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1 Introduction

The purpose of this paper is to give a partially expository account of results re-
lated to coverings of the integers (defined below) while at the same time making
some new observations concerning a related polynomial problem. The polyno-
mial problem we will consider is to determine whether for a given positive integer
dthere exists af(x) € Z*[z] such thatf (z)z™+d is reducible over the rationals
for every non-negative integer. We begin with some background material.

A covering of the integerss a system of congruences= a; (mod m;),
with a; andm; integral andmn; > 1, such that every integer satisfies at least one
of the congruences. Four examples are as follows:

=0 (mod2) x =0 (mod2) x =0 (mod2) x =0 (mod2)
=1 (mod2) z =1 (mod4) x =2 (mod3) x =0 (mod3)
x =3 (mod8) xz =1 (mod4) xz =1 (mod4)
xr =7 (Mmod16) x =1 (mod6) x =3 (modg)
x =3 (mod12) x =7 (Mmod12)
x = 23 (mod24)

Two open problems concerning coverings are

Open Problem 1: For everye > 0, does there exist a finite covering with distinct
moduli and with the minimum modulus ¢?

Open Problem 2: Does there exist a finite covering consisting of distinct odd
moduli> 1?

We shall call a covering as in the second problem an “odd covering”. According
to Richard Guyl[8], Paul Eiis has offered $500 for a proof or disproof that a

c exists as in the first problem and has offered $25 for a proof that there is no
odd covering. John Selfridge has offered $900 for an explicit example of an odd
covering. In private communication, Selfridge has indicated to the author that he
will now pay $2000 for an explicit odd covering. Observe that in the odd covering

problem no direct financial gain is made for a non-constructive proof that an odd
covering exists. In_[5], R. Morikawa announced that a covering exists as in the
first problem withc = 24.

We stress the importance of the word “finite” in the above problems with a
simple example of an infinite covering with relatively prime odd moduli that are
arbitrarily large. Fixc > 0, and letM = {m4,mq, ...} be an arbitrary infinite
set of relatively prime integers ¢ (for example,M could be the set of primes
> ¢). Letay,aq,... be some ordering of the integers. Then the infinite system
z = a; (mod m;) clearly covers the integers.

One of the now classical examples of the use of coverings is in a disproof that
Erdés gave of the following conjecture.



Polignac’s Conjecture: For every sufficiently large odd integér> 1, there is a
primep and an integen such thatc = 2" + p.

The Prime Number Theorem would suggest that this is a reasonable conjecture,

but smallk > 1 not the sum of a prime and a power of two are easy to find. The

smallest suchk is 127 and the smallest compositds 905. Erds's argument

is based on the last example given of a covering in the first display above. A

variation on Erds’s argument is as follows. One considers any positive integer

satisfying the congruende = 1 (mod 2) so thatk is odd and the congruences

k=1 (mod3), k=1 (mod7), k=2 (modb5), k=8 (mod 17), k = 11

(mod 13), andk = 121 (mod 241) (suchk exist by the Chinese Remainder

Theorem). The key idea then is to consider what happenssiitisfies one of

the congruences in the last covering displayed above. For example=if7

(mod 12), then2"™ = 27 = 11 (mod 13) so thatk — 2" is divisible by13. Since

every integern satisfies one of the congruences listed above, one can deduce

thatk — 2™ must be divisible by at least one elementSof& {3,7,5,13,17,241}.

From an analytic point of view, we are through. The Chinese Remainder Theorem

gives that for somé > 0 and forz sufficiently large, there are Jdz different

k < x as above. On the other hand, for any skcthe only possible prime values

of k—2™ are elements of so thatk will be of the form2™ + s wheres € S. Since

|S| = 6, one easily deduces that there ae(log z)® suchk < z. It follows that

a positive proportion of positive integetscannot be written in the forra™ + p.
Another classical application of the use of coverings was given by Waclaw

Sierphski.

Sierpinski's Theorem: A positive proportion of odd positive integetssatisfy
£ x 2™ 4+ 1 is composite for all non-negative integers

It is unknown what the smallest suéhis. It is probably? = 78557 (attributed

to Selfridge). Extensive computations are being done to check that for each odd
¢ < 78557 there is a prime of the formix 2™ 4 1, but it may be some time before
they are completed. There are apparently 19 valugsleft to eliminate at the

time of writing this paper; see

http://vamri.xray.ufl.edu/proths/sierp.html

The question of whether there are infinitely many prime Fermat numbers is related
to the existence of evefas above. For example, B, = 22" + 1 is composite
for n > 5, then for/ = 2'7 = 131072 one hay x 2" + 1 is composite for all
non-negative integers.

Andrzej Schinzel noted Sienfski’'s Theorem follows from the above solu-
tion to Polignac's Conjecture. Take= —k. For eachn > 0, considerp €
{3,5,7,13,17,241} such that + 223" = 0 (mod p). Then/+2239" = ¢+2—"



(mod p) sothat! x 2" +1 = 0 (mod p). By considering: < 0 satisfying the
congruences imposed @above, one obtains the result of Siérgki.

In this paper, we consider a polynomial variant of Sieggi’s result. In its
most simplest form, the problem we consider is as follows.

The Analogous Polynomial Problem: Find f(z) € Z[z] with f(1) # —1 such
that f (z)«™ 4 1 is reducible over the rationals for all> 0.

The conditionf (1) # —1 makes the problem non-trivial. Otherwise, one could
simply consider any (z) of degree> 1 satisfyingf(1) = —1 as thenf(z)z" +1

will always have the factor — 1. Schinzel([7] first considered this problem in a
slightly different form withf («)z™+1 replaced by:™ + f () (and with the added
condition f(0) # 0). His version was chosen as an approach to understanding a
conjecture of Tuan that every reducible polynomial is in some sense near an
irreducible polynomial. Modifying an example of Schinzel’s, we note that

f(z) =527 + 62® + 32° + 82° + 92° + 62% + 8z + 3

has the property thaf(z)z™ + 12 is reducible for alln > 0. The argument

for this is based on the third covering example displayed in the second opening
paragraph. Indeed, thg{z)z™ + 12 is reducible for alln > 0 can be obtained

by noting that every non-negative integer satisfies at least one of the congruences
given there and that the following implications all hold:

n=0 (mod2) = f(x)2" +12=0 (modz + 1)

n=2 (mod3) — "4+12=0 (modz? 4+ z + 1)

)"

f(x)x

n=1 (mod4) = f(z)z" +12=0 (modz? + 1)
fz)z"
flx)z™

n=1 (mod6) = f(z)z™ +12=0 (modz? —x + 1)

n=3 (modl2) — z)z" +12 =0 (modz* — 22 + 1).

