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1 Introduction

The generalized Laguerre polynomials are defined by

L(α)
m (x) =

m∑
j=0

(m + α)(m− 1 + α) · · · (j + 1 + α)(−x)j

(m− j)!j!
,

wherem is a positive integer andα is an arbitrary complex number. In 1929,
I. Schur [4] established the irreducibility over the rationals ofL

(0)
m (x), the classi-

cal Laguerre polynomials, for everym. In 1931, I. Schur [5] consideredL(α)
m (x)

in general and showed thatL
(1)
m (x) is irreducible over the rationals for everym.

The caseα 6∈ {0, 1} remained open. The purpose of this paper is to establish the
following:

Theorem 1. Letα be a rational number which is not a negative integer. Then for
all but finitely many positive integersm, the polynomialL(α)

m (x) is irreducible
over the rationals.

∗The author gratefully acknowledges support from the National Security Agency.
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Before going to the proof, it is worth noting that reducibleL
(α)
m (x) do exist

even withα = 2. In particular, we give the following examples:

L
(2)
2 (x) =

1

2
(x− 2)(x− 6)

L
(23)
2 (x) =

1

2
(x− 20)(x− 30)

L
(23)
4 (x) =

1

24
(x− 30)(x3 − 78x2 + 1872x− 14040)

L
(12/5)
4 (x) =

1

15000
(25x2 − 420x + 1224)(25x2 − 220x + 264)

L
(39/5)
5 (x) =

−1

375000
(5x− 84)

(
625x4 − 29500x3

+ 448400x2 − 2662080x + 5233536
)
.

It is not difficult to show that in fact there are infinitely many positive integersα

for whichL
(α)
2 (x) is reducible (a product of two linear polynomials).

Theorem 1 is a direct consequence of the following more general result:

Theorem 2. Letα be a rational number which is not a negative integer. Then for
all but finitely many positive integersm, the polynomial

m∑
j=0

aj
(m + α)(m− 1 + α) · · · (j + 1 + α)xj

(m− j)!j!

is irreducible over the rationals provided only thataj ∈ Z for 0 ≤ j ≤ m and
|a0| = |am| = 1.

I. Schur obtained his irreducibility results forL
(0)
m (x) andL

(1)
m (x) through general

results similar to the above. Recent work of a similar nature has been done by
Filaseta [1, 2] and by Filaseta and Trifonov [3]. We note also that the above
results can be made effective so that for any fixedα ∈ Q, α not a negative integer,
it is possible to determine a finite setS = S(α) of m such that the polynomial in
Theorem 2 is irreducible (foraj as stated there) providedm 6∈ S.

2 A Proof of Theorem 2

For a primep and a non-zero integera, we defineν(a) = νp(a) = e wherepe||a.
We setν(0) = +∞. We begin with the following preliminary results.
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Lemma 1. Letk be a positive integer. Supposeg(x) =
∑n

j=0 bjx
j ∈ Z[x] andp

is a prime such thatp - bn, p|bj for all j ∈ {0, 1, . . . , n−k}, andν(bj) > ν(b0)−
(j/k) for 1 ≤ j ≤ n. Then for any integersa0, a1, . . . , an with |a0| = |an| = 1,
the polynomialf(x) =

∑n
j=0 ajbjx

j cannot have a factor of degreek in Z[x].

Lemma 2. Leta, b, c andd be integers withbc− ad 6= 0. Then the largest prime
factor of(am + b)(cm + d) tends to infinity as the integerm tends to infinity.

Lemma 1 is a consequence of Lemma 2 in [1]. Observe thatf(x) satisfies the
same conditions asg(x) in the lemma so that the lemma can be established by
simply showing the conditions ong(x) imply g(x) cannot have a factor of degree
k (see [1] for details). Lemma 2 above is a fairly easy consequence of the fact
that the Thúe equationux3 − vy3 = w has finitely many solutions in integers
x andy whereu, v, andw are fixed integers withw 6= 0. It also immediately
follows from Corollary 1.2 of [6]. We omit the proofs.

