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1 Introduction

The purpose of this paper is to give a partially expository account of results re-
lated to coverings of the integers (defined below) while at the same time making
some new observations concerning a related polynomial problem. The polyno-
mial problem we will consider is to determine whether for a given positive integer
d there exists anf(x) ∈ Z+[x] such thatf(x)xn+d is reducible over the rationals
for every non-negative integern. We begin with some background material.

A covering of the integersis a system of congruencesx ≡ aj (mod mj),
with aj andmj integral andmj ≥ 1, such that every integer satisfies at least one
of the congruences. Four examples are as follows:

x ≡ 0 (mod2)
x ≡ 1 (mod2)

x ≡ 0 (mod2)
x ≡ 1 (mod4)
x ≡ 3 (mod8)
x ≡ 7 (mod16)

...

x ≡ 0 (mod2)
x ≡ 2 (mod3)
x ≡ 1 (mod4)
x ≡ 1 (mod6)
x ≡ 3 (mod12)

x ≡ 0 (mod2)
x ≡ 0 (mod3)
x ≡ 1 (mod4)
x ≡ 3 (mod8)
x ≡ 7 (mod12)
x ≡ 23 (mod24)

Two open problems concerning coverings are

Open Problem 1: For everyc > 0, does there exist a finite covering with distinct
moduli and with the minimum modulus≥ c?

Open Problem 2: Does there exist a finite covering consisting of distinct odd
moduli> 1?

We shall call a covering as in the second problem an “odd covering”. According
to Richard Guy [3], Paul Erd̋os has offered $500 for a proof or disproof that a
c exists as in the first problem and has offered $25 for a proof that there is no
odd covering. John Selfridge has offered $900 for an explicit example of an odd
covering. In private communication, Selfridge has indicated to the author that he
will now pay $2000 for an explicit odd covering. Observe that in the odd covering
problem no direct financial gain is made for a non-constructive proof that an odd
covering exists. In [5], R. Morikawa announced that a covering exists as in the
first problem withc = 24.

We stress the importance of the word “finite” in the above problems with a
simple example of an infinite covering with relatively prime odd moduli that are
arbitrarily large. Fixc > 0, and letM = {m1,m2, . . . } be an arbitrary infinite
set of relatively prime integers> c (for example,M could be the set of primes
> c). Let a1, a2, . . . be some ordering of the integers. Then the infinite system
x ≡ aj (mod mj) clearly covers the integers.

One of the now classical examples of the use of coverings is in a disproof that
Erdős gave of the following conjecture.
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Polignac’s Conjecture: For every sufficiently large odd integerk > 1, there is a
primep and an integern such thatk = 2n + p.

The Prime Number Theorem would suggest that this is a reasonable conjecture,
but smallk > 1 not the sum of a prime and a power of two are easy to find. The
smallest suchk is 127 and the smallest compositek is 905. Erd̋os’s argument
is based on the last example given of a covering in the first display above. A
variation on Erd̋os’s argument is as follows. One considers any positive integerk
satisfying the congruencek ≡ 1 (mod 2) so thatk is odd and the congruences
k ≡ 1 (mod 3), k ≡ 1 (mod 7), k ≡ 2 (mod 5), k ≡ 8 (mod 17), k ≡ 11
(mod 13), andk ≡ 121 (mod 241) (suchk exist by the Chinese Remainder
Theorem). The key idea then is to consider what happens ifn satisfies one of
the congruences in the last covering displayed above. For example, ifn ≡ 7
(mod 12), then2n ≡ 27 ≡ 11 (mod 13) so thatk − 2n is divisible by13. Since
every integern satisfies one of the congruences listed above, one can deduce
thatk−2n must be divisible by at least one element ofS = {3, 7, 5, 13, 17, 241}.
From an analytic point of view, we are through. The Chinese Remainder Theorem
gives that for someδ > 0 and forx sufficiently large, there are> δx different
k ≤ x as above. On the other hand, for any suchk, the only possible prime values
of k−2n are elements ofS so thatk will be of the form2n+s wheres ∈ S. Since
|S| = 6, one easily deduces that there are� (log x)6 suchk ≤ x. It follows that
a positive proportion of positive integersk cannot be written in the form2n + p.

Another classical application of the use of coverings was given by Waclaw
Sierpínski.

Sierpiński’s Theorem: A positive proportion of odd positive integers` satisfy
`× 2n + 1 is composite for all non-negative integersn.

It is unknown what the smallest such` is. It is probably` = 78557 (attributed
to Selfridge). Extensive computations are being done to check that for each odd
` < 78557 there is a prime of the form̀×2n +1, but it may be some time before
they are completed. There are apparently 19 values of` left to eliminate at the
time of writing this paper; see

http://vamri.xray.ufl.edu/proths/sierp.html .

The question of whether there are infinitely many prime Fermat numbers is related
to the existence of eveǹas above. For example, ifFn = 22n

+ 1 is composite
for n ≥ 5, then for` = 217 = 131072 one has̀ × 2n + 1 is composite for all
non-negative integersn.

Andrzej Schinzel noted Sierpiński’s Theorem follows from the above solu-
tion to Polignac’s Conjecture. Takè= −k. For eachn ≥ 0, considerp ∈
{3, 5, 7, 13, 17, 241} such that̀ +2239n ≡ 0 (mod p). Then`+2239n ≡ `+2−n
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(mod p) so that̀ × 2n + 1 ≡ 0 (mod p). By consideringk < 0 satisfying the
congruences imposed onk above, one obtains the result of Sierpiński.

In this paper, we consider a polynomial variant of Sierpiński’s result. In its
most simplest form, the problem we consider is as follows.

The Analogous Polynomial Problem: Find f(x) ∈ Z[x] with f(1) 6= −1 such
thatf(x)xn + 1 is reducible over the rationals for alln ≥ 0.

The conditionf(1) 6= −1 makes the problem non-trivial. Otherwise, one could
simply consider anyf(x) of degree> 1 satisfyingf(1) = −1 as thenf(x)xn +1
will always have the factorx − 1. Schinzel [7] first considered this problem in a
slightly different form withf(x)xn+1 replaced byxn+f(x) (and with the added
conditionf(0) 6= 0). His version was chosen as an approach to understanding a
conjecture of Tuŕan that every reducible polynomial is in some sense near an
irreducible polynomial. Modifying an example of Schinzel’s, we note that

f(x) = 5x9 + 6x8 + 3x6 + 8x5 + 9x3 + 6x2 + 8x + 3

has the property thatf(x)xn + 12 is reducible for alln ≥ 0. The argument
for this is based on the third covering example displayed in the second opening
paragraph. Indeed, thatf(x)xn + 12 is reducible for alln ≥ 0 can be obtained
by noting that every non-negative integer satisfies at least one of the congruences
given there and that the following implications all hold:

n ≡ 0 (mod2) =⇒ f(x)xn + 12 ≡ 0 (modx + 1)

n ≡ 2 (mod3) =⇒ f(x)xn + 12 ≡ 0 (modx2 + x + 1)

n ≡ 1 (mod4) =⇒ f(x)xn + 12 ≡ 0 (modx2 + 1)

n ≡ 1 (mod6) =⇒ f(x)xn + 12 ≡ 0 (modx2 − x + 1)

n ≡ 3 (mod12) =⇒ f(x)xn + 12 ≡ 0 (modx4 − x2 + 1).