Observe that the moduli on the right are the cyclotomic polynomial&r),
D3(x), Py(z), Ps(x), andPy2(z), respectively. The implications are easily jus-
tified. For example, ifi = 1 (mod 6), thenz™ = z (mod ®s(x)) so that by a
direct computation

f@)z™+12= f(x)z+12=0 (mod Pg(x)).

The dual role of 12 here (as the least common multiple of the moduli in the
covering and as the constant termfifx)z™ + 12 for n > 0) is misleading. The
main new result in this paper is in fact a demonstration that a suitable covering
(considerably more complicated than those given in the examples above) can give
rise to anf(x) € Z*[x] with f(z)z" + 4 reducible for allx > 0. More generally,
we obtain



Theorem 1. Letd be a positive integer divisible by There is anf(z) € Z*[z]
with f(z)x™ + d reducible for alln > 0.

Observe that the conditiofi(1) # —d, that would prevent trivial examples of
polynomials f(x) with f(x)z™ + d havingz — 1 as a factor for alh > 0, is
replaced by the condition that(x) have positive coefficients. Our condition
seemingly makes a stronger result, but we really only choose this formulation
to simplify the statement of the result.

We are left with the question

Open Problem 3: For what positive integerg does there exist afi(x) € Z[x]
with f(1) # —d such thatf(z)2™ + d is reducible over the rationals for all
n > 07?

The author is unable to establish mdrevith this property than what the theorem
states above. Schinzél [7] already established a result that at least suggests that
the existence of such(z) whend = 1 would be difficult to establish. We modify

his ideas to show

Theorem 2. Letd be an odd positive integer. If there is gifz) € Z[x] with
f(1) # —d and f(x)z™ + d reducible for alln. > 0, then there is an odd covering
of the integers.

We emphasize that this can be obtained by a simple variation on Schinzel's work
in [7] and that, in fact, Schinzel’'s work gives a necessary and sufficient condition
(somewhat more complicated than the existence of an odd covering) for such an
f(z) to exist in the case that = 1. Nevertheless, we will give a proof of the
above result, a proof that is similar in flavor but still somewhat different from
Schinzel’s original work on the subject.

2 A Result Concerning Cyclotomic Polynomials

We make use of the notation

@, (a) = [ (2 — 1)1/ (1)

d|n

so that®,,(x) denotes theith cyclotomic polynomial. It is well-known and easy
to establish from[(1) that

_ [ouan) pin
q)”"(x){@n(xf’)/cbn(w) ifpin. ?

We also set,, = e2™*/". Throughout this paped, will denote a positive integer.



The example given by Schinzel of a polynomjgl:) € Z[z] with f(1) #
—12 and f(z)z™ + 12 reducible for alln > 0 has a clear connection to cyclo-
tomic polynomials. Indeed, we saw in the introduction that there is a finite list of
polynomialsP, all cyclotomic, such that each(z)z™ + 12 is divisible by some
element of P. To demonstrate the important role of cyclotomic polynomials in
our investigations here, suppose tifét)z™ + d is divisible by g(z) for some
irreducibleg(x) € Z[z] and for at least two different non-negative integersay
n = u andn = v with u > v. Theng(z) also divides

(f(z)a" +d) = (f(2)2’ +d) = fz)a"(z"7" = 1).

Sinced # 0, we deduce thay(z) dividesz*~? — 1 and, therefore, is cyclo-
tomic. It follows that if we want to establish th#{z)2" + d is reducible for all
non-negative integers by finding a finite list of polynomials® such that each
f(z)x™ + d is divisible by an element oP, then P must contain cyclotomic
polynomials. Another simple result in this direction is the following:

Lemma 1. Supposef(z)xz® + d is divisible by®,, (x) for some positive integer
m. Thenf(z)a™ + d is divisible by®,, (x) if and only ifn = a (mod m).

Proof. Let F'(z) = f(z)z™ + d. If n = a (mod m), then clearlyF(¢,,) =
f(Gn)Ce + d = 0 so thatF(z) is divisible by ®,,,(z). If F(z) is divisible by
®,,(z), the equality

0= G (f(Gn)Gr +d) = F(Gm) = d(¢ " = 1)
impliesn = a (mod m). O
The lemma alluded to in the title of this section is the following.

Lemma 2. Letn andm be positive integers with > m. If n/m is not a power
of a prime, then for every integer, there exist:(z) andv(z) in Z[z] satisfying

O (z)u(z) + P ()v(2) = a. @)

If for some primep and some positive integérwe haven/m = pt, then there
existu(x) andv(z) in Z[z] satisfying|[(B) if and only ip|a.

Momentarily, we turn to some preliminary lemmas (some quite well-known) that
will not only give us what we need for the above result but also keep our argu-
ments self-contained. Schinzel has pointed out, however, that Lemmas 3-6 and
the proof of Lemma 2 can be replaced by applications of a result of Tom Apostol
[1] on the resultant of two cyclotomic polynomials. Therefore, we present here
Schinzel's alternative approach as well as the author's more self-contained ap-
proach. We begin with Schinzel’s argument for Lenjma 2. The remaining use of
Apostol’'s work, as suggested by Schinzel, is presented in Concluding Remarks at
the end of this paper.



First Proof of Lemm@J2Let R(n, m) denote the resultant @, () and®,, (z).
Then it is well-known that there exist polynomialg(z) andw; (z) in Z[z] such
that

D, (z)uy(z) + Py (x)v1(x) = R(n,m).

In the case that/m is not a power of a prime, Apostol's workl[1] implies that
R(n,m) = £1. We deduce immediately that, for every integethere are poly-
nomialsu(z) andv(z) in Z[z] satisfying [(8).