Fix α now as in Theorem 2. Throughout the argument we suppose as we may
thatm is large. Define

cj =

(
m

j

)
(m + α)(m− 1 + α) · · · (j + 1 + α) for 0 ≤ j ≤ m.

We want to show that for all but finitely many positive integersm, the polynomial
f(x) =

∑m
j=0 ajcjx

j is irreducible over the rationals, whereaj are arbitrary
integers with|a0| = |an| = 1. Motivated by Lemma 1, we consider instead
g(x) =

∑m
j=0 cjx

j. Let u andv be relatively prime integers withv > 0 such
thatα = u/v. The condition thatα is not a negative integer implies that for each
j ∈ {0, 1, . . . ,m− 1}, m− j + α and, hence,v(m− j) + u cannot be zero. We
assume thatg(x) has a factor inZ[x] of degreek ∈ [1, m/2] and establish the
theorem by obtaining a contradiction to Lemma 1. We divide the argument into
cases depending on the size ofk.

Case 1.k > m/ log2 m.
For a andb integers withb > 0, let π(x; b, a) denote the number of primes

≤ x which are≡ a (mod b). Then the Prime Number Theorem for Arithmetic
Progressions implies that ifgcd(a, b) = 1, then

π(x; b, a) =
1

φ(b)

∫ x

2

dt

log t
+ O

(
x

log4 x

)
=

1

φ(b)

(
x

log x
+

x

log2 x
+

2x

log3 x
+ O

(
x

log4 x

))
.
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By consideringπ(x; b, a) − π(x − h; b, a), it follows that fora andb fixed, the
interval(x− h, x] contains a prime≡ a (mod b) if h = x/(2 log2 x) and ifx is
sufficiently large. Takinga = u, b = v, andx = vm + u, we deduce that for
some integerj ∈ [0, k), the numberv(m − j) + u is prime. Call such a prime
p, and observe thatp ≥ 2vm/3 (sincev is a positive integer andm is large). We
deduce thatp does not dividev. Observe that

c` =

(
m

`

)
(vm + u)(v(m− 1) + u) · · · (v(` + 1) + u)

vm−`
for 0 ≤ ` ≤ m.

For j ∈ {0, 1, . . . , k − 1}, the numbersv(m− j) + u appear in the numerator of
the fraction on the right-hand side above whenever0 ≤ ` ≤ m− k. Therefore,

(1) νp(c`) ≥ 1 for 0 ≤ ` ≤ m− k.

Sincecm = 1, νp(cm) = 0. To obtain a contradiction from Lemma 1 for the case
under consideration, we show thatνp(c0) = 1; the contradiction will be achieved
since (1) andk ≤ m − k imply ν(c`) ≥ 1 > 1− (`/k) for 1 ≤ ` ≤ k and since
the inequalityν(c`) > 1 − (`/k) is clear fork < ` ≤ m. Recall thatp - v and
thatp ≥ 2vm/3. Forj ∈ {0, 1, . . . ,m− 1}, we deduce the inequality

2p > vm + u ≥ v(m− j) + u ≥ v + u > −p.

The condition thatα is not a negative integer implies that none ofv(m−j)+u can
be zero. Hence,p itself is the only multiple ofp among the numbersv(m−j)+u
with 0 ≤ j ≤ m − 1. Sincec0 = (vm + u)(v(m − 1) + u) · · · (v + u)/vm, we
obtainνp(c0) = 1.

Case 2.k0 ≤ k ≤ m/ log2 m with k0 = k0(u, v) a sufficiently large integer.
Let z = k(log log k)1/2. We first show that there is a primep > z that divides

v(m− j)+u for somej ∈ {0, 1, . . . , k− 1}. Then (1) follows as before, and we
will obtain a contradiction to Lemma 1 by showingν(cj) > ν(c0) − (j/k) for
1 ≤ j ≤ m.

Let
T = {v(m− j) + u : 0 ≤ j ≤ k − 1}.

Sincem is large, we deduce that the elements ofT are each≥ m/2. Also,
observe thatgcd(u, v) = 1 implies that each element ofT is relatively prime to
v. For each primep ≤ z, we consider an elementap = v(m − j) + u ∈ T with
νp(ap) as large as possible. We let

S = T − {ap : p - v, p ≤ z}.