Observe that the moduli on the right are the cyclotomic polynomialsΦ2(x),
Φ3(x), Φ4(x), Φ6(x), andΦ12(x), respectively. The implications are easily jus-
tified. For example, ifn ≡ 1 (mod 6), thenxn ≡ x (mod Φ6(x)) so that by a
direct computation

f(x)xn + 12 ≡ f(x)x + 12 ≡ 0 (mod Φ6(x)).

The dual role of 12 here (as the least common multiple of the moduli in the
covering and as the constant term inf(x)xn + 12 for n > 0) is misleading. The
main new result in this paper is in fact a demonstration that a suitable covering
(considerably more complicated than those given in the examples above) can give
rise to anf(x) ∈ Z+[x] with f(x)xn +4 reducible for alln ≥ 0. More generally,
we obtain
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Theorem 1. Letd be a positive integer divisible by4. There is anf(x) ∈ Z+[x]
with f(x)xn + d reducible for alln ≥ 0.

Observe that the conditionf(1) 6= −d, that would prevent trivial examples of
polynomialsf(x) with f(x)xn + d havingx − 1 as a factor for alln ≥ 0, is
replaced by the condition thatf(x) have positive coefficients. Our condition
seemingly makes a stronger result, but we really only choose this formulation
to simplify the statement of the result.

We are left with the question

Open Problem 3: For what positive integersd does there exist anf(x) ∈ Z[x]
with f(1) 6= −d such thatf(x)xn + d is reducible over the rationals for all
n ≥ 0?

The author is unable to establish mored with this property than what the theorem
states above. Schinzel [7] already established a result that at least suggests that
the existence of suchf(x) whend = 1 would be difficult to establish. We modify
his ideas to show

Theorem 2. Let d be an odd positive integer. If there is anf(x) ∈ Z[x] with
f(1) 6= −d andf(x)xn +d reducible for alln ≥ 0, then there is an odd covering
of the integers.

We emphasize that this can be obtained by a simple variation on Schinzel’s work
in [7] and that, in fact, Schinzel’s work gives a necessary and sufficient condition
(somewhat more complicated than the existence of an odd covering) for such an
f(x) to exist in the case thatd = 1. Nevertheless, we will give a proof of the
above result, a proof that is similar in flavor but still somewhat different from
Schinzel’s original work on the subject.

2 A Result Concerning Cyclotomic Polynomials

We make use of the notation

Φn(x) =
∏
d|n

(xd − 1)µ(n/d) (1)

so thatΦn(x) denotes thenth cyclotomic polynomial. It is well-known and easy
to establish from (1) that

Φpn(x) =

{
Φn(xp) if p|n
Φn(xp)/Φn(x) if p - n.

(2)

We also setζn = e2πi/n. Throughout this paper,d will denote a positive integer.
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The example given by Schinzel of a polynomialf(x) ∈ Z[x] with f(1) 6=
−12 andf(x)xn + 12 reducible for alln ≥ 0 has a clear connection to cyclo-
tomic polynomials. Indeed, we saw in the introduction that there is a finite list of
polynomialsP , all cyclotomic, such that eachf(x)xn + 12 is divisible by some
element ofP . To demonstrate the important role of cyclotomic polynomials in
our investigations here, suppose thatf(x)xn + d is divisible byg(x) for some
irreducibleg(x) ∈ Z[x] and for at least two different non-negative integersn, say
n = u andn = v with u > v. Theng(x) also divides(

f(x)xu + d
)
−

(
f(x)xv + d

)
= f(x)xv

(
xu−v − 1

)
.

Sinced 6= 0, we deduce thatg(x) dividesxu−v − 1 and, therefore, is cyclo-
tomic. It follows that if we want to establish thatf(x)xn + d is reducible for all
non-negative integersn by finding a finite list of polynomialsP such that each
f(x)xn + d is divisible by an element ofP , thenP must contain cyclotomic
polynomials. Another simple result in this direction is the following:

Lemma 1. Supposef(x)xa + d is divisible byΦm(x) for some positive integer
m. Thenf(x)xn + d is divisible byΦm(x) if and only ifn ≡ a (mod m).

Proof. Let F (x) = f(x)xn + d. If n ≡ a (mod m), then clearlyF (ζm) =
f(ζm)ζa

m + d = 0 so thatF (x) is divisible byΦm(x). If F (x) is divisible by
Φm(x), the equality

0 = ζn−a
m

(
f(ζm)ζa

m + d
)
− F (ζm) = d

(
ζn−a
m − 1

)
impliesn ≡ a (mod m).

The lemma alluded to in the title of this section is the following.

Lemma 2. Letn andm be positive integers withn > m. If n/m is not a power
of a prime, then for every integera, there existu(x) andv(x) in Z[x] satisfying

Φn(x)u(x) + Φm(x)v(x) = a. (3)

If for some primep and some positive integert we haven/m = pt, then there
existu(x) andv(x) in Z[x] satisfying (3) if and only ifp|a.

Momentarily, we turn to some preliminary lemmas (some quite well-known) that
will not only give us what we need for the above result but also keep our argu-
ments self-contained. Schinzel has pointed out, however, that Lemmas 3-6 and
the proof of Lemma 2 can be replaced by applications of a result of Tom Apostol
[1] on the resultant of two cyclotomic polynomials. Therefore, we present here
Schinzel’s alternative approach as well as the author’s more self-contained ap-
proach. We begin with Schinzel’s argument for Lemma 2. The remaining use of
Apostol’s work, as suggested by Schinzel, is presented in Concluding Remarks at
the end of this paper.
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First Proof of Lemma 2.Let R(n, m) denote the resultant ofΦn(x) andΦm(x).
Then it is well-known that there exist polynomialsu1(x) andv1(x) in Z[x] such
that

Φn(x)u1(x) + Φm(x)v1(x) = R(n, m).

In the case thatn/m is not a power of a prime, Apostol’s work [1] implies that
R(n, m) = ±1. We deduce immediately that, for every integera, there are poly-
nomialsu(x) andv(x) in Z[x] satisfying (3).

In the case thatn/m = pt as in the statement of the lemma, Apostol estab-
lishes thatR(n, m) = ±pφ(m). Note thatn = ptm implies φ(m)|φ(n). We
consider the polynomial

h(x) =
1
p

(
Φn(x)− Φm(x)φ(n)/φ(m)

)
.

From (2), it follows thatΦn(x) ≡ Φm(x)φ(n)/φ(m) (mod p) so thath(x) ∈ Z[x].
Observe that the resultant ofΦm(x) andh(x) can be expressed as∏

1≤k≤m
gcd(k,m)=1

h(ζk
m) = p−φ(m)

∏
1≤k≤m

gcd(k,m)=1

Φn(ζk
m) = p−φ(m)R(n, m) = ±1.

Hence, there exist polynomialsu2(x) andv2(x) in Z[x] such that

h(x)u2(x) + Φm(x)v2(x) = 1.

Given the definition ofh(x), we deduce

Φn(x)u2(x) + Φm(x)
(
pv2(x)− Φm(x)φ(n)/φ(m)−1u2(x)

)
= p.

We deduce in this case that, for every integera divisible by p, there are poly-
nomialsu(x) andv(x) in Z[x] satisfying (3). Furthermore, if polynomialsu(x)
andv(x) in Z[x] exist satisfying (3), then we must havea ≡ 0 (mod p) since
otherwiseΦn(x) andΦm(x) would be relatively prime in the finite field withp
elements contradicting thatR(n, m) is 0 in this field.

