ON THE IRREDUCIBILITY OF THE GENERALIZED LAGUERRE POLYNOMIALS

M. Filaseta\(^1\) and T.-Y. Lam

June 10, 2001

\(^1\)The author gratefully acknowledges support from the National Security Agency.
1 Introduction

The generalized Laguerre polynomials are defined by

\[
L_m^{(\alpha)}(x) = \sum_{j=0}^{m} \frac{(m + \alpha)(m - 1 + \alpha) \cdots (j + 1 + \alpha)(-x)^j}{(m - j)!j!},
\]

where \(m \) is a positive integer and \(\alpha \) is an arbitrary complex number. In 1929, I. Schur [4] established the irreducibility over the rationals of \(L_m^{(0)}(x) \), the classical Laguerre polynomials, for every \(m \). In 1931, I. Schur [5] considered \(L_m^{(\alpha)}(x) \) in general and showed that \(L_m^{(1)}(x) \) is irreducible over the rationals for every \(m \). The case \(\alpha \notin \{0, 1\} \) remained open. The purpose of this paper is to establish the following:

Theorem 1. Let \(\alpha \) be a rational number which is not a negative integer. Then for all but finitely many positive integers \(m \), the polynomial \(L_m^{(\alpha)}(x) \) is irreducible over the rationals.

Before going to the proof, it is worth noting that reducible \(L_m^{(\alpha)}(x) \) do exist even with \(\alpha = 2 \). In particular, we give the following examples:

\[
\begin{align*}
L_2^{(2)}(x) &= \frac{1}{2}(x - 2)(x - 6) \\
L_2^{(23)}(x) &= \frac{1}{2}(x - 20)(x - 30) \\
L_4^{(23)}(x) &= \frac{1}{24}(x - 30)(x^3 - 78x^2 + 1872x - 14040) \\
L_4^{(12/5)}(x) &= \frac{1}{15000}(25x^2 - 420x + 1224)(25x^2 - 220x + 264) \\
L_5^{(39/5)}(x) &= -\frac{1}{375000}(5x - 84)(625x^4 - 29500x^3 + 448400x^2 - 2662080x + 5233536).
\end{align*}
\]

It is not difficult to show that in fact there are infinitely many positive integers \(\alpha \) for which \(L_2^{(\alpha)}(x) \) is reducible (a product of two linear polynomials).

Theorem is a direct consequence of the following more general result:
Theorem 2. Let α be a rational number which is not a negative integer. Then for all but finitely many positive integers m, the polynomial
\[
\sum_{j=0}^{m} a_j \frac{(m + \alpha)(m - 1 + \alpha) \cdots (j + 1 + \alpha)x^j}{(m - j)!j!}
\]
is irreducible over the rationals provided only that $a_j \in \mathbb{Z}$ for $0 \leq j \leq m$ and $|a_0| = |a_m| = 1$.

I. Schur obtained his irreducibility results for $L_m^{(0)}(x)$ and $L_m^{(1)}(x)$ through general results similar to the above (except also for all $m \geq 1$). Recent work of a similar nature has been done by Filaseta [1, 2] and by Filaseta and Trifonov [3]. We note also that the above results can be made effective so that for any fixed $\alpha \in \mathbb{Q}$ it is possible to determine a finite set $S = S(\alpha)$ of m such that the polynomial in Theorem 2 is irreducible (for a_j as stated there) provided $m \not\in S$.

2 A Proof of Theorem 2

For a prime p and a non-zero integer a, we define $\nu(a) = \nu_p(a) = e$ where $p^e || a$. We set $\nu(0) = +\infty$. We define the Newton polygon of a polynomial $f(x) = \sum_{j=0}^{n} a_j x^j$ with respect to a prime p, where $a_n a_0 \neq 0$ as the lower convex hull of the points $(j, \nu(a_n - j))$. Thus, the slopes of the edges of the Newton polygon of $f(x)$ with respect to p are increasing from left to right. We begin with the following preliminary results.