In the case that/m = p' as in the statement of the lemma, Apostol estab-
lishes thatR(n,m) = +p?(™). Note thatn = p'm implies ¢(m)|p(n). We
consider the polynomial

h(z) = 1(‘%(1‘) - q)m(x)ﬂn)/rb(m)).
p
From [2), itfollows tha®,, () = ®,, (x)*("/#(™) (mod p) so thath(z) € Z]z].
Observe that the resultant &f,, () andh(z) can be expressed as

[T ac)=p?™ I @u(ch) =p " R(n,m) = +1.
1<k<m 1<k<m
ged(k,m)=1 ged(k,m)=1
Hence, there exist polynomiads (x) andwvy(z) in Z[x] such that
h(z)uz(z) + Pp(z)ve(x) = 1.
Given the definition of(z), we deduce

(1) uz(2) + P () (pr2(z) — Py ()04 Ly (2)) = p.

We deduce in this case that, for every integedivisible by p, there are poly-
nomialsu(xz) andv(z) in Z[z] satisfying [(3). Furthermore, if polynomialgx)
andv(z) in Z[z] exist satisfying[(B), then we must hawe= 0 (mod p) since
otherwise®,,(z) and®,,(x) would be relatively prime in the finite field with
elements contradicting th&t(n, m) is 0 in this field. O

Lemma 3. Suppose: andm are integers witm/m = p" for some prime and
some positive integer. Then®,,(¢,,,) = pw for some unitw € Z[(,,].

Proof. We consider three cases: {i)= pm andp t m, (i) n = p"m withr > 1
andp 1 m, and (i) n = p“t andm = p“t with u > v > 0. Let¢ denote an
arbitrary primitivemth root of1 (so¢ € Z[(,,]). For (i), observe tha[[Z) implies
D, () = D,y (2P) /P, (). Hence,

BT (I)m(xp) o pfpilq)/m(gp)
) =In 3 @ = o

6



Since¢?? and¢’ range over the same set of valuestfot j < m andged(j, m) =
1, we deduce thab/, (¢7) and®’, (¢) have the same norm in the fie@(¢,,,) over
Q. Also, the norm of is 1. We deduce that the norm @, (¢) is £p®("™). On
the other hand,

1<k<m
ged(k,m)=1
— H (xpfl + Ekxp72 + €2kmp73 NI E(pfl)k).
1<k<m
ged(k,m)=1

By considering the factor correspondingite= 1, we deduce thab,, () = pu for
someu € Z[(y]. It follows that there arev;, € Z[(,,,] such that,,(¢F) = pug
for each positive integet < m with ged(k, m) = 1. Therefore,

p?(m) H up = H q;n(d:l) = 4p?(m),

1<k<m 1<k<m
ged(k,m)=1 ged(k,m)=1

We deduce that eaal), is a unitinZ|[(,,]. Hence, (i) follows.

For (ii), use ) again to obtaif®,,(¢,,) = @, ((,1;;71> and apply the ar-
gument for (i) with = C;’;:H. For (iii), use @) as before to obtaib,, (¢,,) =
<I>pu7ut((jgf) = ®,.-,(¢;). Now, cases (i) and (i) imply,,(¢,) = pw for
some unitw € Z[¢;] € Z[(n) (sinced; = ¢E)). 0

Lemma 4. Letm be an integer> 1. Then

B, (1) = p if m = p" for somer ¢ Z+
" 1 otherwise.

Proof. Clearly, ®,(1) = p. If m = p"k with k& andr positive integers such that
p 1 k, then @) implies®,, (1) = <I>pk(1”r71) = ®,4(1). The lemma follows
if Kk =1. If £ > 1, then applying) again we obtaid,, (1) = &,.(1) =
By (17)/B1(1) = 1. 0

Lemma 5. Letm and/ be integers withn > 1 and?¢ > 0. For a € Q((,,), let
N () = Ngc,)/0(c) denote the norm af. ThenN (¢f, — 1) is divisible by a
primep if and only ifm/ ged(¢, m) is a power ofp.

Proof. The idea is to apply Lemnjd 4 and use that

N(Cf;z _ 1) =10, gcd(ﬁ,m)(1)¢(m)/¢(m/ ged(4,m))



This last equation can be seen as follows. Note Mg’ — 1) = £N (1 —¢5).
The value of N (1 — ¢%,) is the product of itsp(m) field conjugatesl — ¢%¢
wherel < k < m andgcd(k,m) = 1. Observe that — ¢/, = 1 — Cﬁ{fd
whered = ged(m, £), andgﬁfﬁd is a primitive (m/d)th root of unity. The field
conjugates associated with-¢¢, are thus the same as the numblerg’ Jd where

1 <t < m/dandgcd(t,m/d) = 1 with eachl — fn/d appearing among the
1 — ¢k preciselyp(m)/¢(m/d) times (see Theorem 2-5 of William LeVeque’s
book [4]). Finally, observe that

T (=chu) = PmaD).
1<t<m/d
ged(t,m/d)=1
The result now follows. O

Observe that Lemn@ 5, using the notation there, implies¢fhat 1 is a unit
in Z[¢,,] if and only if m/ ged (¢, m) is not a power of a prime.

Lemma 6. Letn > 1 anda be positive integers witged(a,n) = 1. Then the
quotient(¢¢ — 1)/(¢, — 1) is a unitinZ[¢,].

Proof. Let 3 = ({2 — 1)/(¢, — 1). Observe that
ﬂ=1+Cn+C72L++C;?1

so thats € Z[(,]. The conditionged(a,n) = 1 implies that the set of values of
¢J* and the set of values @f, are the same asvaries over the positive integers
< n that are relatively prime ta. It follows that the norm ofs in the fieldQ(¢,,)
overQ is 1. Hence S is a unit inZ[¢,]. O

Second Proof of Lemnia Bincen > m, there is a prime and non-negative
integers- ands with r > s satisfyingn = p"n’ andm = p*m’ for some integers
n’ andm’ each not divisible by. The conditionn/m = p' in the lemma is
satisfied precisely whew' = m’ (with t = r — s). We use that

dlm

Given thatd|m, observen/ gcd(d, n) can be a power of a prime onlyif|d. It
follows from LemmaDS (see the comment after its proof) that if d, then¢? — 1
is a unitinZ[¢,]. Thus, there is a univ € Z[¢,] such that

q)m(Cn) =w H (Cz _ 1)/¢(77l/d).
d|

n'|d

8



In particular, ifn’ + m’, then®,,(¢,) is a unit inZ[¢,]. If n’|m/, then we set
k=m'/n’, taked = p'n’d’ whered'|k, and rewrite the above to obtain

D,,(Cr) =w f[ H (Cg;—j . 1)u(ptjk/d/).