Lemma 3. Supposen andm are integers withn/m = pr for some primep and
some positive integerr. ThenΦn(ζm) = pw for some unitw ∈ Z[ζm].

Proof. We consider three cases: (i)n = pm andp - m, (ii) n = prm with r > 1
andp - m, and (iii) n = put andm = pvt with u > v > 0. Let ξ denote an
arbitrary primitivemth root of1 (soξ ∈ Z[ζm]). For (i), observe that (2) implies
Φn(x) = Φm(xp)/Φm(x). Hence,

Φn(ξ) = lim
x→ξ

Φm(xp)
Φm(x)

=
pξp−1Φ′m(ξp)

Φ′m(ξ)
.
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Sinceξpj andξj range over the same set of values for1 ≤ j ≤ m andgcd(j, m) =
1, we deduce thatΦ′m(ξp) andΦ′m(ξ) have the same norm in the fieldQ(ζm) over
Q. Also, the norm ofξ is±1. We deduce that the norm ofΦn(ξ) is±pφ(m). On
the other hand,

Φn(x) =
Φm(xp)
Φm(x)

=
∏

1≤k≤m
gcd(k,m)=1

(
xp − ξkp

x− ξk

)

=
∏

1≤k≤m
gcd(k,m)=1

(
xp−1 + ξkxp−2 + ξ2kxp−3 + · · ·+ ξ(p−1)k

)
.

By considering the factor corresponding tok = 1, we deduce thatΦn(ξ) = pu for
someu ∈ Z[ζm]. It follows that there areuk ∈ Z[ζm] such thatΦn(ζk

m) = puk

for each positive integerk ≤ m with gcd(k, m) = 1. Therefore,

pφ(m)
∏

1≤k≤m
gcd(k,m)=1

uk =
∏

1≤k≤m
gcd(k,m)=1

Φn(ζk
m) = ±pφ(m).

We deduce that eachuk is a unit inZ[ζm]. Hence, (i) follows.

For (ii), use (2) again to obtainΦn(ζm) = Φpm

(
ζpr−1

m

)
and apply the ar-

gument for (i) withξ = ζpr−1

m . For (iii), use (2) as before to obtainΦn(ζm) =
Φpu−vt

(
ζpv

m

)
= Φpu−vt(ζt). Now, cases (i) and (ii) implyΦn(ζm) = pw for

some unitw ∈ Z[ζt] ⊆ Z[ζm] (sinceζt = ζpv

m ).

Lemma 4. Letm be an integer> 1. Then

Φm(1) =

{
p if m = pr for somer ∈ Z+

1 otherwise.

Proof. Clearly,Φp(1) = p. If m = prk with k andr positive integers such that
p - k, then (2) impliesΦm(1) = Φpk(1pr−1

) = Φpk(1). The lemma follows
if k = 1. If k > 1, then applying (2) again we obtainΦm(1) = Φpk(1) =
Φk(1p)/Φk(1) = 1.

Lemma 5. Let m and` be integers withm ≥ 1 and` ≥ 0. For α ∈ Q(ζm), let
N(α) = NQ(ζm)/Q(α) denote the norm ofα. ThenN

(
ζ`
m − 1

)
is divisible by a

primep if and only ifm/ gcd(`,m) is a power ofp.

Proof. The idea is to apply Lemma 4 and use that

N
(
ζ`
m − 1

)
= ±Φm/ gcd(`,m)(1)φ(m)/φ(m/ gcd(`,m)).
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This last equation can be seen as follows. Note thatN
(
ζ`
m − 1

)
= ±N

(
1− ζ`

m

)
.

The value ofN
(
1 − ζ`

m

)
is the product of itsφ(m) field conjugates1 − ζk`

m

where1 ≤ k ≤ m and gcd(k, m) = 1. Observe that1 − ζ`
m = 1 − ζ

`/d
m/d

whered = gcd(m, `), andζ
`/d
m/d is a primitive(m/d)th root of unity. The field

conjugates associated with1−ζ`
m are thus the same as the numbers1−ζt

m/d where
1 ≤ t ≤ m/d andgcd(t, m/d) = 1 with each1 − ζt

m/d appearing among the

1 − ζk`
m preciselyφ(m)/φ(m/d) times (see Theorem 2-5 of William LeVeque’s

book [4]). Finally, observe that∏
1≤t≤m/d

gcd(t,m/d)=1

(
1− ζt

m/d

)
= Φm/d(1).

The result now follows.

Observe that Lemma 5, using the notation there, implies thatζ`
m − 1 is a unit

in Z[ζm] if and only if m/ gcd(`,m) is not a power of a prime.

Lemma 6. Let n > 1 anda be positive integers withgcd(a, n) = 1. Then the
quotient(ζa

n − 1)/(ζn − 1) is a unit inZ[ζn].

Proof. Let β = (ζa
n − 1)/(ζn − 1). Observe that

β = 1 + ζn + ζ2
n + · · ·+ ζa−1

n

so thatβ ∈ Z[ζn]. The conditiongcd(a, n) = 1 implies that the set of values of
ζja
n and the set of values ofζj

n are the same asj varies over the positive integers
≤ n that are relatively prime ton. It follows that the norm ofβ in the fieldQ(ζn)
overQ is 1. Hence,β is a unit inZ[ζn].

Second Proof of Lemma 2.Sincen > m, there is a primep and non-negative
integersr ands with r > s satisfyingn = prn′ andm = psm′ for some integers
n′ andm′ each not divisible byp. The conditionn/m = pt in the lemma is
satisfied precisely whenn′ = m′ (with t = r − s). We use that

Φm(ζn) =
∏
d|m

(
ζd
n − 1

)µ(m/d)
.

Given thatd|m, observen/ gcd(d, n) can be a power of a prime only ifn′|d. It
follows from Lemma 5 (see the comment after its proof) that ifn′ - d, thenζd

n−1
is a unit inZ[ζn]. Thus, there is a unitw ∈ Z[ζn] such that

Φm(ζn) = w
∏
d|m
n′|d

(
ζd
n − 1

)µ(m/d)
.
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In particular, ifn′ - m′, thenΦm(ζn) is a unit inZ[ζn]. If n′|m′, then we set
k = m′/n′, taked = pjn′d′ whered′|k, and rewrite the above to obtain

Φm(ζn) = w
s∏

j=0

∏
d′|k

(
ζd′

pr−j − 1
)µ(ps−jk/d′)

.

If k > 1 andj ∈ {s− 1, s}, we use that∑
d′|k

µ(ps−jk/d′) = ±
∑
d′|k

µ(k/d′) = 0

to deduce that

Φm(ζn) = w
s∏

j=s−1

∏
d′|k

(
ζd′

pr−j − 1

ζpr−j − 1

)µ(ps−jk/d′)

.