Lemma 1. Let k and ℓ be integers with $k > \ell \geq 0$. Suppose $g(x) = \sum_{j=0}^{n} b_j x^j \in \mathbb{Z}[x]$ and p is a prime such that $p \nmid b_n$, $p | b_j$ for all $j \in \{0, 1, \ldots, n - \ell - 1\}$, and the right-most edge of the Newton polygon for $g(x)$ with respect to p has slope $< 1/k$. Then for any integers a_0, a_1, \ldots, a_n with $|a_0| = |a_n| = 1$, the polynomial $f(x) = \sum_{j=0}^{n} a_j b_j x^j$ cannot have a factor with degree in the interval $[\ell + 1, k]$.

Lemma 2. Let a, b, c and d be integers with $bc - ad \neq 0$. Then the largest prime factor of $(am + b)(cm + d)$ tends to infinity as the integer m tends to infinity.

Lemma 1 is given as Lemma 2 in [1]. Lemma 2 above is a fairly easy consequence of the fact that the Thue equation $ux^3 - vy^3 = w$ has finitely many solutions in integers x and y where u, v, and w are fixed integers with $w \neq 0$. It also immediately follows from Corollary 1.2 of [6]. We omit the proofs.
Fix α now as in Theorem 2. Throughout the argument we suppose as we may that m is large. Define

$$c_j = \binom{m}{j} (m+\alpha)(m-1+\alpha) \cdots (j+\alpha)$$

for $0 \leq j \leq m$.

We want to show that for all but finitely many positive integers m, the polynomial $f(x) = \sum_{j=0}^{m} a_j c_j x^j$ is irreducible over the rationals, where a_j are arbitrary integers with $|a_0| = |a_n| = 1$. Motivated by Lemma 1, we consider instead $g(x) = \sum_{j=0}^{m} c_j x^j$. Let u and v be relatively prime integers with $v > 0$ such that $\alpha = u/v$. The condition that α is not a negative integer implies that for each $j \in \{0, 1, \ldots, m-1\}$, $m - j + \alpha$ and, hence, $v(m - j) + u$ cannot be zero. We assume that $g(x)$ has a factor in $\mathbb{Z}[x]$ of degree $k \in [1, m/2]$ and establish the theorem by obtaining a contradiction to Lemma 1. We divide the argument into cases depending on the size of k.

Case 1. $k > m/\log^2 m$.

For a and b integers with $b > 0$, let $\pi(x; b, a)$ denote the number of primes $\leq x$ which are $\equiv a \pmod{b}$. Then the Prime Number Theorem for Arithmetic Progressions implies that if $\gcd(a, b) = 1$, then

$$\pi(x; b, a) = \frac{1}{\phi(b)} \int_{2}^{x} \frac{dt}{\log t} + O\left(\frac{x}{\log^4 x}\right)$$

$$= \frac{1}{\phi(b)} \left(\frac{x}{\log x} + \frac{x}{\log^2 x} + \frac{2x}{\log^3 x} + O\left(\frac{x}{\log^4 x}\right) \right).$$

By considering $\pi(x; b, a) - \pi(x; b, a)$, it follows that for a and b fixed, the interval $(x - h, x]$ contains a prime $\equiv a \pmod{b}$ if $h = x/(2\log^2 x)$ and if x is sufficiently large. Taking $a = u, b = v$, and $x = vm + u$, we deduce that for some integer $j \in [0, k)$, the number $v(m - j) + u$ is prime. Call such a prime p, and observe that $p \geq 2vm/3$ (since v is a positive integer and m is large). We deduce that p does not divide v. Observe that

$$c_\ell = \binom{m}{\ell} (vm + u)(v(m - 1) + u) \cdots (v(\ell + 1) + u)$$

for $0 \leq \ell \leq m$.

