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Abstract: To better understand the distribution of gaps between k-
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is k-free. Here, f(x) denotes an irreducible polynomial with integer
coefficients with some necessary conditions imposed on it. Some re-
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1. Introduction

Let k be an integer ≥ 2, and let f(x) be an irreducible polynomial in Z[x] satisfying
gcdm∈Z(f(m)) is k-free (i.e., f(m) has no fixed divisors of the form pk with p prime).
Under these conditions, we expect that there are infinitely many integers m for which
f(m) is k-free, but this is far from being established. Set g = deg f . Then Erdős [2]
(improving on work of Nagel [11]) showed that there are infinitely many integers m for
which f(m) is k-free provided k ≥ g−1, and later Hooley [6] provided a proof that such m
have the expected asymptotic density among the set of positive integers. That infinitely
many such m exist for k ≥ g − 1 is the best lower bound on k known when g is small. A
better result was obtained by Nair [12] when g is large. He showed that for every g ≥ 2
and k ≥ (

√
2 − 1/2)g, there are infinitely many m for which f(m) is k-free. His result

*The research for this paper constituted part of the first author’s requirement for a doctoral degree at

the University of South Carolina.

**The second author was supported by grants from the National Science Foundation and the National
Security Agency.

Typeset by AMS-TEX

1



can be made slightly stronger by introducing smaller degree terms in g, but the constant√
2− 1/2 is the best constant obtainable from his methods (cf. [12], [13], and [9]).
Let sn denote the nth positive integer m (if it exists) for which f(m) is k-free. In this

paper we investigate the problem of determining for what γ one can establish

(1)
∑

sn+1≤X

(
sn+1 − sn

)γ ∼ B(γ, f, k)X

where B(γ, f, k) is a constant depending on γ, f , and k. Erdős [1] introduced this problem
in the case f(x) = x, and subsequent work has been done by Hooley [7], Filaseta [3],
Graham [5], and Huxley [8]. The best result, due to Huxley [8], is that if f(x) = x, then
(1) holds provided 0 < γ < 2k − 1 + 2/(k + 1). The more general problem in the setting
of f(x) described above does not appear yet to have been investigated.

Our main result is the following:

Theorem 1. Let g ≥ 2, and let k ≥ (
√

2− 1/2)g. Let

φ1 =
(2s+ g)(k − s)− g(g − 1)
(2s+ g)(k − s) + g(2s+ 1)

,

where

s =
{

1 if 2 ≤ g ≤ 4[
(
√

2− 1)g/2
]

if g ≥ 5.

Let

φ2 =


8g(g − 1)

(2k + g)2 − 4
if (
√

2− 1/2)g ≤ k ≤ g

g

2k − g + r
if k ≥ g + 1,

where r is the largest positive integer such that r(r− 1) < 2g. Then φ1 > 0, φ2 > 0, and if

0 ≤ γ < min
{

1
φ2
, 1 +

φ1

φ2
, k

}
,

then ∑
sn+1≤X

(sn+1 − sn)γ ∼ B(γ, f, k)X,

for some constant B(γ, f, k) depending only on γ, f(x), and k.

The value of φ2 above is based on gap results for powerfree values that already appear in
the literature; improvements on these gap results would lead to a corresponding improve-
ment in the theorem above. The gap problem is to find the minimum h = h(f,X, k) such
that for X sufficiently large, the interval (X,X+h] contains an integer m with f(m) k-free.
Writing h = cXθ, we list several results for the case when k > g: θ = g/(2k−g+1) by Nair
[13] in 1979; θ = g/(2k−g+2) for g ≥ 2 by Huxley and Nair [9] in 1980; θ = g/(2k−g+r),
where r is the greatest integer such that r(r− 1) < 2g, by Filaseta [4] in 1993. In the case
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when (
√

2 − 1/2)g ≤ k ≤ g, Huxley and Nair [9] obtained θ = 8g(g − 1)/((2k + g)2 − 4)
in 1980; small improvements on this value of θ are possible, as noted in [4]. There is an
obvious connection between this gap problem and the result obtained in Theorem 1. If
one could take γ > 1/φ2 in Theorem 1 and end with the same asymptotic estimates, then
a stronger gap result would hold than those currently available. In addition, if k ≥ g + 1
and g ≥ 2, then the bound γ < k can be viewed as essential. Indeed, if one could obtain
Theorem 1 in this case with γ > k, then the result would be quite remarkable.

The comments in the previous paragraph suggest a strong connection between the size
of θ in the gap problem for k-free values of irreducible polynomials and the size of γ
permissible in (1). It is simple to see that if γ can be taken arbitrarily large in (1), then
θ can be taken to be arbitrarily small in the gap problem. The converse is also true: if θ
can be taken arbitrarily small in the gap problem, then γ can be taken to be arbitrarily
large in (1) (this is a consequence of Theorem 2 below). This generalizes an observation
made by Filaseta [3] in the case f(x) = x.

Additionally, we generalize a result of Filaseta’s in [3] and show that γ may be allowed
to be arbitrarily large provided that we restrict ourselves to small gaps. More precisely,
we establish:

Theorem 2. Let k ≥ (
√

2 − 1/2)g. Given any γ > 0, there exists a δ = δ(γ) > 0 such
that ∑

sn+1≤X
sn+1−sn≤Xδ

(sn+1 − sn)γ ∼ B(γ, f, k)X,

for some constant B(γ, f, k) depending only on γ, f(x), and k.

To clarify, the constants B(γ, f, k)’s in the above results are the same.
To obtain the above results, we will establish and make use of the following partial

generalization of a theorem of Mirsky [10].