J=0d'|k

If k> 1andj € {s —1,s}, we use that

D oulp Ik/d) =+ pk/d) =0

d’'|k d'|k
to deduce that
C;,iff _ 1>u(ps‘-7k/d')

s =w T TT (22—

j=s—1d'|k

Note that for each € {0,1,...,s}, we haveZ[(,--;] C Z[(,]. We deduce from
Lemmd § that ifn’ # m’, then®,,((,) is a unitinZ[¢,]. In this case, for some
vo(z) € Z[z], we obtain®,,((,)vo(¢,) = 1. In other words®,,, (x)vo(z) —

1 has¢, as a root. It follows that,, (v)vg(z) — 1 = @, (x)ug(z) for some
uo(x) € Z[z] so that[(8) holds by multiplying through hy(i.e., takingu(z) =
—aug(z) andv(z) = avy(z)). If n’ = m’, then we apply Lemn|d 3 to obtain that
®,,((m) = pwy for some unitwg in Z[(,,]. Therefore, takingio((n) € Z[¢m]
to be the inverse ofyy, we obtain®,, (x)ug(z) — p is divisible by ®,,, (z). We
deduce in this case thatjfa, then [3) has a solution in polynomialgz) and
v(z) in Z[z]. Lemmg B also implies the necessity of havijg whenn' = m/
as follows. Taker = ¢, in (3) to obtain®,, (¢,)u(¢n) = a. By Lemmd 3, the
norm of ®,, () u(Gr ) (in Q(&r)/Q) is divisible byp so that the norm of must
also be divisible by. Thus,p|a, concluding the proof. O

3 How Coverings Produce Reducible Polynomials

Let d be a positive integer. Suppose we wish to findfén) with positive integer
coefficients such that(z)z™ + d is reducible for every non-negative integer

The purpose of this section is to show how certain coverings of the integers can
be used to obtain sucf(z). This is achieved through the following result.

Theorem 3. Letd be a positive integer. Suppose tlsais a system of congruences
r=2"1" (mod 27) forj e {1,2,...,k} (4)
for some positive integér together with

r=a; (modm,) forj e {1,2,...,r} 5)



for some positive integer satisfying:
(i) The systens is a covering of the integers.
(if) The moduli in[[4) and[(b) are all distinct ang 1.
(i) Foreachj € {1,2,...,r},
k

( 11 a(i,j))(Hb(i,j)) divides d

1<i<r i=1
i#i

ali, j) = p if m;/m; = p* for some prime and some integer
’ 1 otherwise

b(i, j) p ifm;/2" = p' for some prime and some integefr
Z? = .
J 1 otherwise.

(iv) The double producf[*_, [Tj=, b(i, j) dividesd.

Then there existg(z) € Z[x] with positive coefficients such thafz)z™ + d is
reducible over the rationals for all non-negative integers

Proof. Fix d now as in the statement of the theorem. We consider as we may that
0<a; <mjin (E)]) Suppose for the moment that we havefén) satisfying the
system of congruences consisting of

f(z)=d (mod w(x)), (6)
wherew(z) = H§:1 ®,; (), together with
f(x) = —dx™ ™% (mod ®,,,(x)) forje {1,2,...,r}. 7)
Let n be a non-negative integer. By (1),must satisfy at least one of the congru-
ences in[(#) and [5). Ifthere isjac {1,2,...,k} suchthat = 27~! (mod 27),
then for some’ € Z we haven = 2-! 4 29¢. Since®,, (z) = 2% + 1, we

obtain from [[§) that

fl@)z" +d= d(;zc(%“ﬂjf1 +1)=0 (mod 22 4 1).

10



We deduce thaf (z)z™ + d is divisible by®,; (z). On the other hand, if there is
aj € {1,2,...,r} such thatr = a; (mod m;), thenn = a; + m;¢ for some
integer?. Since®,,, (r) dividesz™s — 1, we obtain from) that

f@)a"+d= —d(x(Hl)mj —1)=0 (mod ¥y, (z)).

Thus, f(x)z™ + d is divisible by®,, ().
To finish the proof, it suffices to show that we can find &) with posi-
tive integral coefficients satisfying the congruences |n (6) fhd (7) and such that,
for every non-negative integer, f(x)x™ + d is not a constant time®,; (x) for
Jj €1{1,2,...,k} and not a constant timek,,  (z) for j € {1,2,...,r}. Todo
this, we show that there is af(z) with positive integral coefficients satisfying
the congruences ir[](G) an@] (7) and such that f is greater than both* and
max; <j<p{m;}-
We apply Lemma 2 to deduce that, fomndj in {1,2,...,r} with i # j,
there are polynomials; ;(x) andv; ;(x) in Z[x] such that

q)mi (x)ui,j (33) + (I)mj- (x)v’i,j (33) = a(i7 .7) (8)

Also, by that lemma, fof € {1,2,...,k} andj € {1,2,...,r}, there are poly-
nomialsu; ;(x) andv; ;(z) in Z[x] such that

Do ()1 () + o, ()07 5 () = b(E, ). 9)

We fix j € {1,2,...,r} and expand

¢ T (@ (@)uij(x) + o, ()0 5(x)

1<i<r
i#j
< I (@2(@)u} (@) + @, ()] (2))
1<i<k
where
d
Cc = k .
< H a(i,j)) <Hb(i,j))
1<i<r i=1
i#j

From (iii), (8), and[(), we deduce that

<1<1_I @mi(x)>w(x)uj(.’f) + By (2)0;(x) = d
e

11



for some polynomials; () andv; () in Z[x]. Similarly, combining (iv) and (9),
one obtains:(z) andv(z) in Z[z] satisfying

Let M = 28mymy - --m,., and letk(z) € Z[x]. It follows that

f(m)zfj( T #. o) )utus(o) (- ™)

J=1 M1<i<r
+< r[¢%A@>u@y+M@(if:f)

i
1<j<r

satisfies the congruences[r]| (6) (7). Furthermore, we may:takeppropri-
ately (for examplek(z) = b(z® — 1)/(z — 1) with b ands sufficiently large pos-
itive integers) so thaf () has positive integral coefficients addg f is greater
than both2* andmax; <<, {m;}. This completes the proof. O

4 A Preliminary Covering and Theorem([]

In this section, we establish

Theorem 4. There is a covering of the integers consisting of moduii m.,
..., m, satisfying:

(i) For each positive integem, there exist at most threee {1,2,...,r} for
whichm, = m.