Note that for eachj ∈ {0, 1, . . . , s}, we haveZ[ζpr−j ] ⊆ Z[ζn]. We deduce from
Lemma 6 that ifn′ 6= m′, thenΦm(ζn) is a unit inZ[ζn]. In this case, for some
v0(x) ∈ Z[x], we obtainΦm(ζn)v0(ζn) = 1. In other words,Φm(x)v0(x) −
1 hasζn as a root. It follows thatΦm(x)v0(x) − 1 = Φn(x)u0(x) for some
u0(x) ∈ Z[x] so that (3) holds by multiplying through bya (i.e., takingu(x) =
−au0(x) andv(x) = av0(x)). If n′ = m′, then we apply Lemma 3 to obtain that
Φn(ζm) = pw0 for some unitw0 in Z[ζm]. Therefore, takingu0(ζm) ∈ Z[ζm]
to be the inverse ofw0, we obtainΦn(x)u0(x) − p is divisible byΦm(x). We
deduce in this case that ifp|a, then (3) has a solution in polynomialsu(x) and
v(x) in Z[x]. Lemma 3 also implies the necessity of havingp|a whenn′ = m′

as follows. Takex = ζm in (3) to obtainΦn(ζm)u(ζm) = a. By Lemma 3, the
norm ofΦn(ζm)u(ζm) (in Q(ζm)/Q) is divisible byp so that the norm ofa must
also be divisible byp. Thus,p|a, concluding the proof.

3 How Coverings Produce Reducible Polynomials

Let d be a positive integer. Suppose we wish to find anf(x) with positive integer
coefficients such thatf(x)xn + d is reducible for every non-negative integern.
The purpose of this section is to show how certain coverings of the integers can
be used to obtain suchf(x). This is achieved through the following result.

Theorem 3. Letd be a positive integer. Suppose thatS is a system of congruences

x ≡ 2j−1 (mod 2j) for j ∈ {1, 2, . . . , k} (4)

for some positive integerk together with

x ≡ aj (mod mj) for j ∈ {1, 2, . . . , r} (5)
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for some positive integerr satisfying:

(i) The systemS is a covering of the integers.

(ii) The moduli in (4) and (5) are all distinct and> 1.

(iii) For each j ∈ {1, 2, . . . , r},( ∏
1≤i≤r

i 6=j

a(i, j)
)( k∏

i=1

b(i, j)
)

divides d

where

a(i, j) =

{
p if mi/mj = pt for some primep and some integert

1 otherwise

and

b(i, j) =

{
p if mj/2i = pt for some primep and some integert

1 otherwise.

(iv) The double product
∏k

i=1

∏r
j=1 b(i, j) dividesd.

Then there existsf(x) ∈ Z[x] with positive coefficients such thatf(x)xn + d is
reducible over the rationals for all non-negative integersn.

Proof. Fix d now as in the statement of the theorem. We consider as we may that
0 ≤ aj < mj in (5). Suppose for the moment that we have anf(x) satisfying the
system of congruences consisting of

f(x) ≡ d (mod w(x)), (6)

wherew(x) =
∏k

j=1 Φ2j (x), together with

f(x) ≡ −dxmj−aj (mod Φmj
(x)) for j ∈ {1, 2, . . . , r}. (7)

Let n be a non-negative integer. By (i),n must satisfy at least one of the congru-
ences in (4) and (5). If there is aj ∈ {1, 2, . . . , k} such thatn ≡ 2j−1 (mod 2j),
then for somè ∈ Z we haven = 2j−1 + 2j`. SinceΦ2j (x) = x2j−1

+ 1, we
obtain from (6) that

f(x)xn + d ≡ d
(
x(2`+1)2j−1

+ 1
)
≡ 0 (mod x2j−1

+ 1).
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We deduce thatf(x)xn + d is divisible byΦ2j (x). On the other hand, if there is
a j ∈ {1, 2, . . . , r} such thatn ≡ aj (mod mj), thenn = aj + mj` for some
integer`. SinceΦmj

(x) dividesxmj − 1, we obtain from (7) that

f(x)xn + d ≡ −d
(
x(`+1)mj − 1

)
≡ 0 (mod Φmj

(x)).

Thus,f(x)xn + d is divisible byΦmj (x).
To finish the proof, it suffices to show that we can find anf(x) with posi-

tive integral coefficients satisfying the congruences in (6) and (7) and such that,
for every non-negative integern, f(x)xn + d is not a constant timesΦ2j (x) for
j ∈ {1, 2, . . . , k} and not a constant timesΦmj (x) for j ∈ {1, 2, . . . , r}. To do
this, we show that there is anf(x) with positive integral coefficients satisfying
the congruences in (6) and (7) and such thatdeg f is greater than both2k and
max1≤j≤k{mj}.

We apply Lemma 2 to deduce that, fori andj in {1, 2, . . . , r} with i 6= j,
there are polynomialsui,j(x) andvi,j(x) in Z[x] such that

Φmi
(x)ui,j(x) + Φmj

(x)vi,j(x) = a(i, j). (8)

Also, by that lemma, fori ∈ {1, 2, . . . , k} andj ∈ {1, 2, . . . , r}, there are poly-
nomialsu′i,j(x) andv′i,j(x) in Z[x] such that

Φ2i(x)u′i,j(x) + Φmj
(x)v′i,j(x) = b(i, j). (9)

We fix j ∈ {1, 2, . . . , r} and expand

c
∏

1≤i≤r
i 6=j

(
Φmi

(x)ui,j(x) + Φmj
(x)vi,j(x)

)
×

∏
1≤i≤k

(
Φ2i(x)u′i,j(x) + Φmj

(x)v′i,j(x)
)

where

c =
d( ∏

1≤i≤r
i 6=j

a(i, j)
)( k∏

i=1

b(i, j)
) .

From (iii), (8), and (9), we deduce that( ∏
1≤i≤r

i 6=j

Φmi
(x)

)
w(x)uj(x) + Φmj

(x)vj(x) = d

11



for some polynomialsuj(x) andvj(x) in Z[x]. Similarly, combining (iv) and (9),
one obtainsu(x) andv(x) in Z[x] satisfying( ∏

1≤j≤r

Φmj
(x)

)
u(x) + w(x)v(x) = d.

Let M = 2km1m2 · · ·mr, and letk(x) ∈ Z[x]. It follows that

f(x) =
r∑

j=1

( ∏
1≤i≤r

i 6=j

Φmi
(x)

)
w(x)uj(x)

(
− xmj−aj

)
+

( ∏
1≤j≤r

Φmj
(x)

)
u(x) + k(x)

(
xM − 1
x− 1

)

satisfies the congruences in (6) and (7). Furthermore, we may takek(x) appropri-
ately (for example,k(x) = b(xs − 1)/(x− 1) with b ands sufficiently large pos-
itive integers) so thatf(x) has positive integral coefficients anddeg f is greater
than both2k andmax1≤j≤k{mj}. This completes the proof.

4 A Preliminary Covering and Theorem 1

In this section, we establish

Theorem 4. There is a covering of the integers consisting of modulim1,m2,
. . . , mr satisfying:

(i) For each positive integerm, there exist at most threè∈ {1, 2, . . . , r} for
whichm` = m.

(ii) Eachm` is odd and> 1.

(iii) Each m` has at least two distinct prime factors.

Observe that Theorem 4 implies that an odd covering exists if we allow up
to three congruences for each odd modulus. The existence of anf(x) ∈ Z+[x]
such thatf(x)xn + 2 is reducible for all integersn ≥ 0 would follow if one can
establish the existence of a covering as in Theorem 4 but with “three” replaced by
“two” in (i) above.