Theorem 3. Let k ≥ (
√

2− 1/2)g. For a fixed positive integer d, set

Nd(X) = |{m ∈ Z+ : m ≤ X − d, f(m) and f(m+ d) are k-free,

f(m+ 1), f(m+ 2), . . . , f(m+ d− 1) are not k-free}|.

Suppose that for some positive integer j, sj+1 − sj = d. Then there is a constant cd > 0,
depending on d, for which

Nd(X) ∼ cdX.

2. A Preliminary Remark

We will make use of notation and arguments similar to that used in the work of Graham
[5]. We begin with
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Definition 1. Given f(x) ∈ Z[x], let sn = sn(f) be the nth positive integer m such that
f(m) is k-free. Let

L(h) = L(h,X) = |
{
n ∈ Z+ : h < sn+1 − sn ≤ 2h,X/2 < sn+1 ≤ X

}
|.

Throughout, we will suppose that f(x) is irreducible and that gcdm∈Z(f(m)) is k-free.
Our goal will be to show that for h sufficiently large, we have

(2) L(2h)� X

hγ+ε
,

where γ is as in Theorem 1 or Theorem 2 and where ε > 0 is sufficiently small. Implied
constants here and elsewhere may depend on γ, k, f(x), and ε. We return to establishing
(2) in Sections 4 and 5. In this section, we show that Theorem 3 together with (2) imply
Theorem 1 and Theorem 2. We note here that for Theorem 2 we will only require (2)
holding for sufficiently large h ≤ Xδ′ where δ′ > 0 is some number (any number will do)
depending on γ and ε. We return to this matter later in this section.

We begin by explaining how Theorem 1 follows from (2) for sufficiently large h and
Theorem 3. Let r denote the positive integer satisfying 2r−1 < X ≤ 2r. By (2),

(3)
∑

h<d≤2h

Nd(X)dγ ≤
r∑
j=0

L(h,X/2j)(2h)γ � X

hγ+ε
(2h)γ � X

hε
.

The above holds provided that h is sufficiently large. Let D0 be such that (3) is satisfied
for h > D0. We write

∑
sn+1≤X

(sn+1 − sn)γ =
∞∑
d=1

Nd(X)dγ =
∑
d≤D0

Nd(X)dγ +
∑
d>D0

Nd(X)dγ .

We deduce from (3) that ∑
d>D0

Nd(X)dγ = O

(
X

Dε
0

)
.

Theorem 3 implies

∞∑
d=1

Nd(X)dγ = X
∑
d≤D0

cdd
γ + o(X) +O

(
X

Dε
0

)
.

Hence,
1
X

∞∑
d=1

Nd(X)dγ =
∑
d≤D0

cdd
γ +O

(
1
Dε

0

)
+ o(1).

Thus,

lim sup
X→∞

1
X

∞∑
d=1

Nd(X)dγ =
∑
d≤D0

cdd
γ +O

(
1
Dε

0

)
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and

lim inf
X→∞

1
X

∞∑
d=1

Nd(X)dγ =
∑
d≤D0

cdd
γ +O

(
1
Dε

0

)
.

By letting D0 tend to infinity, we deduce that limX→∞(1/X)
∑∞
d=1Nd(X)dγ exists and∑∞

d=1 cdd
γ converges. We obtain

∑
sn+1≤X

(sn+1 − sn)γ ∼ B(γ, f, k)X

where

B(γ, f, k) =
∞∑
d=1

cdd
γ .

The argument for Theorem 2 is similar. We make use of Theorem 3 and the assump-
tion that (2) holds for sufficiently large h ≤ Xδ′ where 0 < δ′ < 1/2. We choose
δ = min{δ′/(2γ + 2ε), δ′/2}. We consider r as before and an integer s satisfying 2s ≤
Xδ′ < 2s+1. If 0 ≤ j ≤ s, then we deduce

(
X

2j

)δ′
≥
(
X

2s

)δ′
≥ X(1−δ′)δ′ ≥ Xδ′/2 ≥ Xδ.

Thus, if h ≤ Xδ, then h ≤ (X/2j)δ
′

for 0 ≤ j ≤ s. Hence, for h sufficiently large satisfying
h ≤ Xδ, we deduce from (2) that

L(h,X/2j)� X

2jhγ+ε
for 0 ≤ j ≤ s.

Observe that the definition of L(h,X) easily implies L(h,X) � X/h. Hence, for s + 1 ≤
j ≤ r, we obtain

L(h,X/2j)� X

2jh
� X

2sh
� X1−δ′

h
.

If h ≤ Xδ, then hγ+ε ≤ Xδ(γ+ε) ≤ Xδ′/2. Thus, if h ≤ Xδ, then

L(h,X/2j)� X1−(δ′/2)

hXδ′/2
� X1−(δ′/2)

hγ+ε
for s+ 1 ≤ j ≤ r.

Note that r � logX. One easily deduces that (3) follows for sufficiently large h ≤ Xδ

(indeed, something stronger holds). The rest of the argument for Theorem 2 follows along
the lines of the argument given above for Theorem 1. We omit the details.
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3. Estimates for L(2h)

As before, we consider f(x) to be irreducible in Z[x] with gcdm∈Z(f(m)) being k-free
and with g = deg f . In particular, it follows that the resultant of f and f ′, denoted
D = R(f, f ′), is non-zero. We fix z = 4g and consider the finite set

A = {p : p|D or p ≤ z} .

We define
Q =

∏
p∈A

pk.

We take
H =

h log h
8gQ

with h a sufficiently large integer. For a positive integer q, we define

ρ(q) = ρ(f, q) = |{a ∈ Zq : f(a) ≡ 0 (mod q)}|.

Observe that the condition gcdm∈Z(f(m)) is k-free implies that ρ(pk) < pk for all primes
p.