(i) Eachmy is odd and> 1.
(iii) Eachm, has at least two distinct prime factors.

Observe that Theoreft] 4 implies that an odd covering exists if we allow up
to three congruences for each odd modulus. The existence pfzanc Z*[z]
such thatf(z)z™ + 2 is reducible for all integers > 0 would follow if one can
establish the existence of a covering as in Thedrem 4 but with “three” replaced by
“two” in (i) above.

Before turning to the proof of Theoref) 4, we explain how it is used with
Theoren{ B to deduce Theorérh 1. ket a; (mod m;) for j € {1,2,...,r}
denote the congruences given by Theorgr 4. We suppose as we may (by (i)
in Theoren{ #) that ifn; = m; for some integerg and;j with 1 < j < i <,
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theni = 5+ 1 ori = j + 2. In particular, forj fixed, the conditiong # j and
mj = m, imply there are at most two possibilities forDefine

m;:Qij forje{l,2,...,r}

By the Chinese Remainder Theorem, for egch {1,2,...,r}, there is an inte-
gerb; satisfying

b =a; (modm;) and b; =0 (mod2’).
We consider the congruences
r=2"" (mod2’) forjec{1,2,...,r} (10)
together with
x=b; (modmj)  forje{l,2,...,7}. (11)

We show that these congruences form a sysfeai congruences satisfying the
conditions of Theorer|3 (sb = r in Theorenj B and the:; have been replaced
by m’; there) provided! is divisible by4.

Let n be an arbitrary integer that does not satisfy one of the congruences in
(10). Thenn = 0 (mod 27) (otherwisen would satisfy the congruence in (10)
corresponding to the largest positive integenecessarily< r, for which 271
dividesn). Also, since the congruences= a; (mod m;) forj € {1,2,...,r}
form a covering of the integers, = a; (mod m;) for somej € {1,2,...,7}.

By the definition ofb;, we have for that choice of thatz = b; (mod m).
Hence,n satisfies one of the congruences[in|(11). THusatisfies the condition
(i) of Theoren|B. Condition (ii) of Theorefr] 3 is easily checked for the congru-
ences in[(I0) and (11). To verify conditions (iii) and (iv) of Theofem 3 for the
congruences irj (10) and (11), we alter the definitions(af;) andb(4, j) accord-
ingly so thatm; andm are replaced by; andm/;. Sincem/; is 27 times the odd
numberm;, if the ratiom’;/m; = p* for some primep and some integef; then
p = 2 and, consequentlyp; = m,;. Recall that forj fixed, the conditiong # j
andm; = m, imply there are at most two possibilities forWe deduce that for
eachj € {1,2,...,r},

IT ati.j) divides 4.

1<i<r

i#]
By conditions (i) and (iii) in Theorem|4, each; and, hence, each; has at
least two odd prime divisors. It follows thati, j) = 1 for every choice of and
jin{1,2,...,r}. Conditions (iii) and (iv) of Theorein|3 now easily follow since
d is divisible by4.

We turn now to establishing Theorgr 4.

13



Lemma 7. Letp be a prime, and leE be a positive integer. Suppose thais an
integer which is not congruent te1 modulop”. Thenn satisfies at least one of
the congruences

r=p!(j4+1) -1 (modp®) where) < j < p—2andl <e < E.

Proof. Consider the positive integersatisfyingp®~!||(n + 1). Thenl < e <
E, and for some integet’ # 0 (mod p) we haven + 1 = p*~n/. Letj €
{0,1,...,p — 2} be such thak’ = j + 1 (mod p). Thenn’ = j + 1+ pn”
for some integen”. Thus,n + 1 = p*~1(j + 1) + p®n” so thatn satisfies the
congruence: = p°~1(j + 1) — 1 (mod p®), as required. O

Lemma 8. Letp be a prime, and lef be a positive integer not divisible hy
Suppose that is an integer= —1 (mod p¥). Thenn satisfies at least one of the
congruences

z=b; (modp’E)  with1 <j<E,

where 4
b; =—1 (modp’) and b; =j (ModE).

Proof. Considerj € {1,2,..., E} suchthat = j (mod E). O

Proof of Theorerfi]4As we shall demonstrate, the specific covering is given by
Tables 1 and 2. We begin by explaining the entries in the tables. Each modulus is
of the form

6(1)q§(2) o

_ (12)
m=dq fz

g
whereq,;. denotes théth odd prime (sa; = 3,92 = 5,...,¢q12 = 41) and the

e(k) denote non-negative integers. Each tuple under the heading “Congruences”
in Table 1 indicates a list of congruences= a (mod m) as follows. Fix a
value of j from the range indicated in the third column of the table (eaghll
produce one or more congruences). We considef the form indicated above.

Let T denote the set of positive integgedor which thekth component in the
tuple isa %". If k € T, sete(k) = 0. If the kth component in the tuple is of

the formbd : (¢), then we definé, = b and sek(k) = ¢. If £ ¢ T and thekth
component in the tuple is not of the forbn: (¢), then we definé;, as the value

of that component anel k) is as indicated in Table 2, with each choice(f) in

Table 2 determining a different modulus. For each sucim, we determine: by

the Chinese Remainder Theorem from the congruences

)

a=b; (mod qz(k))

wherek ranges over those positive integetd 2 that are not irff”. As an example,
we note that Row 1 in Table 1 correspondsitox 31 x 3 = 3813 congruences;
further, ife(1) = 1, e(2) = 3, andj = 1, then the congruence determined
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by this row isx = 174 (mod 375). Note that each of the three values;oin
Row 1 gives a congruence moduto wherem = 3¢(1)5¢(2) so that moduli can
occur three times as indicated in (i) of Theorieln 4. A quick look through Table 1
shows that the two sets of primeg with e(k) > 0 associated with congruences
from any two distinct rows of Table 1 are distinct sets. One easily sees then that
condition (i) of the theorem is satisfied by the complete collection of congruences
given in the table. Similarly, it is easy to check that conditions (ii) and (iii) are
satisfied by this collection of congruences. What remains to be established is that
this collection of congruences, s@yis in fact a covering of the integers.

