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1 Introduction

The generalized Laguerre polynomials are defined by

m

(m+a)m—1+a)---(j+1+a)(-z)
2 (m — j)!5!

L) = ,
§=0
wherem is a positive integer and is an arbitrary complex number. In 1929,
|. Schur [4] established the irreducibility over the rational€.6 (x), the classi-
cal Laguerre polynomials, for every. In 1931, I. Schurl[5] considereblﬁf)(x)

in general and showed that, (z) is irreducible over the rationals for eveny.
The casex ¢ {0, 1} remained open. The purpose of this paper is to establish the
following:
Theorem 1. Leta be a rational number which is not a negative integer. Then for
all but finitely many positive integers, the ponnomiaILﬁﬁ)(x) is irreducible
over the rationals.

*The author gratefully acknowledges support from the National Security Agency.
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Before going to the proof, it is worth noting that reducilg’ (z) do exist
even witha = 2. In particular, we give the following examples:
1

Ly (2) = 5 (& — 2)(x ~ 6)

LY (z) = %(x — 20)(z — 30)

1
L) = ﬂ(fc — 30)(2® — 78x% + 1872x — 14040)

1
LV (z) = To0g (202”4201 + 1224)(252° — 220z + 264)

1
769y _
s () = 3700

(5z — 84)(625z* — 295002°
+ 4484002 — 2662080 + 5233536).

It is not difficult to show that in fact there are infinitely many positive integers
for which Lga) (x) is reducible (a product of two linear polynomials).
Theorenj 1L is a direct consequence of the following more general result:

Theorem 2. Leta be a rational number which is not a negative integer. Then for
all but finitely many positive integers, the polynomial

m

(m+a)m—14+a)---(j+1+a)r/
2 (m =)'

=0

is irreducible over the rationals provided only that € Z for 0 < 7 < m and
lag| = |am| = 1.

|. Schur obtained his irreducibility results féf) (x) andL'} (x) through general
results similar to the above. Recent work of a similar nature has been done by
Filasetal[1, 2] and by Filaseta and Trifonov [3]. We note also that the above
results can be made effective so that for any fixed QQ, « not a negative integer,

it is possible to determine a finite s&t= S(«) of m such that the polynomial in
Theoren P is irreducible (far; as stated there) provided ¢ S.

2 A Proof of Theorem(2

For a primep and a non-zero integet, we definev(a) = v,(a) = e wherep®||a.
We setv(0) = +oo. We begin with the following preliminary results.
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Lemma 1. Letk be a positive integer. Suppoger) = > " bjx? € Z[z] andp
is a prime such that 1 b,,, p|b; forall j € {0,1,...,n—k}, andv(b;) > v(by) —
(j/k) for 1 < j < n. Then for any integergy, ay, . .., a, With |ag| = |a,| = 1,
the polynomialf (x) = >°7_ a;b;2’ cannot have a factor of degréein Z[z].

Lemma 2. Leta, b, c andd be integers witlbc — ad # 0. Then the largest prime
factor of (am + b)(cm + d) tends to infinity as the integen tends to infinity.

Lemmd ] is a consequence of Lemma Zin [1]. Observefthaltsatisfies the
same conditions ag(x) in the lemma so that the lemma can be established by
simply showing the conditions aj{x) imply ¢g(z) cannot have a factor of degree
k (see [1] for details). Lemmid 2 above is a fairly easy consequence of the fact
that the Thé equationuz® — vy®> = w has finitely many solutions in integers
x andy whereu, v, andw are fixed integers withw # 0. It also immediately
follows from Corollary 1.2 of[[6]. We omit the proofs.

Fix o now as in Theorein| 2. Throughout the argument we suppose as we may
thatm is large. Define

cj:(m)(eroz)(m—1+a)---(j+1+a) for0 <j<m.
J

We want to show that for all but finitely many positive integersthe polynomial

f(x) = > aje;o is irreducible over the rationals, whewg are arbitrary
integers with|ag| = |a,] = 1. Motivated by Lemma|l, we consider instead
g(x) = Z;”ZO c;z’. Letu andv be relatively prime integers with > 0 such
thata = u/v. The condition thatv is not a negative integer implies that for each
j€{0,1,...,m—1},m — j+ «and, hencey(m — j) + u cannot be zero. We
assume thag(x) has a factor irZ[z] of degreek € [1,m/2] and establish the
theorem by obtaining a contradiction to Lempja 1. We divide the argument into
cases depending on the sizekof

Case 1k > m/log’ m.

For a andb integers withb > 0, let 7(z; b, a) denote the number of primes
< x which are= a (mod b). Then the Prime Number Theorem for Arithmetic
Progressions implies thatdf:d(a, b) = 1, then

1 Todt T
b - = 7 B
w00 = g5 [ g 0 (1)

_1(x+x+2x+0<x)>
(b)) \logz  log’z  log’z log* x '
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By consideringr (z;b,a) — w(z — h; b, a), it follows that fora andb fixed, the
interval (z — h, z] contains a primes a (mod b) if b = z/(2log” ) and ifz is
sufficiently large. Taking: = u, b = v, andx = vm + u, we deduce that for
some integey € [0, k), the numbew(m — j) + u is prime. Call such a prime
p, and observe that > 2vm /3 (sincev is a positive integer and: is large). We
deduce thap does not divide). Observe that

¢ — m\ (vm +u)(v(m —1)+u)--- (v(l + 1) + u) for0<¢<m.
14 pm—t
Forj € {0,1,...,k — 1}, the numbers(m — j) + « appear in the numerator of

the fraction on the right-hand side above whenéver/ < m — k. Therefore,
Q) vp(ce) > 1 for0</¢<m—k.