Lemma 1. There is an integer a such that if B = {y ∈ (n, n+ h] : y ≡ a (mod Q)}, then∑
p≤H

∑
m∈B

pk|f(m)

1 ≤
∑

z<p≤H
p-D

(
h

Qpk
+ 1
)
ρ(pk).

Proof. For each p ∈ A, there exists an integer ap such that

f(ap) 6≡ 0 (mod pk).

By the Chinese Remainder Theorem, there exists an integer a satisfying a ≡ ap (mod pk)
for every p ∈ A. Hence,

f(a) 6≡ 0 (mod pk) for every p ∈ A.

Furthermore, if y ≡ a (mod Q), then f(y) 6≡ 0 (mod pk) for each p ∈ A. With this choice
of a, we deduce that ∑

p≤H

∑
m∈B

pk|f(m)

1 =
∑

z<p≤H
p-D

∑
m∈B

pk|f(m)

1,

since m ∈ B with pk|f(m) implies p /∈ A. With z < p ≤ H and p not dividing D, we have
gcd(Q, pk) = 1. It follows that a given set of pk consecutive elements in B has its members
distinct modulo pk. Thus∑

z<p≤H
p-D

∑
m∈B

pk|f(m)

1 ≤
∑

z<p≤H
p-D

(
h

Qpk
+ 1
)
ρ(pk). �
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Lemma 2. If p - D, then ρ(pk) ≤ g for every positive integer k.

The above lemma is well-known, and we omit its proof. We note however that it is not
difficult to show, under the same hypotheses, that ρ(pk) = ρ(pk−1) for each k ≥ 2.

Lemma 3. Given the notation above,
∑
z<p≤H,p-D ρ(pk)/pk ≤ 1/4.

Proof. By Lemma 2,

∑
z<p≤H
p-D

ρ(pk)
pk

≤ g
∑

z<p≤H
p-D

1
pk
≤ g

∑
p>z

1
pk

< g
∑
n>z

1
n2

< g

∫ ∞
z

1
x2

dx =
g

z
=

1
4
. �

Lemma 4. Let

F (n) = F (n, h, f) =
∑

n<m≤n+h

∑
p>H

pk|f(m)

1.

If there are no integers m in (n, n+ h] such that f(m) is k-free, then

F (n) ≥ h

4Q
.

Proof. Given an integer m > 1, define

χf (m) =
{ 1 if f(m) is k − free

0 otherwise.

Using the notation of Lemma 1, we have

0 =
∑
m∈B

χf (m) ≥ (h/Q− 1)−
∑
m∈B

∑
pk|f(m)

1,

so ∑
m∈B

∑
p>H

pk|f(m)

1 +
∑
m∈B

∑
p≤H

pk|f(m)

1 ≥ h

Q
− 1.

By Lemma 1,

∑
m∈B

∑
p≤H

pk|f(m)

1 =
∑
p≤H

∑
m∈B

pk|f(m)

1 ≤
∑

z<p≤H
p-D

(
h

Qpk
+ 1
)
ρ(pk).
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Using Lemmas 2 and 3 and the Prime Number Theorem, this latter sum is in turn

≤ h

Q

1
4

+ π(H)g ≤ h

4Q
+

2Hg
logH

=
h

4Q
+

h log h

4Q log
(
h log h
8gQ

) ≤ h

2Q
.

Thus,

F (n) +
h

2Q
≥
∑
m∈B

∑
p>H

pk|f(m)

1 +
∑
m∈B

∑
p≤H

pk|f(m)

1 ≥ h

Q
− 1.

Hence, since h is sufficiently large, F (n) ≥ h/(2Q)− 1 ≥ h/(4Q). �

We note that we could have used the Prime Ideal Theorem, which implies that

∑
p≤H

ρ(pk) ∼ H

logH
,

to replace ρ(pk) by 1 (on the average) instead of g.
Recall that we are interested in obtaining upper bounds for L(2h). Accordingly, we

consider F r(n) and establish a relationship between
∑
X/2<n≤X F

r(n) and L(2h).

Lemma 5. For r a positive integer, define

Mr = Mr(h,X, f) =
∑

X/2<n≤X

F r(n).

Then

L(2h)�r
Mr

hr+1
+ 1.

Proof. If j ∈ Z+ is counted by L(2h), then 2h < sj+1 − sj . Consider (n, n + h] for
n ∈ {sj , sj + 1, . . . , sj + h− 1}. In each such interval, no integer m can have f(m) k-free,
as

sj+1 ≥ sj + 2h > n+ h for each such n.

Also, for each such n,
X

2
< sj ≤ n < sj+1 ≤ X

except possibly in the case that j is the unique positive integer satisfying sj ≤ X/2 < sj+1.
By Lemma 4, in each of these h intervals,

F (n) =
∑

n<m≤n+h

∑
p>H

pk|f(m)

1 ≥ h

4Q
.
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Then by definition,

Mr ≥ (L(2h)− 1)
(
h

4Q

)r
h,

so we get

L(2h) ≤ (4Q)r

hr+1
Mr + 1,

from which the lemma follows. �

We examine Mr =
∑
X/2<n≤X F

r(n) by breaking up F (n) as follows. Observe that if
m � X, then f(m) � Xg. We consider m ∈ (X/2, 2X]. If we further consider primes
p > H in intervals of the form (T, 2T ], then pk|f(m) would force T k � Xg, so that
T ≤ cXg/k for some constant c. We define

G(n, T ) = G(n, T, f) =
∑

n<m≤n+h

∑
pk|f(m)
T<p≤2T

1

for T ∈ T = {2jH : j = 0, 1, . . . , J}, where J =
[
log2(cXg/k/H)

]
. Recall that h ≤ X. We

deduce that
F (n) =

∑
T∈T

G(n, T ) for X/2 < n ≤ X.