We begin by considering the congruen€esn Rows 2-5 of Table 1 witl (1),
e(2), ande(4) fixed but withe(5) varying over its values in Table 2. By Lemma
[7, if n is an integer satisfying

r=3W"1_1 (mod3W), =514 —_1 (mod5®@),

z=11°D71 _ 1  (mod 11°®) (12)
andxr # —1 (mod 13%3), thenn is covered byat least one of the congruences in
C, (i.e.,n satisfies one of the congruence<’ir). By Lemmd 8, the congruences
in Row 6 of Table 1 cover the integers—1 (mod 1323). Thus, the congruences
indicated in Table 1 cover every integer satisfying all three congruencgs]in (12).
Note that by the Chinese Remainder Theorem the congruenges in (12) correspond
to a single congruence modu6(!) 5¢(2)11¢(4),

Observe that the last congruence[in|(12) is the same as

r=11°D71 +1) =1 (mod 11°®)  wherej = 0.

Consider now the congruenc@sin Rows 7-9 of Table 1 together with the single
congruence corresponding fo [12) withi) ande(2) fixed but withe(4) varying
over its values in Table 2. Appealing to Lemfja 7 again, we deduce thas én
integer satisfying

=371 _1 (mod 3°), =514 1 (mod5?)  (13)

andz # —1 (mod 11%9), thenn is covered by at least one of the congruences
in Co (and, hence, one of the congruences determined by Rows 2-9 of Table 1).
By Lemma[8, the congruences in Row 10 of Table 1 cover the integersl
(mod 112%). Thus, the congruences indicated in Table 1 cover every integer sat-
isfying both congruences if ([L3) (which, by the Chinese Remainder Theorem,
corresponds to a single congruence modild 5¢(2)),

Observe that the last congruence[in|(13) is the same as

r=5P71 (G +1) =1 (mod5°®)  wherej = 3.
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TABLE 1: THE COVERING FOR THEOREM

Congruences j Range
1 (3¢M=1 — 1,551 4 1) — 1,%,...) 0<j<2
2 (351 — 1w, 1161 — 1 132G)71(5 4+ 1) —1,%,...) 0<j<2
3 (4,55 @14 — 15,111 —113¢C)~1(5 £ 1) — 1,%,...) 3<j5<5
4] (32M-1 1,55 =14 — 1 5, 11¢@ -1 —1,13¢G)~1(j 4 1) —1,%,...) | 6 < <8
5 (3, %, %,11¢@ =1 —1,13¢0G)=1(j 1 1) — 1,%,...) 9<j<11
6 Gy oy k%, —1 0 (), %, %, 1 (1), %,...) 1<5<23
7 (35T 1,5, 1161 £ 1) — 1, %,...) 1<;<3
8 (%,5¢) =14 — 15,1161 (j + 1) — 1,%,...) 4<j<6
9 (32M=1 155 =14 — 1% 11° W15 + 1) — 1, %,...) 7<j<9
10 (kg oy ok, —1 2 (), %, %, %%, 7 1 (1), %,...) 1<5<29
11 (s, =12 (), %, %, %, %, %, %, %, 5 : (1), %, %) 1<5;<31
12 (3¢ =12 — 1 %, 7¢B)=1(j 4 1) — 1,%,...) 0<j<2
13 (35—t — 1,561 7 7¢G)=1(j + 1) — 1,%,...) 3<j<5
14 (ky oy =12 (4), %, &, %, 5k, ok, %, %, 5 0 (1), %) 1< <37
15 (*756(2)*12_1776(3>*1(j+1)—1,*,...) 3<j<5
16 (35 =12 — 1 s, 4,%,13°0)"1(j + 1) — 1,%,...) 0<j<2
17 (32 —12 — 1,55 =13 — 1 % %,135G)~1(j + 1) — 1,%,...) 3<5<5
18 (%,5°) =13 — 1, %,%,13°0)~1(j + 1) — 1,%,...) 6<5<8
19 (35(=12 — 1,4, 7¢ @) =14 — 1 %,13°G)=1(j + 1) — 1,%,...) 9<j<11
20[ (35 =12 —1,5¢()—13 — 1 7¢()—T15 _ 1 % 13°C)=1(j + 1) — 1,,...)] 9<j < 11
21 (,55—13 — 1,75G) =16 — 1 %,13°G)~1(j + 1) — 1,%,...) 9<j<11
22 (3¢M=12 — 1 5¢()~14 — 1, 7¢B)=14 1 5: (1),%,...) 0<j<2
23 (35 =12 — 1 5, 7¢G)~14 — 1 5 : (1),%,...) 3<j<5
24 (%,5°) =14 — 1,7¢G)~14 1 5 : (1), %,...) 6<5<8
25 (e, %, 76 =14 — 1 50 (1), %,...) 9<;5<10
26 (36(1)—1271’55(2)_1471’76(3)_15717*,*,]':(1)7*,..-) 0<j<2
27 (3512 — 1w, 4,5, 5 ¢ (1), *, *, *) 3<j<5
28 (*,55(2)*14—17*,*,*,3':(1),*,*,*) 6<75<8
29 (*,*,75(3>715—1,*,*7j: (1),*,*7*) 9<;<11
30 (3512 — 1,55 =14 — 1 s, %,%,5 : (1), %,...) 12<j<14
31 (3512 — 1,5, 7¢B) =15 — 1 s, %,5: (1),%,...) 15<j<16
32 (35M=12 — 1 52 =14 — 1, 76316 — 1 5,5, %, 5 : (1),%,...) 0<j<2
33 (35(1)_12—1,*,*,*,*,*,]':(1),*,...) 3<5<5
34 (*,56(2>*14—1,*,*,*,*,j:(1),*,...) 6<75<8
35 (e, %, 7°C) =16 — 1, %,%,5 1 (1), %,...) 9<;<11
36 (36(1)712—1,542)714—1,*7*7*,*7]': (1)7*,...) 12<;<14
37 (35(1%1271,*,76(3)*1671,*,*,*,]': (1),%,...) 15 <5 <17
38 (%,5°) =14 — 1,7¢G)=16 — 1%, %, %,5 : (1), %,...) j=18
39 (=102 (), %, %, o, ok, k%, %k, 5 2 (1)) 1< <41
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TABLE 2: THE EXPONENTS RANGES

1<e) <41 |1<e@<31 | 1<e®) <37 | 1<e()<29 | 1<e(5) <23

Consider now the congruencés in Row 1 of Table 1 together with the single
congruence corresponding fo [13) witfi) fixed but withe(2) varying over its
values in Table 2. By Lemnig 7, if is an integer satisfying

z=3M"1_1 (mod 3°), (14)

andx # —1 (mod 53!), thenn is covered by at least one of the congruences
in C3. By Lemma[ 8, the congruences in Row 11 of Table 1 cover the integers
= —1 (mod 5%!). Thus, the congruences indicated in Table 1 cover every integer
satisfying [(1#).