Before turning to the proof of Theorem 4, we explain how it is used with
Theorem 3 to deduce Theorem 1. Letx ≡ aj (mod mj) for j ∈ {1, 2, . . . , r}
denote ther congruences given by Theorem 4. We suppose as we may (by (i)
in Theorem 4) that ifmi = mj for some integersi andj with 1 ≤ j < i ≤ r,

12



theni = j + 1 or i = j + 2. In particular, forj fixed, the conditionsi 6= j and
mj = mi imply there are at most two possibilities fori. Define

m′
j = 2jmj for j ∈ {1, 2, . . . , r}.

By the Chinese Remainder Theorem, for eachj ∈ {1, 2, . . . , r}, there is an inte-
gerbj satisfying

bj ≡ aj (modmj) and bj ≡ 0 (mod2j).

We consider the congruences

x ≡ 2j−1 (mod2j) for j ∈ {1, 2, . . . , r} (10)

together with

x ≡ bj (modm′
j) for j ∈ {1, 2, . . . , r}. (11)

We show that these congruences form a systemS of congruences satisfying the
conditions of Theorem 3 (sok = r in Theorem 3 and themj have been replaced
by m′

j there) providedd is divisible by4.
Let n be an arbitrary integer that does not satisfy one of the congruences in

(10). Thenn ≡ 0 (mod 2r) (otherwise,n would satisfy the congruence in (10)
corresponding to the largest positive integerj, necessarily≤ r, for which 2j−1

dividesn). Also, since the congruencesx ≡ aj (mod mj) for j ∈ {1, 2, . . . , r}
form a covering of the integers,n ≡ aj (mod mj) for somej ∈ {1, 2, . . . , r}.
By the definition ofbj , we have for that choice ofj that x ≡ bj (mod m′

j).
Hence,n satisfies one of the congruences in (11). Thus,S satisfies the condition
(i) of Theorem 3. Condition (ii) of Theorem 3 is easily checked for the congru-
ences in (10) and (11). To verify conditions (iii) and (iv) of Theorem 3 for the
congruences in (10) and (11), we alter the definitions ofa(i, j) andb(i, j) accord-
ingly so thatmi andmj are replaced bym′

i andm′
j . Sincem′

j is 2j times the odd
numbermj , if the ratiom′

j/m′
i = pt for some primep and some integert, then

p = 2 and, consequently,mj = mi. Recall that forj fixed, the conditionsi 6= j
andmj = mi imply there are at most two possibilities fori. We deduce that for
eachj ∈ {1, 2, . . . , r}, ∏

1≤i≤r
i 6=j

a(i, j) divides 4.

By conditions (ii) and (iii) in Theorem 4, eachmj and, hence, eachm′
j has at

least two odd prime divisors. It follows thatb(i, j) = 1 for every choice ofi and
j in {1, 2, . . . , r}. Conditions (iii) and (iv) of Theorem 3 now easily follow since
d is divisible by4.

We turn now to establishing Theorem 4.
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Lemma 7. Letp be a prime, and letE be a positive integer. Suppose thatn is an
integer which is not congruent to−1 modulopE . Thenn satisfies at least one of
the congruences

x ≡ pe−1(j + 1)− 1 (modpe) where0 ≤ j ≤ p− 2 and1 ≤ e ≤ E.

Proof. Consider the positive integere satisfyingpe−1||(n + 1). Then1 ≤ e ≤
E, and for some integern′ 6≡ 0 (mod p) we haven + 1 = pe−1n′. Let j ∈
{0, 1, . . . , p − 2} be such thatn′ ≡ j + 1 (mod p). Thenn′ = j + 1 + pn′′

for some integern′′. Thus,n + 1 = pe−1(j + 1) + pen′′ so thatn satisfies the
congruencex ≡ pe−1(j + 1)− 1 (mod pe), as required.

Lemma 8. Let p be a prime, and letE be a positive integer not divisible byp.
Suppose thatn is an integer≡ −1 (mod pE). Thenn satisfies at least one of the
congruences

x ≡ bj (modpjE) with 1 ≤ j ≤ E,

where
bj ≡ −1 (modpj) and bj ≡ j (modE).

Proof. Considerj ∈ {1, 2, . . . , E} such thatn ≡ j (mod E).

Proof of Theorem 4.As we shall demonstrate, the specific covering is given by
Tables 1 and 2. We begin by explaining the entries in the tables. Each modulus is
of the form

m = q
e(1)
1 q

e(2)
2 · · · qe(12)

12 ,

whereqk denotes thekth odd prime (soq1 = 3, q2 = 5, . . . , q12 = 41) and the
e(k) denote non-negative integers. Each tuple under the heading “Congruences”
in Table 1 indicates a list of congruencesx ≡ a (mod m) as follows. Fix a
value ofj from the range indicated in the third column of the table (eachj will
produce one or more congruences). We considerm of the form indicated above.
Let T denote the set of positive integersk for which thekth component in the
tuple is a “∗”. If k ∈ T , sete(k) = 0. If the kth component in the tuple is of
the formb : (t), then we definebk = b and sete(k) = t. If k 6∈ T and thekth
component in the tuple is not of the formb : (t), then we definebk as the value
of that component ande(k) is as indicated in Table 2, with each choice ofe(k) in
Table 2 determining a different modulusm. For each suchm, we determinea by
the Chinese Remainder Theorem from the congruences

a ≡ bk (mod q
e(k)
k )

wherek ranges over those positive integers≤ 12 that are not inT . As an example,
we note that Row 1 in Table 1 corresponds to41× 31× 3 = 3813 congruences;
further, if e(1) = 1, e(2) = 3, and j = 1, then the congruence determined
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by this row isx ≡ 174 (mod 375). Note that each of the three values ofj in
Row 1 gives a congruence modulom wherem = 3e(1)5e(2) so that moduli can
occur three times as indicated in (i) of Theorem 4. A quick look through Table 1
shows that the two sets of primesqk with e(k) > 0 associated with congruences
from any two distinct rows of Table 1 are distinct sets. One easily sees then that
condition (i) of the theorem is satisfied by the complete collection of congruences
given in the table. Similarly, it is easy to check that conditions (ii) and (iii) are
satisfied by this collection of congruences. What remains to be established is that
this collection of congruences, sayC, is in fact a covering of the integers.

We begin by considering the congruencesC1 in Rows 2-5 of Table 1 withe(1),
e(2), ande(4) fixed but withe(5) varying over its values in Table 2. By Lemma
7, if n is an integer satisfying

x ≡ 3e(1)−1 − 1 (mod 3e(1)), x ≡ 5e(2)−14− 1 (mod 5e(2)),

x ≡ 11e(4)−1 − 1 (mod 11e(4))
(12)

andx 6≡ −1 (mod 1323), thenn is covered byat least one of the congruences in
C1 (i.e.,n satisfies one of the congruences inC1). By Lemma 8, the congruences
in Row 6 of Table 1 cover the integers≡ −1 (mod 1323). Thus, the congruences
indicated in Table 1 cover every integer satisfying all three congruences in (12).
Note that by the Chinese Remainder Theorem the congruences in (12) correspond
to a single congruence modulo3e(1)5e(2)11e(4).

Observe that the last congruence in (12) is the same as

x ≡ 11e(4)−1(j + 1)− 1 (mod 11e(4)) wherej = 0.