Next, we note that for each positive integer r,

Gr(n, T )� G(n, T ) +
(
G(n, T )

r

)
,

where henceforth we allow for implied constants to depend on r. In particular, as noted
in [5], if G(n, T ) < r, then Gr(n, T ) ≤ rr−1G(n, T ), while if G(n, T ) ≥ r, then

(4) Gr(n, T )�
(
G(n, T )

r

)
.

This upper bound on Gr(n, T ) motivates our next step.

Definition 2. Let Sr(T ) be the number of 2r-tuples (p1, . . . , pr,m1, . . . ,mr) with T <
p1 < p2 < · · · < pr ≤ 2T such that, for each j ∈ {1, 2, . . . , r},

|m1 −mj | < h,
X

2
< mj ≤ X + h ≤ 2X, and pkj |f(mj).

Lemma 6. Let r be a positive integer. If r = 1, then

∑
X/2<n≤X

(
G(n, T )

r

)
≤ (2g)rhSr(T ).
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If r > 1, then ∑
X/2<n≤X
G(n,T )≥2gr

(
G(n, T )

r

)
≤ (2g)rhSr(T ).

Proof. We define an auxiliary function G̃(n, T ) equal to the number of primes p ∈ (T, 2T ]
for which there exists an m ∈ (n, n+ h] such that pk divides f(m). Since T > h, Lemma
2 implies that for any prime p > T , there exist at most g integers m ∈ (n, n+ h] such that
pk|f(m). Therefore,

G(n, T ) =
∑

n<m≤n+h

∑
pk|f(m)
T<p≤2T

1 =
∑

T<p≤2T

∑
pk|f(m)

n<m≤n+h

1 ≤ gG̃(n, T ).

Furthermore, we define S̃r(n, T ) as the number of 2r-tuples (p1, . . . , pr,m1, . . . ,mr)
with T < p1 < p2 < · · · < pr ≤ 2T such that mj ∈ (n, n + h] and pkj |f(mj) for each
j ∈ {1, 2, . . . , r}. Observe that the conditions on mj in the definition of S̃r(n, T ) imply
that as n varies, a given 2r-tuple (p1, . . . , pr,m1, . . . ,mr) can be counted by at most h
different S̃r(n, T ). Hence, ∑

X/2<n≤X

S̃r(n, T ) ≤ hSr(T ).

We view
(
G̃(n,T )

r

)
as the number of ways of choosing p1, . . . , pr such that T < p1 < p2 <

· · · < pr ≤ 2T and such that there exists an mj ∈ (n, n + h] for which pkj |f(mj) for each
j ∈ {1, 2, . . . , r}. We deduce (

G̃(n, T )
r

)
≤ S̃r(n, T ).

If G(n, T ) ≥ 2gr, then we deduce that G̃(n, T ) ≥ 2r. For each j ∈ {0, 1, . . . , r − 1}, it
then follows that G(n, T )−j ≤ gG̃(n, T )−j ≤ 2g(G̃(n, T )−j). Therefore, if G(n, T ) ≥ 2gr,
then (

G(n, T )
r

)
≤ (2g)r

(
G̃(n, T )

r

)
.

This inequality also holds if r = 1 independent of whether or not G(n, T ) ≥ 2gr is satisfied.
We obtain ∑

X/2<n≤X
G(n,T )≥2gr

(
G(n, T )

r

)
≤ (2g)r

∑
X/2<n≤X
G(n,T )≥2gr

(
G̃(n, T )

r

)

≤ (2g)r
∑

X/2<n≤X
G(n,T )≥2gr

S̃r(n, T ) ≤ (2g)rhSr(T ),

with a similar sequence of inequalities holding in the case r = 1 without the condition
G(n, T ) ≥ 2gr in the summations. This completes the proof. �

Now that we have obtained the bound in Lemma 6, we seek an upper bound on Sr(T )
as well.
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Lemma 7. If T ≥ H and r ∈ Z+, then

Sr(T )� hr−1X

T (k−1)r logr T
+
hr−1T r

logr T
.

Proof. We count the 2r-tuples (p1, p2, . . . , pr,m1,m2, . . . ,mr) with T < p1 < p2 < · · · <
pr ≤ 2T such that, for each j ∈ {1, 2, . . . , r},

|m1 −mj | < h,
X

2
< mj ≤ X + h ≤ 2X, and pkj |f(mj).

Fix such p1, p2, . . . , pr in � (T/ log T )r ways. Since f(mj) ≡ 0 (mod pkj ) for each j,
we have mj congruent to one of ≤ g incongruent numbers modulo pkj for each j. Since
|m1 −mj | < h for each j, we deduce that m1 is congruent to one of ≤ g(2h+ 1) different
numbers modulo pkj for each j ≥ 2. Then by the Chinese Remainder Theorem, m1 is
congruent to one of

≤ gr−1 (2h+ 1)r−1

different numbers modulo p2
k · · · prk. Also, since m1 is congruent to one of g different

numbers modulo p1
k, we obtain from the Chinese Remainder Theorem thatm1 is congruent

to one of
≤ gr (2h+ 1)r−1

different numbers modulo p1
kp2

k · · · prk. Since p1
kp2

k · · · prk � T kr, we get�g,r (X/T kr+
1)hr−1 choices for m1. Hence there are

�
(
X

T kr
+ 1
)
hr−1

(
T

log T

)r
=

hr−1X

T (k−1)r logr T
+
hr−1T r

logr T

different choices for p1, p2, . . . , pr and m1. We use that |m1 −mj | < h, pkj |f(mj), pj > h,
and ρ(pkj ) ≤ g to deduce that for each j ≥ 2, there are ≤ g choices for mj given the values
of p1, p2, . . . , pr and m1. The lemma now follows. �

Our basic strategy will be to obtain (2) by combining Lemma 5 with the above estimates
and using Hölder’s inequality. We will be summing over T in T to get the desired bound
on L(2h), so we mention the following lemma (which has an easy proof that we omit).