The congruence iff (14) is the samezas: 3°(V=1(j + 1) — 1 (mod 3¢V))
with j = 0. The idea now is to appeal to Lemnigs 7 &ihd 8 after showing that
the congruences in Table 1 cover the integers satisfying3°()=1(j + 1) — 1
(mod 3¢V) with j = 1. In other words, we will show that the congruences in
Table 1 cover the integers satisfying= 3°V)=12 — 1 (mod 3°(")). Then, by
letting e(1) vary over the values indicated in Table 2, Lenima 7 will imply that
every integem # —1 (mod 3%') is covered by a congruence fratn Using the
congruences corresponding to Row 39 of Table 1 and appealing to LEfnma 8, we
can then deduce that every integer is covered by some congruencé.ftéemce,
the theorem will follow.

We cover (by congruences fraf) the integers satisfying simultaneously both

z=3D"12_1 (mod3*V) and z=5@"1_-1 (mod5°?) (15)

in a manner identical to the approach above. We apply Lejma 7 with the congru-
ences in Rows 12 and 13; and then we apply Leffima 8 with the congruences in
Row 14. We can likewise cover integers satisfying simultaneously

z=3W"12 -1 (mod3°M) and z=5@"12-1 (mod5°?) (16)

by applying Lemma |7 with the congruences in Rows 12 and 15 and Lgrhma 8
with the congruences in Row 14.

Lemmd_ T with the congruences in Rows 16-19 and Leinma 8 with the congru-
ences in Row 6 imply that the integers satisfying simultaneously the congruences

z=3U"12 1 (mod 36(1))7 r=5@"13 1 (mod 56(2)),

17
and =771 -1 (mod 7°®) ()
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are covered by congruences frain Lemma[} with the congruences in Rows
16, 17, 18, and 20 and Lemrpa 8 with the congruences in Row 6 imply that the
integers satisfying simultaneously the congruences

r=3W"12 1 (mod 3*W), z=5@713_1 (mod 5°?),

18
and z=7®"15_-1 (mod 7¢®) (18)

are also covered. Lemnja 7 with the congruences in Rows 16, 17, 18, and 21
and Lemm4 B with the congruences in Row 6 imply that the integers satisfying
simultaneously the congruences

r=3W712 -1 (mod 3°W), =513 -1 (mod 5°?),

19
and z=7®7"16—-1 (mod 7°®) (19)

are covered. We apply now Lemrpp 7 with the congruences in Row 12 together
with those given by[(17)[ (18), and (19); and then we appeal to Lemma 8 with the
congruences in Row 14. We deduce that all integers satisfying simultaneously the
congruences

z=3W"12 -1 (mod3*™) and z=5®"13-1 (mod5°?) (20)

are covered by congruences fram

Since every integer is congruent to one0ot, ..., 10 modulo11, the con-
gruences given in Rows 22-25 cover all integers satisfying simultaneously the
congruences

r=3W"12 1 (mod 3*W), z=5@"14_1 (mod 5°?),

(21)
and z=7®"14 -1 (mod 7¢®),

Similarly, since every integer is congruent to onéof, ..., 16 modulo17, the
congruences given in Rows 26-31 cover all integers satisfying simultaneously the
congruences

r=3W"12 1 (mod 3°W), z=5@"14_1 (mod 5°?),

22
and z=7®7"15-1 (mod 7¢®); (22)

and since every integer is congruent to onédf, ..., 18 modulo 19, the con-
gruences given in Rows 31-38 cover all integers satisfying simultaneously the
congruences

r=3W712 1 (mod 3*W), =574 -1 (mod 5°?), 23)
and z=7"16-1 (mod 7°®).
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We use Lemmp]7 with the congruences given in Row 12 together|with [21), (22),
and [23) and we use Lemifh 8 with the congruences in Row 14 to deduce that all
integers satisfying simultaneously the congruences

z=3M"12 1 (mod3*V) and z=5@"14—-1 (mod5°?®) (24)

are covered.

Finally, we appeal to the congruences[in|(1E)] (16)] (20), gnd (24). We apply
Lemma[ T with these and apply Lemrng 8 with the congruences in Row 11 to
obtain that every integer satisfying

r=3D712 1 (mod 3¢W)

is covered by a congruence frain As discussed earlier in this proof, the theorem
now follows. O

No real attempt was made to keep the number of congruences in our proof
for Theoren{ # at a minimum,; the author feels that regardless any such covering
for Theoren| # must in some sense be complicated. We note that the number of
congruences used in our proof is 6928899.

5 The Connection with the Odd Covering Problem

In this final section, we give a proof of Theor@in 2. For this purpose, we define a
non-zero polynomiaf (z) € Q[z] as being reciprocal if (x) = +z°e/ f(1/z).

The non-reciprocal part of(z) is f(x) removed of its irreducible reciprocal fac-
tors. For example, the non-reciprocal part of

22° — 5zt + 92 — 922 + 50 — 2= (x — 1)(z* — 2z +2)(22% —z + 1)

is (22 — 2 +2)(222 — z + 1) = 22* — 32 + 622 — 3z + 2. As this example
illustrates, the non-reciprocal part of a polynomial may in fact be reciprocal (as
only theirreduciblereciprocal factors are removed).

We make use of the following result:

Lemma 9. Letd be a positive integer, and Igi(x) be inZ[z]. Suppose that is
sufficiently large (depending of). Then the non-reciprocal part of(x)x™ + d
is irreducible overQ or identically+1 unless one of the following holds:

(i) —f(x)/dis apth power inQ[z] for some prime dividing n.
(i) f(xz)/dis 4 times adth power inQ[z] andn is divisible by4.
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The above lemma is key to the ideas in this section. Schinzel's argument in
[7] also made use of this result. A proof of the lemma, which we do not include
here, can be found in Schinzgl [6]. An alternative proof has recently been given
by Ford, Konyagin, and the authaor [2].

In addition, we make use of the following results.