Sincec,, = 1, v,(¢n) = 0. To obtain a contradiction from Lemra 1 for the case
under consideration, we show thatc,) = 1; the contradiction will be achieved
since ) andk < m — kimply v(c,) >1>1— (¢/k) for1 < ¢ < k and since
the inequalityv(c,) > 1 — (¢/k) is clear fork < ¢ < m. Recall thatp + v and
thatp > 2vm/3. Forj € {0,1,...,m — 1}, we deduce the inequality

2p>vm+u>vim—j)+u>v+u>—p.

The condition that is not a negative integer implies that none @f.— j)+u can
be zero. Hence itself is the only multiple o among the numbergm — j)+u
with 0 < j < m — 1. Sincecy = (vm + u)(v(m — 1) +u) - -- (v + u) /0™, we
obtainy,(c,) = 1.

Case 2.ky < k < m/log® m with ky = ko(u, v) a sufficiently large integer.

Let z = k(loglog k)'/2. We first show that there is a prime> » that divides
v(m—j)+uforsomej € {0,1,...,k—1}. Then[]) follows as before, and we
will obtain a contradiction to Lemmjg 1 by showingc;) > v(cy) — (j/k) for
I<j<m.

Let

T={vim—j)+u:0<j<k—-1}

Sincem is large, we deduce that the elementsiofre each> m/2. Also,

observe thagcd(u,v) = 1 implies that each element @f is relatively prime to
v. For each prime < z, we consider an elemenf = v(m — j) + u € T with

vp(a,) as large as possible. We let

S=T—A{a,:ptv,p <z}
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By the Prime Number Theorem,

2k(loglog k)1/?

<
m(z) < log k

We combine this momentarily witft| > k — 7(z). Sincek < m/log*m, we
obtainm > klog?k. Consider a primg < z with p not dividing v, and let
r = v,(a,). By the definition ofa,, if j > r, then there are no multiples pf in
T (and, hence, it%). For1 < j < r, there are< [k/p’] + 1 multiples ofp? in T
and, hence, at mo§t/p’] multiples ofp’ in S. Therefore,

VP<H5><Z{ .]<ypk,

sES

and

ITI»> <k < k"

seS p<lz

On the other hand,

HS - ( )IS > (klOQng)k_ﬁ(z).

sES

Recalling our bound on(z), we obtain
log <Hs) > (k— W(z))(logk + 2loglogk — log2)

seS
2k+/loglog k
> (k—%)(logkjtﬂoglogk—logﬂ

> klogk + 2kloglog k + O(k\/loglog k)
Sincek > ko wherek, is sufficiently large,
log (Hs) > klogk > log (HHp”P(S)).
ses seS p<Lz

It follows that there is a primg > = that divides some element §fand, hence,
divides some element @f.



Fix a primep > = that divides an element i, and letr = v,. Fix j €
{1,2,...,m}. We showv(c;) > v(co) — (j/k). Observe that
v(co) —vle) <v((vj+u)(v(i—1)+u) - (v+u)
< (i + 1)) = 3 |2

Jj=1

—vj+ |ul  vj+ul
<> o '
j=1

p—1

Sincep > z = k(loglog k)'/? andk > ky, we deduce thatwj + |u|)/(p — 1) <
j/k and the inequality(c;) > v(cy) — (j/k) follows. Hence, as indicated at the
beginning of this case, we obtain a contradiction to Lerhina 1.

Case 32 < k < ky.

By Lemmd 2 (witha = v, b = u, ¢ = v, andd = u — v), the largest prime
factor of the productvm+u)(v(m—1)+u) tends to infinity. Sincen is large, we
deduce that there is a prime> (v+ |u|)ko that divides(vm +u)(v(m — 1) +u).
The argument now follows as in the previous case. In particular,

V(Co)—7/(cj)<”j+|“|<”+|u|<l<1 for1 < j <m.
j jp=1) " p=1 " ko "k -

Hence, in this case, we also obtain a contradiction.

Case 4k =1.
From Lemma R, the largest prime factorafvm + u) tends to infinity with
m. We consider a large prime factpiof this product. In particular, we suppose
thatp > v + |u|. Note this implieg 1 v. As in the previous case, we are through
if p|(vm + u). So supposg|m. The binomial coefficien(”’) appears in the
definition ofc;, and this is sufficient to guarantee that;) > 1 andv(c,,_;) > 1
for1 < j <p— 1. On the other hand,
. (m) (vm+u)(v(m—1)+u) - (v(j + 1)+ u)
J = j om—i
Forj < m — p, the numerator of the fraction on the right is a productop
consecutive terms in the arithmetic progression- u with ged(p, v) = 1; thus,
v(Cm—;) > 1for j > p. This implies that[(f1) holds witk = 1. It follows, along
the lines of the previous two cases, thét;) > v(co) — (j/k) for1 < j < m.
A contradiction to Lemma]1 is again obtained (and the proof of the theorem is
complete).
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