Lemma 8. For T as previously defined,

∑
T∈T

U<T≤V

T a �
{
Ua if a < 0
V a if a > 0.
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4. A Proof of Theorem 2

In this section, we prove Theorem 2 assuming Theorem 3. More precisely, we establish
that (2) holds for h ≤ Xδ′ (by Section 2, this is sufficient).

In the following lemma, we will need a positive real number ε such that

ε <
(k − s)(2s+ g)− g(g − 1)

(k − s)(2s+ g)
,

where s is to be chosen from {1, 2, . . . , k − 1}. To ensure that the numerator of the right-
hand side of this inequality is positive, we choose s ∈ {1, 2, . . . , k − 1} to maximize this
numerator. We can achieve this by taking s = (2k− g+ c)/4, where c ∈ {−1, 0, 1, 2}. This
choice of s is possible since 2k− g < 4(k− 1) + 2 and since 2k− g ≥ 2 for k ≥ (

√
2− 1/2)g

and k ≥ 2. For any such s, the numerator becomes

1
4

(2k + g − c)1
2

(2k + g + c)− g(g − 1) =
1
8

((2k + g)2 − c2)− g(g − 1).

Thus the numerator is positive provided that (2k + g)2 + 8g > 8g2 + c2, which follows for
any c ∈ {−1, 0, 1, 2} provided k ≥ (

√
2− 1/2)g. Furthermore, we note that for our choice

of s,
(k − s)(2s+ g)− g(g − 1)

(k − s)(2s+ g)
= 1− 8g(g − 1)

(2k + g)2 − c2
.

It is easy to see that the expression on the right is minimized when c = 2. Consequently,
if we take

ε < 1− 8g(g − 1)
(2k + g)2 − 4

,

then we know the previous inequality on ε also holds for some choice of s ∈ {1, 2, . . . , k−1}.

Lemma 9. Let k ≥ (
√

2− 1/2)g. Let ε ∈ (0, (k − 1)/k] such that

ε < 1− 8g(g − 1)
(2k + g)2 − 4

.

If X1−ε < T � Xg/k, then there is a ξ = ξ(ε) > 0 such that

S1(T )� X1−ξ.

Proof. We suppose as we may that X is sufficiently large. We find an upper bound on the
number of pairs (p,m) with T < p ≤ 2T , X/2 < m ≤ 2X, and pk|f(m). Set

H ′ = c1T
2s(k−s)/(g(2s+1))X1/(2s+1) and B = c2X

−1/(2s+1)T (k+s+1)/(g(2s+1))

where c1 and c2 are some appropriately chosen positive constants and where s denotes an
arbitrary integer in {1, 2, . . . , k − 1}. We divide the interval (X/2, 2X] into � X/H ′ + 1
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subintervals of length ≤ H ′. It follows from the work of Huxley and Nair in [9] (also see
[4]) that in such a subinterval I of length H ′, there are � T/Bg + 1 primes p ∈ (T, 2T ]
for which pk|f(m) for some m ∈ I. Since T � Xg/k, it is straightforward to check that
T ≥ Bg and X ≥ H ′. The condition ε ≤ (k−1)/k implies T > X1−ε ≥ X1/k from which it
follows that T k ≥ H ′. Hence, for each p ∈ (T, 2T ], there exist at most ρ(pk) ≤ g different
integers m ∈ I such that pk|f(m). Thus,

S1(T )�
(
X

H ′
+ 1
)(

T

Bg
+ 1
)

� XT

H ′Bg
� X(2s+g)/(2s+1)

T (2s+g)(k−s)/(g(2s+1))

< X(g(2s+g)−(1−ε)(2s+g)(k−s))/(g(2s+1)).

The exponent of X in the last part of this inequality will be < 1 provided that

ε < 1− g(g − 1)
(k − s)(2s+ g)

=
(k − s)(2s+ g)− g(g − 1)

(k − s)(2s+ g)
.

From the discussion preceding the lemma, we can choose s ∈ {1, 2, . . . , k − 1} so that this
inequality on ε holds. Hence the lemma follows. �

In the next section, we will want a variation of Lemma 9 in which ξ = ε. The above
proof would carry through in this case if

g(2s+ g)− (1− ε)(2s+ g)(k − s)
g(2s+ 1)

≤ 1− ε.

Equivalently, we can take ξ = ε in Lemma 9 provided that

ε ≤ 1− g(2s+ g)
(2s+ g)(k − s) + g(2s+ 1)

=
(2s+ g)(k − s)− g(g − 1)
(2s+ g)(k − s) + g(2s+ 1)

for some s ∈ {1, 2, . . . , k − 1}. We will need ε positive; choosing s =
[
(
√

2− 1)g/2
]

(or
s = 1 if

[
(
√

2− 1)g/2
]

= 0) will serve our purposes. Writing s = (
√

2 − 1)g/2 + θ and
using k > (

√
2− 1/2)g, we note that

(2s+ g)(k − s) > g2 − 2θ2 ≥ g2 − g

provided 2θ2 ≤ g. Thus, for g ≥ 2 (as in Theorem 1), the numerator in the above bound
for ε is > 0 for some s (indeed, for s as chosen in Theorem 1) in {1, 2, . . . , k − 1}. We
deduce that we can choose ξ(ε) = ε provided ε > 0 is sufficiently small.

