
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