4



By the Prime Number Theorem,

π(z) ≤ 2k(log log k)1/2

log k
.

We combine this momentarily with|S| ≥ k − π(z). Sincek ≤ m/ log2 m, we
obtainm ≥ k log2 k. Consider a primep ≤ z with p not dividing v, and let
r = νp(ap). By the definition ofap, if j > r, then there are no multiples ofpj in
T (and, hence, inS). For1 ≤ j ≤ r, there are≤ [k/pj] + 1 multiples ofpj in T
and, hence, at most[k/pj] multiples ofpj in S. Therefore,

νp

(∏
s∈S

s

)
≤

r∑
j=1

[
k

pj

]
≤ νp(k!),

and ∏
s∈S

∏
p≤z

pνp(s) ≤ k! ≤ kk.

On the other hand,

∏
s∈S

s ≥
(m

2

)|S|
≥
(

k log2 k

2

)k−π(z)

.

Recalling our bound onπ(z), we obtain

log
(∏

s∈S

s
)
≥ (k − π(z))

(
log k + 2 log log k − log 2

)
≥
(

k − 2k
√

log log k

log k

)(
log k + 2 log log k − log 2

)
≥ k log k + 2k log log k + O

(
k
√

log log k
)
.

Sincek ≥ k0 wherek0 is sufficiently large,

log
(∏

s∈S

s
)

> k log k ≥ log
(∏

s∈S

∏
p≤z

pνp(s)
)
.

It follows that there is a primep > z that divides some element ofS and, hence,
divides some element ofT .
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Fix a primep > z that divides an element inT , and letν = νp. Fix j ∈
{1, 2, . . . ,m}. We showν(cj) > ν(c0)− (j/k). Observe that

ν(c0)− ν(cj) ≤ ν ((vj + u)(v(j − 1) + u) · · · (v + u))

≤ ν((vj + |u|)!) =
∞∑

j=1

[
vj + |u|

pj

]

<

∞∑
j=1

vj + |u|
pj

=
vj + |u|
p− 1

.

Sincep > z = k(log log k)1/2 andk ≥ k0, we deduce that(vj + |u|)/(p− 1) <
j/k and the inequalityν(cj) > ν(c0)− (j/k) follows. Hence, as indicated at the
beginning of this case, we obtain a contradiction to Lemma 1.

Case 3.2 ≤ k < k0.
By Lemma 2 (witha = v, b = u, c = v, andd = u − v), the largest prime

factor of the product(vm+u)(v(m−1)+u) tends to infinity. Sincem is large, we
deduce that there is a primep > (v+ |u|)k0 that divides(vm+u)(v(m−1)+u).
The argument now follows as in the previous case. In particular,

ν(c0)− ν(cj)

j
<

vj + |u|
j(p− 1)

≤ v + |u|
p− 1

≤ 1

k0

<
1

k
for 1 ≤ j ≤ m.

Hence, in this case, we also obtain a contradiction.

Case 4.k = 1.
From Lemma 2, the largest prime factor ofm(vm + u) tends to infinity with

m. We consider a large prime factorp of this product. In particular, we suppose
thatp > v + |u|. Note this impliesp - v. As in the previous case, we are through
if p|(vm + u). So supposep|m. The binomial coefficient

(
m
j

)
appears in the

definition ofcj, and this is sufficient to guarantee thatν(cj) ≥ 1 andν(cm−j) ≥ 1
for 1 ≤ j ≤ p− 1. On the other hand,

cj =

(
m

j

)
(vm + u)(v(m− 1) + u) · · · (v(j + 1) + u)

vm−j
.

For j ≤ m − p, the numerator of the fraction on the right is a product of≥ p
consecutive terms in the arithmetic progressionvt + u with gcd(p, v) = 1; thus,
ν(cm−j) ≥ 1 for j ≥ p. This implies that (1) holds withk = 1. It follows, along
the lines of the previous two cases, thatν(cj) > ν(c0) − (j/k) for 1 ≤ j ≤ m.
A contradiction to Lemma 1 is again obtained (and the proof of the theorem is
complete).
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