In the proof of Theorem 2, we will consider cases based on the size of both T and
G(n, T ). In the cases where T > X1−ε for ε as defined in the previous lemma, we will use

13



the bound for S1(T ) obtained in that lemma. Observe that in Lemma 9, the condition
T � Xg/k is not important as pk|f(m), p ∈ (T, 2T ], and m ≤ 2X imply T � Xg/k.

We now prove Theorem 2 (assuming Theorem 3). Fix γ > 0. Let j be a fixed positive
integer with j ≥ max{γ+ε′, 2}, where ε′ > 0 is sufficiently small. Let ε be as in Lemma 9.
We consider h ≤ Xδ′ , with δ′ > 0 to be determined. We will show that L(2h)� X/hγ+ε′

for h ≤ Xδ′ so that, as in Section 2, Theorem 2 will follow.
Given T ∈ T , we consider five cases, based on the size of T and G(n, T ):

Let θ1 represent the case that T ≤ X1−ε and G(n, T ) ≤ 2gj.

Let θ2 represent the case that T > X1−ε and G(n, T ) ≤ 2gj.

Let θ3 represent the case that T ≤ X1/(kj) and G(n, T ) > 2gj.

Let θ4 represent the case that X1/(kj) < T ≤ X1−ε and G(n, T ) > 2gj.

Let θ5 represent the case that T > X1−ε and G(n, T ) > 2gj.

For each i ∈ {1, 2, 3, 4, 5}, define Fi(n) =
∑
θi
G(n, T ) (so the sum is over T ∈ T satisfying

the conditions in θi). If ` ∈ Z+ is counted by L(2h), then we consider intervals of the form
(n, n+h] and allow n to range through s`, s`+ 1, . . . , s`+h−1. As in the proof of Lemma
5, in each such interval, no integer m has f(m) k-free. Then by Lemma 4,

F (n) =
5∑
i=1

Fi(n) ≥ h

4Q
∀n ∈ {s`, s` + 1, . . . , s` + h− 1}.

Thus for each of the h different values of n above, at least one of F1(n), F2(n), F3(n),
F4(n), or F5(n) is ≥ h/(20Q). As we let ` vary over the positive integers for which
2h < s`+1−s` ≤ 4h and X/2 < s`+1 ≤ X, we deduce that for at least one i ∈ {1, 2, 3, 4, 5},
Fi(n) ≥ h/(20Q) for at least h(L(2h) − 1)/5 different n ∈ (X/2, X]. Hence, for at least
one i ∈ {1, 2, 3, 4, 5}, ∑

X/2<n≤X

Fi(n) ≥ (L(2h)− 1)
(

h

20Q

)(
h

5

)
.

More generally, given any positive integers j1, j2, j3, j4, and j5, we have∑
X/2<n≤X

F jii (n) ≥ (L(2h)− 1)
(

h

20Q

)ji (h
5

)
for some i ∈ {1, 2, 3, 4, 5}. Hence,

(5) L(2h)� 1 +
5∑
i=1

1
hji+1

∑
X/2<n≤X

F jii (n).

We take j1 = j2 = j3 = j and j4 = j5 = 1 and use these choices to show that for each
i ∈ {1, 2, 3, 4, 5},

1
hji+1

∑
X/2<n≤X

F jii (n)� X

hγ+ε′
.
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For i = 1, we write F j1 (n) =
(∑

θ1
T−ε

′/jT ε
′/jG(n, T )

)j and apply Hölder’s inequality.
Taking P = j/(j − 1) and Q = j and using Lemma 8, we deduce

F j1 (n) ≤


(∑

θ1

(
T−ε

′/j
)P)1/P (∑

θ1

(
T ε
′/jG(n, T )

)Q)1/Q

j

=

(∑
θ1

T−ε
′/(j−1)

)j−1∑
θ1

T ε
′
Gj(n, T )

� H−ε
′∑
θ1

T ε
′
G(n, T ),

since G(n, T ) ≤ 2gj. Recalling that T ≤ X1−ε in this case, we apply Lemmas 6 (with
r = 1), 7, and 8 to obtain

1
hj+1

∑
X/2<n≤X

F j1 (n)� H−ε
′

hj+1

∑
T∈T

T≤X1−ε

T ε
′ ∑
X/2<n≤X
G(n,T )≤2gj

G(n, T )

� H−ε
′

hj+1

∑
T∈T

T≤X1−ε

T ε
′
hS1(T )

� H−ε
′

hj

∑
T∈T

T≤X1−ε

T ε
′
(

X

T k−1 log T
+

T

log T

)

� XH−ε
′

hjHk−1−ε′ +
X(1+ε′)(1−ε)H−ε

′

hj

� X

hj+k−1
+
X(1+ε′)(1−ε)

hj+ε′
,

which we make� X

hγ+ε′
by taking ε′ ≤ ε/(1−ε) and by noting that j+k−1 > j ≥ γ+ε′.

For i = 2, we use the same application of Hölder’s inequality to obtain

F j2 (n)� H−ε
′∑
θ2

T ε
′
G(n, T ).

From Lemmas 6, 8, and 9, we obtain for some ξ = ξ(ε) > 0

1
hj+1

∑
X/2<n≤X

F j2 (n)� H−ε
′

hj

∑
T∈T

T>X1−ε

T ε
′ (
X1−ξ)

� H−ε
′

hj
Xgε′/k+1−ξ � 1

hj+ε′
Xgε′/k+1−ξ.
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Taking ε′ such that ε′ ≤ kξ/g and recalling j > γ, we conclude

1
hj+1

∑
X/2<n≤X

F j2 (n)� X

hγ+ε′
.