Consider now the congruencesC2 in Rows 7-9 of Table 1 together with the single
congruence corresponding to (12) withe(1) ande(2) fixed but withe(4) varying
over its values in Table 2. Appealing to Lemma 7 again, we deduce that ifn is an
integer satisfying

x ≡ 3e(1)−1 − 1 (mod 3e), x ≡ 5e(2)−14− 1 (mod 5e(2)), (13)

andx 6≡ −1 (mod 1129), thenn is covered by at least one of the congruences
in C2 (and, hence, one of the congruences determined by Rows 2-9 of Table 1).
By Lemma 8, the congruences in Row 10 of Table 1 cover the integers≡ −1
(mod 1129). Thus, the congruences indicated in Table 1 cover every integer sat-
isfying both congruences in (13) (which, by the Chinese Remainder Theorem,
corresponds to a single congruence modulo3e(1)5e(2)).

Observe that the last congruence in (13) is the same as

x ≡ 5e(2)−1(j + 1)− 1 (mod 5e(2)) wherej = 3.
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TABLE 1: THE COVERING FOR THEOREM 4

Congruences j Range
1

(
3e(1)−1 − 1, 5e(2)−1(j + 1)− 1, ∗, . . .

)
0 ≤ j ≤ 2

2
(
3e(1)−1 − 1, ∗, ∗, 11e(4)−1 − 1, 13e(5)−1(j + 1)− 1, ∗, . . .

)
0 ≤ j ≤ 2

3
(
∗, 5e(2)−14− 1, ∗, 11e(4)−1 − 1, 13e(5)−1(j + 1)− 1, ∗, . . .

)
3 ≤ j ≤ 5

4
(
3e(1)−1 − 1, 5e(2)−14− 1, ∗, 11e(4)−1 − 1, 13e(5)−1(j + 1)− 1, ∗, . . .

)
6 ≤ j ≤ 8

5
(
∗, ∗, ∗, 11e(4)−1 − 1, 13e(5)−1(j + 1)− 1, ∗, . . .

)
9 ≤ j ≤ 11

6 (∗, ∗, ∗, ∗,−1 : (j), ∗, ∗, j : (1), ∗, . . . ) 1 ≤ j ≤ 23

7
(
3e(1)−1 − 1, ∗, ∗, 11e(4)−1(j + 1)− 1, ∗, . . .

)
1 ≤ j ≤ 3

8
(
∗, 5e(2)−14− 1, ∗, 11e(4)−1(j + 1)− 1, ∗, . . .

)
4 ≤ j ≤ 6

9
(
3e(1)−1 − 1, 5e(2)−14− 1, ∗, 11e(4)−1(j + 1)− 1, ∗, . . .

)
7 ≤ j ≤ 9

10 (∗, ∗, ∗,−1 : (j), ∗, ∗, ∗, ∗, j : (1), ∗, . . . ) 1 ≤ j ≤ 29

11 (∗,−1 : (j), ∗, ∗, ∗, ∗, ∗, ∗, ∗, j : (1), ∗, ∗) 1 ≤ j ≤ 31

12
(
3e(1)−12− 1, ∗, 7e(3)−1(j + 1)− 1, ∗, . . .

)
0 ≤ j ≤ 2

13
(
3e(1)−12− 1, 5e(2)−1 − 1, 7e(3)−1(j + 1)− 1, ∗, . . .

)
3 ≤ j ≤ 5

14 (∗, ∗,−1 : (j), ∗, ∗, ∗, ∗, ∗, ∗, ∗, j : (1), ∗) 1 ≤ j ≤ 37

15
(
∗, 5e(2)−12− 1, 7e(3)−1(j + 1)− 1, ∗, . . .

)
3 ≤ j ≤ 5

16
(
3e(1)−12− 1, ∗, ∗, ∗, 13e(5)−1(j + 1)− 1, ∗, . . .

)
0 ≤ j ≤ 2

17
(
3e(1)−12− 1, 5e(2)−13− 1, ∗, ∗, 13e(5)−1(j + 1)− 1, ∗, . . .

)
3 ≤ j ≤ 5

18
(
∗, 5e(2)−13− 1, ∗, ∗, 13e(5)−1(j + 1)− 1, ∗, . . .

)
6 ≤ j ≤ 8

19
(
3e(1)−12− 1, ∗, 7e(3)−14− 1, ∗, 13e(5)−1(j + 1)− 1, ∗, . . .

)
9 ≤ j ≤ 11

20
(
3e(1)−12− 1, 5e(2)−13− 1, 7e(3)−15− 1, ∗, 13e(5)−1(j + 1)− 1, ∗, . . .

)
9 ≤ j ≤ 11

21
(
∗, 5e(2)−13− 1, 7e(3)−16− 1, ∗, 13e(5)−1(j + 1)− 1, ∗, . . .

)
9 ≤ j ≤ 11

22
(
3e(1)−12− 1, 5e(2)−14− 1, 7e(3)−14− 1, j : (1), ∗, . . .

)
0 ≤ j ≤ 2

23
(
3e(1)−12− 1, ∗, 7e(3)−14− 1, j : (1), ∗, . . .

)
3 ≤ j ≤ 5

24
(
∗, 5e(2)−14− 1, 7e(3)−14− 1, j : (1), ∗, . . .

)
6 ≤ j ≤ 8

25
(
∗, ∗, 7e(3)−14− 1, j : (1), ∗, . . .

)
9 ≤ j ≤ 10

26
(
3e(1)−12− 1, 5e(2)−14− 1, 7e(3)−15− 1, ∗, ∗, j : (1), ∗, . . .

)
0 ≤ j ≤ 2

27
(
3e(1)−12− 1, ∗, ∗, ∗, ∗, j : (1), ∗, ∗, ∗

)
3 ≤ j ≤ 5

28
(
∗, 5e(2)−14− 1, ∗, ∗, ∗, j : (1), ∗, ∗, ∗

)
6 ≤ j ≤ 8

29
(
∗, ∗, 7e(3)−15− 1, ∗, ∗, j : (1), ∗, ∗, ∗

)
9 ≤ j ≤ 11

30
(
3e(1)−12− 1, 5e(2)−14− 1, ∗, ∗, ∗, j : (1), ∗, . . .

)
12 ≤ j ≤ 14

31
(
3e(1)−12− 1, ∗, 7e(3)−15− 1, ∗, ∗, j : (1), ∗, . . .

)
15 ≤ j ≤ 16

32
(
3e(1)−12− 1, 5e(2)−14− 1, 7e(3)−16− 1, ∗, ∗, ∗, j : (1), ∗, . . .

)
0 ≤ j ≤ 2

33
(
3e(1)−12− 1, ∗, ∗, ∗, ∗, ∗, j : (1), ∗, . . .

)
3 ≤ j ≤ 5

34
(
∗, 5e(2)−14− 1, ∗, ∗, ∗, ∗, j : (1), ∗, . . .

)
6 ≤ j ≤ 8

35
(
∗, ∗, 7e(3)−16− 1, ∗, ∗, ∗, j : (1), ∗, . . .

)
9 ≤ j ≤ 11

36
(
3e(1)−12− 1, 5e(2)−14− 1, ∗, ∗, ∗, ∗, j : (1), ∗, . . .

)
12 ≤ j ≤ 14

37
(
3e(1)−12− 1, ∗, 7e(3)−16− 1, ∗, ∗, ∗, j : (1), ∗, . . .

)
15 ≤ j ≤ 17

38
(
∗, 5e(2)−14− 1, 7e(3)−16− 1, ∗, ∗, ∗, j : (1), ∗, . . .