Lemma 10. Suppose thatg is a real number such that every integer> ng
satisfies at least one of the congruences

x =a; (Modmy), x = azx (Modms),..., = a, (Modm,.)

where thea;’s and m;’s are arbitrary integers with eachn; > 0. Then this
system of congruences forms a covering of the integers (i.e., every integeg
also satisfies at least one of the congruences).

Proof. Let M = lcm(mq,ma,...,m,). Letn € Z. Consider a positive integer
k such thath + kM > ng. Thenn = n+ kM = a; (mod m;) for some integer
j€{1,2,...,r}, establishing the lemma. O

Lemma 11. Letp be a prime, and letn be a positive integer such thatdivides
m. Thenz? = (,, has no solutions: € Q({,).

Proof. Let ( = (,,,. The roots oft? — ( =0 arecpmg’; where0 < k < p— 1.
Note that¢, = ¢m/? € Q(¢). Thus,z? = ¢ andz € Q(¢) imply Cpm € Q(C),
a contradiction (for example, singg,, is a root of an irreducible polynomial of
degreep(pm) = po(m) which exceeds the degree of the extensig) over
Q). O

Lemma 12. Letd be a positive integer. Suppose thaf(z)/d = g(x)? for some
primep and f (x)z™ + d is divisible by®,,, (x) wherep|m. Thenn = 0 (mod p).

Proof. We set( = (,,, and assume t n. Then there are integetsandv such
that—nu + pv = 1. Since alsof (¢)¢™ + d = 0, we deduce that f(¢)/d = (™.
Hence,

(9(¢Q)"¢")P = ¢mtrr = ¢,
Thus,z? = ¢ has a solution: € Q(¢), contradicting Lemmp 1. O
Proof of Theorerf|2:We suppose (as we may) thAt0) # 0. Sincez? +1 =

®o:41(z) is irreducible for everyt € Z*, we deducef(z) # 1. Let f(z)
xd°ef f(1/z). Then each reciprocal factgtz) of F(z) = f(z)2™ + d divides

f(m)ﬁ(x) _ dl‘deng(x) — f(l') (dxn-‘rdegf + f(.%’)) _ d(l?degf(f((lj)l’" + d)
= f(x)f(z) — d?adee .
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In particular, there is a finite list of irreducible reciprocal factors that can divide
f(z)x™ 4+ d asn varies. Each reciprocal non-cyclotomic irreducible factor di-
vides at most one polynomial of the forfi{x)z" + d (see the comment before
Lemma[]). By Lemma]|9, we deduce that there &g (z), ..., ®,,, (z) such
that if n is sufficiently large and both (i) and (ii) of Lemma 9 do not hold, then
®,,, (z)|(f(z)z"™ + 1) for some;. Note that (i) does not hold since otherwise
f(z)a2™ + d could not be divisible by a cyclotomic polynomial (i, (x) were a
factor, thenf (¢, )¢, = —d, contradicting that the left side has even norm and the
right side has odd norm) so thAfx)x™ + d is irreducible by LemmE]Q whenever

n is a sufficiently large prime. We may suppose that for eaeh{1,2,...,r}
there is am; such thatd,,,, ()|(f(z)z® + 1). Let P denote the set of primes

p for which f(x) is minus apth power. We remove from consideration amy
divisible by ap € P (but abusing notation we keep the range of subscripts). Then
Lemmag [l 70 arld 12 imply that the congruences

=0 (modp) forpe P and z=a; (Mmodm;) forje {1,2,...,r}
cover the integers.

Claim: Supposen; = p'my andm; = p®m,, wherep is a prime not dividing
d, my is an integer> 1 such thatp 1 mg, andt¢ ands are integers with
t>s>0.Thena; = a; (mod my).

For the moment, suppose the claim holds. Take 2 in the claim. Sincel
is odd, clearlyp does not dividel. We replacer = a; (mod m;) andz = a;
(mod m;) with z = a; (mod my). If for somej there is na as above, we still
replacez = a; (mod m;) with z = a; (mod mg). Then we are left with a
covering with moduli that are distinct odd numbers together with possibly powers
of 2. Observe thap~72, 1/27 = 1 implies that there is an € Z and ak € Z*
such that no integer satisfying= a (mod 2*) satisfies one of the congruences
in our covering with moduli a power df. Denote byr = a} (mod m}) the
congruences witn; odd. Letu andv be integers such that

2ku+v(Hm9) =1.

For anyn € Z, consider the numben = a + 2*u(n — a). Thenm = n
(mod m/) for everym/; andm = a (mod 2¥). It follows thatn = m = d]
(mod m7) for somem/;. Therefore, every, € Z satisfies one of the congruences

z = aj (mod mj). So these congruences form an odd covering of the integers,
and we are left with establishing the claim.

Letk € Z* U {0} such that

a; + (k—1)m; < aj < a; + km,.
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Let! = a;+km;—a;. Thent € [0,m;). Since®,,, () dividesf(x)z®+*mi +d
by Lemmd 1 and,,, (x) divides f ()= + d, we deduce that there angz) and
v(x) in Z[z] such that

fla)a®Trm 4 d = — @y, (2)u(z)

and
f(m)xai"l‘k’rni — f(x)xé-i-aj — —dxe + (I)mj (JL‘)U(.T)

Hence,
Qo (v)u(z) + Py (2)0(2) = d(xe -1).

Lettingz = ¢,,, above and applying Lemn@ 3, we obtain = d(¢f, — 1) for
somew € Z[(n,]. Applying Lemmg b and using thatf d, we deduce thatn
divides?. The definition o and the fact thatr, divides both? andm,; imply the
claim. =

Concluding Remarks: In the closing arguments above, we used Lemas 3 and
[5 to justify thatm, divides?. Schinzel has pointed out that instead one can apply
the work of Apostol[[1] on the resultants of two cyclotomic polynomials. By (2),
@, () divides both®,,,, () and®,,,; () modulop. Sincep 1 d, the last equation
displayed above implie$,,,, () dividesz‘ — 1 modulop. Hence,®,,,(z) and
some divisor®, (x) of z* — 1 in Z[x] have a factor in common moduo In other
words, there is a positive integérdividing ¢ such that the resultant &, ()
and @, (x) is divisible by p. Recall from above that t my. Apostol’'s work
implies that?’ /my is a power ofp. It follows thatm, divides¢’ and, hence/.

The author expresses his gratitude to Andrzej Schinzel for taking an interest
in this work and for supplying the author with alternative approaches to some of
the arguments.
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