For i = 3, we again apply Hölder’s inequality to obtain

F j3 (n)� H−ε
′∑
θ3

T ε
′
Gj(n, T ).

Since T ≤ X1/(kj) in this case, Lemma 7 implies that

Sj(T )� hj−1X

T (k−1)j logj T
.

Combining this result with (4) and with Lemmas 6 and 8 gives

1
hj+1

∑
X/2<n≤X

F j3 (n)� H−ε
′

hj+1

∑
T∈T

T≤X1/(kj)

T ε
′ ∑
X/2<n≤X
G(n,T )>2gj

(
G(n, T )

j

)

� H−ε
′

hj+1

∑
T∈T

T≤X1/(kj)

T ε
′
hSj(T )

� H−ε
′

hj

∑
T∈T

T≤X1/(kj)

T ε
′
(

hj−1X

T (k−1)j logj T

)

� XH−ε
′

hH(k−1)j−ε′ �
X

h(k−1)j+1
� X

hγ+ε′
,

since (k − 1)j + 1 > j ≥ γ + ε′.

For i = 4, we will require δ′ > 0 with δ′ < (k−1)/(2kjγ). Then h ≤ Xδ′ ≤ X(k−1)/(2kjγ)

and T > X1/(kj) combine to give

T > X1/(2kj)X1/(2kj) ≥ hγ/(k−1)X1/(2kj).

We use that there are� logX different T in T . From Lemmas 6 and 7 (both with r = 1),
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we obtain

1
h2

∑
X/2<n≤X

F4(n) =
1
h2

∑
T∈T

X1/(kj)<T≤X1−ε

∑
X/2<n≤X
G(n,T )>2gj

G(n, T )

� 1
h2

∑
T∈T

X1/(kj)<T≤X1−ε

hS1(T )

� 1
h

∑
T∈T

X1/(kj)<T≤X1−ε

(
X

T k−1 log T
+

T

log T

)

� X logX
h(hγ/(k−1)X1/(2kj))k−1 log(X1/(kj))

+
X1−ε logX
h log(X1/(kj))

� X

hγ+1
+
X1−ε

h
.

To ensure that X1−ε/h � X/hγ+ε′ , we require δ′ ≤ ε/(γ + ε′ − 1) if γ ≥ 1 and δ′ ≤ ε/ε′

otherwise.
For i = 5, we have that T > X1−ε, so we apply Lemmas 6 and 9 to obtain for some

ξ = ξ(ε) > 0

1
h2

∑
X/2<n≤X

F5(n) =
1
h2

∑
T∈T

T>X1−ε

∑
X/2<n≤X
G(n,T )>2gj

G(n, T )

� 1
h2

∑
T∈T

T>X1−ε

hS1(T )� X1−ξ logX
h

.

As in the case for i = 4, we ensure that X1−ξ logX/h � X/hγ+ε′ ; we require δ′ <
ξ/(γ + ε′ − 1) if γ ≥ 1 and δ′ < ξ/ε′ otherwise.

To ensure that 1 � X/hγ+ε′ , we take δ′ < 1/(γ + ε′). Summarizing the above, we
obtain from (5) that there exists a δ′ > 0 such that L(2h)� X/hγ+ε′ for h ≤ Xδ′ . Thus,
we have established (2) for h ≤ Xδ′ . Theorem 2 follows.

5. A Proof of Theorem 1

In the following lemma, we fix ε > 0 such that ε < 1− 8g(g− 1)/((2k+ g)2− 4) and use
this value to split T into the sets T1 = {T ∈ T : T < X1−ε} and T2 = {T ∈ T : T ≥ X1−ε}.

Lemma 10. Fix ε and define T2 as above. Let g ≥ 2, and let k be an integer ≥ (
√

2−1/2)g.
Then for some ξ = ξ(ε) as in Lemma 9,∑

T∈T2

∑
X/2<n≤X

G(n, T )� hX1−ξ logX.
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Proof. From Lemma 6 and Lemma 9, we obtain∑
T∈T2

∑
X/2<n≤X

G(n, T )�
∑
T∈T2

hS1(T )� hX1−ξ
∑
T∈T2

1 � hX1−ξ logX.

This establishes the lemma. �

We are now ready to prove Theorem 1 assuming Theorem 3. One checks that for
2 ≤ g ≤ 4, φ1 > 0. Recall the remarks following the proof of Lemma 9. It follows that
φ1 > 0 for all g, k, and s as in the theorem. Since k ≥ (

√
2− 1/2)g implies 2k+ g ≥ 2

√
2g

and 2k ≥ g, we easily deduce φ2 > 0 as well. Observe that γ < 1 + φ1/φ2 implies
(γ − 1)φ2 < φ1. We choose ε so that

(γ − 1)φ2 < ε < φ1.

In particular, we may take ξ = ε in Lemma 9. Thus, from Lemmas 6, 7, and 10,∑
X/2<n≤X

F (n) =
∑
T∈T

∑
X/2<n≤X

G(n, T )

�
∑
T∈T2

∑
X/2<n≤X

G(n, T ) +
∑
T∈T1

∑
X/2<n≤X

G(n, T )

� hX1−ε logX +
∑
T∈T1

ghS1(T )

� hX1−ε logX + h
∑
T∈T1

(
X

T k−1 log T
+

T

log T

)

� hX1−ε logX +
hX

Hk−1 logH
+
hX1−ε

logH

� X

hk−2 logk h
+ hX1−ε logX.

By Lemma 5 with r = 1, we obtain

L(2h)� 1
h2

∑
X/2<n≤X

F (n) + 1� X

hk logk h
+
X1−ε logX

h
+ 1.