)
j = 18

39 (−1 : (j), ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗, j : (1)) 1 ≤ j ≤ 41
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TABLE 2: THE EXPONENTS RANGES

1 ≤ e(1) ≤ 41 1 ≤ e(2) ≤ 31 1 ≤ e(3) ≤ 37 1 ≤ e(4) ≤ 29 1 ≤ e(5) ≤ 23

Consider now the congruencesC3 in Row 1 of Table 1 together with the single
congruence corresponding to (13) withe(1) fixed but withe(2) varying over its
values in Table 2. By Lemma 7, ifn is an integer satisfying

x ≡ 3e(1)−1 − 1 (mod 3e), (14)

andx 6≡ −1 (mod 531), thenn is covered by at least one of the congruences
in C3. By Lemma 8, the congruences in Row 11 of Table 1 cover the integers
≡ −1 (mod 531). Thus, the congruences indicated in Table 1 cover every integer
satisfying (14).

The congruence in (14) is the same asx ≡ 3e(1)−1(j + 1) − 1 (mod 3e(1))
with j = 0. The idea now is to appeal to Lemmas 7 and 8 after showing that
the congruences in Table 1 cover the integers satisfyingx ≡ 3e(1)−1(j + 1) − 1
(mod 3e(1)) with j = 1. In other words, we will show that the congruences in
Table 1 cover the integers satisfyingx ≡ 3e(1)−12 − 1 (mod 3e(1)). Then, by
letting e(1) vary over the values indicated in Table 2, Lemma 7 will imply that
every integern 6≡ −1 (mod 341) is covered by a congruence fromC. Using the
congruences corresponding to Row 39 of Table 1 and appealing to Lemma 8, we
can then deduce that every integer is covered by some congruence fromC. Hence,
the theorem will follow.

We cover (by congruences fromC) the integers satisfying simultaneously both

x ≡ 3e(1)−12− 1 (mod3e(1)) and x ≡ 5e(2)−1 − 1 (mod5e(2)) (15)

in a manner identical to the approach above. We apply Lemma 7 with the congru-
ences in Rows 12 and 13; and then we apply Lemma 8 with the congruences in
Row 14. We can likewise cover integers satisfying simultaneously

x ≡ 3e(1)−12− 1 (mod3e(1)) and x ≡ 5e(2)−12− 1 (mod5e(2)) (16)

by applying Lemma 7 with the congruences in Rows 12 and 15 and Lemma 8
with the congruences in Row 14.

Lemma 7 with the congruences in Rows 16-19 and Lemma 8 with the congru-
ences in Row 6 imply that the integers satisfying simultaneously the congruences

x ≡ 3e(1)−12− 1 (mod 3e(1)), x ≡ 5e(2)−13− 1 (mod 5e(2)),

and x ≡ 7e(3)−14− 1 (mod 7e(3))
(17)
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are covered by congruences fromC. Lemma 7 with the congruences in Rows
16, 17, 18, and 20 and Lemma 8 with the congruences in Row 6 imply that the
integers satisfying simultaneously the congruences

x ≡ 3e(1)−12− 1 (mod 3e(1)), x ≡ 5e(2)−13− 1 (mod 5e(2)),

and x ≡ 7e(3)−15− 1 (mod 7e(3))
(18)

are also covered. Lemma 7 with the congruences in Rows 16, 17, 18, and 21
and Lemma 8 with the congruences in Row 6 imply that the integers satisfying
simultaneously the congruences

x ≡ 3e(1)−12− 1 (mod 3e(1)), x ≡ 5e(2)−13− 1 (mod 5e(2)),

and x ≡ 7e(3)−16− 1 (mod 7e(3))
(19)

are covered. We apply now Lemma 7 with the congruences in Row 12 together
with those given by (17), (18), and (19); and then we appeal to Lemma 8 with the
congruences in Row 14. We deduce that all integers satisfying simultaneously the
congruences

x ≡ 3e(1)−12− 1 (mod3e(1)) and x ≡ 5e(2)−13− 1 (mod5e(2)) (20)

are covered by congruences fromC.
Since every integer is congruent to one of0, 1, . . . , 10 modulo11, the con-

gruences given in Rows 22-25 cover all integers satisfying simultaneously the
congruences

x ≡ 3e(1)−12− 1 (mod 3e(1)), x ≡ 5e(2)−14− 1 (mod 5e(2)),

and x ≡ 7e(3)−14− 1 (mod 7e(3)).
(21)

Similarly, since every integer is congruent to one of0, 1, . . . , 16 modulo17, the
congruences given in Rows 26-31 cover all integers satisfying simultaneously the
congruences

x ≡ 3e(1)−12− 1 (mod 3e(1)), x ≡ 5e(2)−14− 1 (mod 5e(2)),

and x ≡ 7e(3)−15− 1 (mod 7e(3));
(22)

and since every integer is congruent to one of0, 1, . . . , 18 modulo19, the con-
gruences given in Rows 31-38 cover all integers satisfying simultaneously the
congruences

x ≡ 3e(1)−12− 1 (mod 3e(1)), x ≡ 5e(2)−14− 1 (mod 5e(2)),

and x ≡ 7e(3)−16− 1 (mod 7e(3)).
(23)
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We use Lemma 7 with the congruences given in Row 12 together with (21), (22),
and (23) and we use Lemma 8 with the congruences in Row 14 to deduce that all
integers satisfying simultaneously the congruences

x ≡ 3e(1)−12− 1 (mod3e(1)) and x ≡ 5e(2)−14− 1 (mod5e(2)) (24)

are covered.
Finally, we appeal to the congruences in (15), (16), (20), and (24). We apply

Lemma 7 with these and apply Lemma 8 with the congruences in Row 11 to
obtain that every integer satisfying

x ≡ 3e(1)−12− 1 (mod 3e(1))

is covered by a congruence fromC. As discussed earlier in this proof, the theorem
now follows.

No real attempt was made to keep the number of congruences in our proof
for Theorem 4 at a minimum; the author feels that regardless any such covering
for Theorem 4 must in some sense be complicated. We note that the number of
congruences used in our proof is 6928899.

5 The Connection with the Odd Covering Problem

In this final section, we give a proof of Theorem 2. For this purpose, we define a
non-zero polynomialf(x) ∈ Q[x] as being reciprocal iff(x) = ±xdeg ff(1/x).
The non-reciprocal part off(x) is f(x) removed of its irreducible reciprocal fac-
tors. For example, the non-reciprocal part of

2x5 − 5x4 + 9x3 − 9x2 + 5x− 2 = (x− 1)(x2 − x + 2)(2x2 − x + 1)

is (x2 − x + 2)(2x2 − x + 1) = 2x4 − 3x3 + 6x2 − 3x + 2. As this example
illustrates, the non-reciprocal part of a polynomial may in fact be reciprocal (as
only theirreduciblereciprocal factors are removed).

We make use of the following result:

Lemma 9. Letd be a positive integer, and letf(x) be inZ[x]. Suppose thatn is
sufficiently large (depending onf ). Then the non-reciprocal part off(x)xn + d
is irreducible overQ or identically±1 unless one of the following holds:

(i) −f(x)/d is apth power inQ[x] for some primep dividingn.

(ii) f(x)/d is 4 times a4th power inQ[x] andn is divisible by4.
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The above lemma is key to the ideas in this section. Schinzel’s argument in
[7] also made use of this result. A proof of the lemma, which we do not include
here, can be found in Schinzel [6]. An alternative proof has recently been given
by Ford, Konyagin, and the author [2].