For $j \in \{0, 1, \ldots, k-1\}$, the numbers $v(m - j) + u$ appear in the numerator of the fraction on the right-hand side above whenever $0 \leq \ell \leq m - k$. Therefore,

$$\nu_p(c_\ell) \geq 1 \quad \text{for} \quad 0 \leq \ell \leq m - k. \quad (1)$$
Since \(c_m = \pm 1, \nu_p(c_m) = 0 \). To obtain a contradiction from Lemma 1 for the case under consideration, we show that \(\nu_p(c_0) = 1 \); the contradiction will be achieved since then it will follow that the right-most edge of the Newton polygon of \(g(x) \) with respect to \(p \) has slope \(< \frac{1}{m - k} < \frac{1}{k} \). Recall that \(p \nmid v \) and that \(p \geq 2v m/3 \). For \(j \in \{0, 1, \ldots, m - 1\} \), we deduce the inequality

\[
2p > vm + u \geq v(m - j) + u \geq v + u > -p.
\]

The condition that \(\alpha \) is not a negative integer implies that none of \(v(m - j) + u \) can be zero. Hence, \(p \) itself is the only multiple of \(p \) among the numbers \(v(m - j) + u \) with \(0 \leq j \leq m - 1 \). Since \(c_0 = (vm + u)(v(m - 1) + u) \cdots (v + u)/v^m \), we obtain \(\nu_p(c_0) = 1 \).

Case 2. \(k_0 \leq k \leq m/\log^2 m \) with \(k_0 = k_0(u, v) \) a sufficiently large integer.

Let \(z = k(\log \log k)^{1/2} \). We first show that there is a prime \(p > z \) that divides \(v(m - j) + u \) for some \(j \in \{0, 1, \ldots, k - 1\} \). Then (1) follows as before, and we will obtain a contradiction to Lemma 1 by showing that the right-most edge of the Newton polygon of \(g(x) \) with respect to \(p \) has slope \(< \frac{1}{k} \).

Let

\[
T = \{v(m - j) + u : 0 \leq j \leq k - 1\}.
\]

Since \(m \) is large, we deduce that the elements of \(T \) are each \(\geq m/2 \). Also, observe that \(\gcd(u, v) = 1 \) implies that each element of \(T \) is relatively prime to \(v \). For each prime \(p \leq z \), we consider an element \(a_p = v(m - j) + u \in T \) with \(\nu_p(a_p) \) as large as possible. We let

\[
S = T - \{a_p : p \nmid v, p \leq z\}.
\]

By the Prime Number Theorem,

\[
\pi(z) \leq \frac{2k(\log \log k)^{1/2}}{\log k}.
\]

We combine this estimate momentarily with \(|S| \geq k - \pi(z) \). Since \(k \leq m/\log^2 m \), we obtain \(m \geq k \log^2 k \). Consider a prime \(p \leq z \) with \(p \) not dividing \(v \), and let \(r = \nu_p(a_p) \). By the definition of \(a_p \), if \(j > r \), then there are no multiples of \(p^j \) in \(T \) (and, hence, in \(S \)). For \(1 \leq j \leq r \), there are \(\leq \lceil k/p^j \rceil + 1 \) multiples of \(p^j \) in \(T \) and, hence, at most \(\lceil k/p^j \rceil \) multiples of \(p^j \) in \(S \). Therefore,

\[
\nu_p \left(\prod_{s \in S} s \right) \leq \sum_{j=1}^{r} \left[\frac{k}{p^j} \right] \leq \nu_p(k!),
\]

4
and
\[\prod_{s \in S} \prod_{p \leq z} p^{\nu_p(s)} \leq k! \leq k^k. \]

On the other hand,
\[\prod_{s \in S} s \geq \left(\frac{m}{2} \right)^{|S|} \geq \left(\frac{k \log^2 k}{2} \right)^{k - \pi(z)}. \]