Next, we show that each of these terms is � X/hγ+δ for some sufficiently small δ > 0.
To establish

X

hk logk h
� X

hγ+δ
,
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we simply use that γ < k. To establish that

(6)
X1−ε logX

h
� X

hγ+δ
,

we recall the comments in the introduction that the work of Huxley and Nair [9] for k ≤ g
and the work of Filaseta [4] for k > g imply h� Xφ2 (so that (2) holds for h > cXφ2 for
some constant c > 0 as then L(2h) = 0). Thus,

hγ−1+δ � X(γ−1+δ)φ2 � Xε

logX

for some δ > 0. Now, (6) easily follows. Finally, to establish that 1� X/hγ+δ, we use that
h� Xφ2 and that γ < 1/φ2. Thus, (2) is established (with δ in place of ε) and Theorem
1 holds.

6. A Proof of Theorem 3

Throughout the argument for Theorem 3, we will consider X to be sufficiently large
and suppose that the conditions in the theorem hold so that, in particular, sj+1 − sj = d
for some j. Whenever we use p, it will denote a prime. We consider B = B(d, f) to be a
sufficiently large number (independent of X). Specifically, we consider B large enough so
that for each i ∈ {1, 2, . . . , d− 1} and for some fixed j for which sj+1 − sj = d, there is a
prime p ≤ B (the prime depending on i) such that pk|f(sj + i).

Let
S = {p : p ≤ B} and M = M(B) =

∏
p∈S

pk,

and define the sets

S′ = S′(B) = {a ∈ [0,M − 1] ∩ Z : p ∈ S =⇒ pk - f(a) and pk - f(a+ d)}
and

S′′ = S′′(B) = {a ∈ S′(B) : for each i ∈ {1, 2, . . . , d− 1},
there is a p ∈ S such that pk|f(a+ i)}.

Fix B0 sufficiently large and M0 = M(B0) so that in particular sj ∈ S′′(B0) for some
fixed j with sj+1 − sj = d. Observe that for any integers t and i and any prime p ≤ B0,
f(sj +M0t+ i) ≡ f(sj + i) (mod pk). It easily follows that for each nonnegative integer t,
the number sj +M0t belongs to S′′(B) provided it is < M(B) and provided that for each
prime p ∈ (B0, B], pk - f(sj + M0t) and pk - f(sj + d + M0t). We deduce from Lemma 2
(for B0 sufficiently large) that

|S′′(B)| ≥ M(B)
M0

− 2g
∑

B0<p≤B

M(B)
pkM0

≥ M(B)
M0

1−
∑
p>B0

2g
pk

 ≥ M(B)
2M0

.
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Thus, as B approaches infinity, we obtain(
1

M(B)

) ∑
a∈S′′(B)

1

 ≥ 1(
2
∏
p≤B0

pk
) .

We will show momentarily that the left-hand side above approaches a limit as B tends to
infinity; the above will then imply that this limit is positive.

To prove the theorem, we momentarily fix B, M = M(B), and S′′ = S′′(B) as above.
Consider

S′′(X,M) = |{n ≤ X : n ≡ a (mod M) for some a ∈ S′′}|.

Observe that if n is counted by S′′(X,M), then either n is counted by Nd(X) or one of f(n)
or f(n+ d) is divisible by pk for some prime p > B. Also, if n is counted by Nd(X), then
either n is counted by S′′(X,M) or one of the numbers f(n+ 1), f(n+ 2), . . . , f(n+d− 1)
is divisible by pk for some prime p > B. Therefore, we deduce that

Nd(X) = S′′(X,M) +O(W (X)),

where W (X) denotes the number of positive integers n ≤ X for which at least one of the
numbers f(n), f(n+1), . . . , f(n+d) is divisible by pk for some prime p > B. Observe that

S′′(X,M) =
∑
a∈S′′

(
X

M
+O(1)

)
=

(
(1/M)

∑
a∈S′′

1

)
X +O(M).

To estimate W (X), we will make use of Lemma 9. Since B is sufficiently large and
p > B, we may suppose that p does not divide the discriminant of f . By Lemma 2, there
are at most g incongruent roots to the congruence f(x) ≡ 0 (mod pk). Hence, for any
i ∈ {0, 1, . . . , d}, we have∑

n≤X

∑
B<p≤X
pk|f(n+i)

1 =
∑

B<p≤X

∑
n≤X

pk|f(n+i)

1 ≤
∑

B<p≤X

(
g
X

pk
+O(g)

)

=

 ∑
B<p≤∞

g

pk

X +O(π(X)) = O(X/Bk−1) +O(X/ logX).

Estimating ∑
n≤X

∑
p>X

pk|f(n+i)

1

is more difficult, but we can appeal to Lemma 9. It follows from that lemma that with
k ≥ (

√
2− 1/2)g, this last double sum is o(X). Therefore, we deduce

Nd(X) =

(
(1/M)

∑
a∈S′′

1

)
X +O(M) +O(dX/Bk−1) + o(X).
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Dividing by X, we obtain

Nd(X)
X

=

(
(1/M)

∑
a∈S′′

1

)
+O(M/X) +O(d/Bk−1) + o(1).

Hence,

lim sup
X→∞

Nd(X)
X

=

(
(1/M)

∑
a∈S′′

1

)
+O(d/Bk−1)

and

lim inf
X→∞

Nd(X)
X

=

(
(1/M)

∑
a∈S′′

1

)
+O(d/Bk−1).

Thus the difference between lim supX→∞(Nd(X)/X) and lim infX→∞(Nd(X)/X) can be
made arbitrarily small (as B gets large). Hence limX→∞(Nd(X)/X) exists. Letting B
approach infinity, we deduce that limB→∞

(
(1/M)

∑
a∈S′′ 1

)
exists. Setting the value of

this limit to be cd, the theorem follows.
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