In addition, we make use of the following results.

Lemma 10. Suppose thatn0 is a real number such that every integern ≥ n0

satisfies at least one of the congruences

x ≡ a1 (modm1), x ≡ a2 (modm2), . . . , x ≡ ar (modmr)

where theaj ’s and mj ’s are arbitrary integers with eachmj > 0. Then this
system of congruences forms a covering of the integers (i.e., every integern < n0

also satisfies at least one of the congruences).

Proof. Let M = lcm(m1,m2, . . . ,mr). Let n ∈ Z. Consider a positive integer
k such thatn + kM ≥ n0. Thenn ≡ n + kM ≡ aj (mod mj) for some integer
j ∈ {1, 2, . . . , r}, establishing the lemma.

Lemma 11. Letp be a prime, and letm be a positive integer such thatp divides
m. Thenxp = ζm has no solutionsx ∈ Q(ζm).

Proof. Let ζ = ζm. The roots ofxp − ζ = 0 areζpmζk
p where0 ≤ k ≤ p − 1.

Note thatζp = ζ
m/p
m ∈ Q(ζ). Thus,xp = ζ andx ∈ Q(ζ) imply ζpm ∈ Q(ζ),

a contradiction (for example, sinceζpm is a root of an irreducible polynomial of
degreeφ(pm) = pφ(m) which exceeds the degree of the extensionQ(ζ) over
Q).

Lemma 12. Letd be a positive integer. Suppose that−f(x)/d = g(x)p for some
primep andf(x)xn +d is divisible byΦm(x) wherep|m. Thenn ≡ 0 (mod p).

Proof. We setζ = ζm, and assumep - n. Then there are integersu andv such
that−nu+pv = 1. Since alsof(ζ)ζn +d = 0, we deduce that−f(ζ)/d = ζ−n.
Hence, (

g(ζ)uζv
)p = ζ−nu+pv = ζ.

Thus,xp = ζ has a solutionx ∈ Q(ζ), contradicting Lemma 11.

Proof of Theorem 2:We suppose (as we may) thatf(0) 6= 0. Sincex2t

+ 1 =
Φ2t+1(x) is irreducible for everyt ∈ Z+, we deducef(x) 6≡ 1. Let f̃(x) =
xdeg ff(1/x). Then each reciprocal factorg(x) of F (x) = f(x)xn + d divides

f(x)F̃ (x)− dxdeg fF (x) = f(x)
(
dxn+deg f + f̃(x)

)
− dxdeg f

(
f(x)xn + d

)
= f(x)f̃(x)− d2xdeg f .
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In particular, there is a finite list of irreducible reciprocal factors that can divide
f(x)xn + d asn varies. Each reciprocal non-cyclotomic irreducible factor di-
vides at most one polynomial of the formf(x)xn + d (see the comment before
Lemma 1). By Lemma 9, we deduce that there areΦm1(x), . . . ,Φmr

(x) such
that if n is sufficiently large and both (i) and (ii) of Lemma 9 do not hold, then
Φmj (x)|

(
f(x)xn + 1

)
for somej. Note that (ii) does not hold since otherwise

f(x)xn + d could not be divisible by a cyclotomic polynomial (ifΦm(x) were a
factor, thenf(ζm)ζn

m = −d, contradicting that the left side has even norm and the
right side has odd norm) so thatf(x)xn + d is irreducible by Lemma 9 whenever
n is a sufficiently large prime. We may suppose that for eachj ∈ {1, 2, . . . , r}
there is anaj such thatΦmj

(x)|
(
f(x)xaj + 1

)
. Let P denote the set of primes

p for which f(x) is minus apth power. We remove from consideration anymj

divisible by ap ∈ P (but abusing notation we keep the range of subscripts). Then
Lemmas 1, 10 and 12 imply that the congruences

x ≡ 0 (modp) for p ∈ P and x ≡ aj (modmj) for j ∈ {1, 2, . . . , r}

cover the integers.

Claim: Supposemj = ptm0 andmi = psm0, wherep is a prime not dividing
d, m0 is an integer> 1 such thatp - m0, andt ands are integers with
t > s ≥ 0. Thenaj ≡ ai (mod m0).

For the moment, suppose the claim holds. Takep = 2 in the claim. Sinced
is odd, clearlyp does not divided. We replacex ≡ aj (mod mj) andx ≡ ai

(mod mi) with x ≡ aj (mod m0). If for somej there is noi as above, we still
replacex ≡ aj (mod mj) with x ≡ aj (mod m0). Then we are left with a
covering with moduli that are distinct odd numbers together with possibly powers
of 2. Observe that

∑∞
j=1 1/2j = 1 implies that there is ana ∈ Z and ak ∈ Z+

such that no integer satisfyingx ≡ a (mod 2k) satisfies one of the congruences
in our covering with moduli a power of2. Denote byx ≡ a′j (mod m′

j) the
congruences withm′

j odd. Letu andv be integers such that

2ku + v
( ∏

m′
j

)
= 1.

For anyn ∈ Z, consider the numberm = a + 2ku(n − a). Thenm ≡ n
(mod m′

j) for everym′
j andm ≡ a (mod 2k). It follows thatn ≡ m ≡ a′j

(mod m′
j) for somem′

j . Therefore, everyn ∈ Z satisfies one of the congruences
x ≡ a′j (mod m′

j). So these congruences form an odd covering of the integers,
and we are left with establishing the claim.

Let k ∈ Z+ ∪ {0} such that

ai + (k − 1)mi < aj ≤ ai + kmi.
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Let ` = ai +kmi−aj . Then` ∈ [0,mi). SinceΦmi(x) dividesf(x)xai+kmi +d
by Lemma 1 andΦmj (x) dividesf(x)xaj +d, we deduce that there areu(x) and
v(x) in Z[x] such that

f(x)xai+kmi + d = −Φmi
(x)u(x)

and
f(x)xai+kmi = f(x)x`+aj = −dx` + Φmj (x)v(x).

Hence,
Φmi

(x)u(x) + Φmj
(x)v(x) = d

(
x` − 1

)
.

Letting x = ζmi
above and applying Lemma 3, we obtainpw = d

(
ζ`
mi
− 1

)
for

somew ∈ Z[ζmi ]. Applying Lemma 5 and using thatp - d, we deduce thatm0

divides`. The definition of̀ and the fact thatm0 divides both̀ andmi imply the
claim.

Concluding Remarks: In the closing arguments above, we used Lemmas 3 and
5 to justify thatm0 divides`. Schinzel has pointed out that instead one can apply
the work of Apostol [1] on the resultants of two cyclotomic polynomials. By (2),
Φm0(x) divides bothΦmi

(x) andΦmj
(x) modulop. Sincep - d, the last equation

displayed above impliesΦm0(x) dividesx` − 1 modulop. Hence,Φm0(x) and
some divisorΦ`′(x) of x`−1 in Z[x] have a factor in common modulop. In other
words, there is a positive integer`′ dividing ` such that the resultant ofΦm0(x)
andΦ`′(x) is divisible byp. Recall from above thatp - m0. Apostol’s work
implies that̀ ′/m0 is a power ofp. It follows thatm0 divides`′ and, hence,̀.

The author expresses his gratitude to Andrzej Schinzel for taking an interest
in this work and for supplying the author with alternative approaches to some of
the arguments.
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