Recalling our bound on \(\pi(z) \), we obtain
\[
\log \left(\prod_{s \in S} s \right) \geq (k - \pi(z))(\log k + 2 \log \log k - \log 2) \\
\geq \left(k - \frac{2k \sqrt{\log k}}{\log k} \right)(\log k + 2 \log \log k - \log 2) \\
\geq k \log k + 2k \log \log k + O(k \sqrt{\log \log k}).
\]

Since \(k \geq k_0 \) where \(k_0 \) is sufficiently large,
\[
\log \left(\prod_{s \in S} s \right) > k \log k \geq \log \left(\prod_{s \in S} \prod_{p \leq z} p^{\nu_p(s)} \right).
\]

It follows that there is a prime \(p > z \) that divides some element of \(S \) and, hence, divides some element of \(T \).

Fix a prime \(p > z \) that divides an element in \(T \), and let \(\nu = \nu_p \). The right-most edge of the Newton polygon of \(g(x) \) with respect to \(p \) is
\[
\max_{1 \leq j \leq m} \left\{ \frac{\nu(c_0) - \nu(c_j)}{j} \right\}.
\]

Fix \(j \in \{1, 2, \ldots, m\} \). To complete the case under consideration, we want to show that the fraction above is \(< 1/k \). Observe that
\[
\nu(c_0) - \nu(c_j) \leq \nu \left((v_j + u)(v(j - 1) + u) \cdots (v + u) \right) \\
\leq \nu((v_j + |u|)!) = \sum_{j=1}^{\infty} \left[\frac{v_j + |u|}{p^j} \right] \\
< \sum_{j=1}^{\infty} \frac{v_j + |u|}{p^j} = \frac{v_j + |u|}{p-1}.
\]
Since $p > z = k(\log \log k)^{1/2}$ and $k \geq k_0$, we easily deduce that the right-most edge of the Newton polygon of $g(x)$ with respect to p has slope $< 1/k$ as desired. Hence, as indicated at the beginning of this case, we obtain a contradiction to Lemma [1].

Case 3. $2 \leq k < k_0$.

By Lemma [2] (with $a = v$, $b = u$, $c = v$, and $d = u - v$), the largest prime factor of the product $(vm + u)(v(m-1) + u)$ tends to infinity. Since m is large, we deduce that there is a prime $p > (v + |u|)k_0$ that divides $(vm + u)(v(m-1) + u)$. The argument now follows as in the previous case. In particular,

$$\frac{\nu(c_0) - \nu(c_j)}{j} < \frac{vj + |u|}{j(p-1)} \leq \frac{v + |u|}{p-1} \leq \frac{1}{k_0} < \frac{1}{k}$$

for $1 \leq j \leq m$,

and the right-most edge of the Newton polygon of $g(x)$ with respect to p has slope $< 1/k$. Hence, in this case, we also obtain a contradiction.

Case 4. $k = 1$.

From Lemma [2] the largest prime factor of $m(vm + u)$ tends to infinity with m. We consider a large prime factor p of this product. In particular, we suppose that $p > v + |u|$. Note this implies $p \nmid v$. As in the previous case, we are through if $p | (vm + u)$. So suppose $p | m$. The binomial coefficient $\binom{m}{j}$ appears in the definition of c_j, and this is sufficient to guarantee that $\nu(c_j) \geq 1$ and $\nu(c_{m-j}) \geq 1$ for $1 \leq j \leq p - 1$. On the other hand,

$$c_j = \binom{m}{j} \frac{(vm + u)(v(m-1) + u) \cdots (v(j+1) + u)}{v^{m-j}}.$$

For $j \leq m - p$, the numerator of the fraction on the right is a product of $\geq p$ consecutive terms in the arithmetic progression $vt + u$ with $\gcd(p, v) = 1$; thus, $\nu(c_{m-j}) \geq 1$ for $j \geq p$. This implies that (1) holds with $k = 1$. It follows in the same manner as before that the slope of the right-most edge is < 1. A contradiction to Lemma [1] is again obtained (and the proof of the theorem is complete).

References

