
POWERFREE VALUES OF BINARY FORMS

Michael Filaseta*

1. Introduction

Given a binary form f(x; y) 2 Z[x; y], we will be interested in �nding the smallest k for

which we can establish that there are in�nitely many integers a and b such that f(a; b)

is k�free. Necessarily, we require the f has no �xed kth prime power divisor. Until the

�nal section of this paper, we will also consider f to be irreducible. We set n = deg f .

For k = 2, this problem has recently become of interest partially because of its connection

to the rank of elliptic curves as described in the work of F. Gouvêa and B. Mazur [4]. In

particular, F. Gouvêa and B. Mazur showed that if the degree of the binary form is � 3,

then f(a; b) is squarefree for in�nitely many pairs of integers a and b. More speci�cally, for

a binary form f(x; y) 2 Z[x; y] of degree � 3, they determined the density of pairs (a; b)

of positive integers for which f(a; b) is squarefree, i.e., the value of

lim
X!1

jf(a; b) 2 (Z\ [1; X])2 : f(a; b) squarefreegj
X2

:

This result was extended by G. Greaves [6] to binary forms of degree � 6. The main tool

for these results was a technique of Hooley [8] which dealt with the corresponding problem

for single variable polynomials. For f(x) 2 Z[x] of degree � 3, Hooley's method gives

the asymptotic density for the number of integers m such that f(m) is squarefree. For

f(x) 2 Z[x] of degree n and general k, Hooley obtained the asymptotic density for the

number of integers m such that f(m) is k�free whenever k � n � 1. For binary forms,
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G. Greaves [6] obtained the density for the number of pairs (a; b) for which f(a; b) is k�free
whenever k � [n=2]. Observe that the previously mentioned result of G. Greaves for k = 2

is slightly stronger than the result obtained by replacing k with 2 in the more general

result.

There is a reasonable next step to consider based on the development of the single

variable problem after Hooley's work in [8]. M. Nair [10,11] and M. Huxley and M. Nair

[9] showed some improvements can be made in the single variable case. In particular, if

the degree of f(x) is � n, then Hooley's approach gives the asymptotic density described

above whenever k � n�1 whereas the approach of Nair in [10] gives the asymptotic density

whenever k � �p2� 1
2

�
n. Since

p
2�(1=2) < 1, Nair's approach gives improvements when

the degree is su�ciently large. More precise analysis shows that Nair's approach improves

on the work of Hooley whenever n � 18 and that the modi�cations in Huxley and Nair

[9] lead to improvements whenever n � 14. Nevertheless, Nair's approach has not led to

results as strong as Hooley's when k = 2, and we note that the case k = 2 for binary forms

was the main problem dealt with in Greaves [6] and is what has led to the applications to

the rank of elliptic curves.

The purpose of this paper is to describe Nair's approach for the binary form problem

and to improve on the work of Greaves when k is su�ciently large. In particular, we will

show

Theorem. Let k and n be positive integers with k � 2. Let f(x; y) 2 Z[x; y] be an

irreducible binary form of degree n with no �xed kth power divisor. If k � (2
p
2� 1)n=4,

then a positive proportion of pairs (a; b) of integers are such that f(a; b) is k�free.

We observe that the constant being multiplied by n in the inequality involving k and

n in the theorem is exactly one-half of the constant
p
2� (1=2) appearing in Nair's result

about k�free values of irreducible polynomials. This is somewhat expected as Hooley

obtained k � n � 1 in the single variable problem and Greaves obtained the analogous

result with k � [n=2] in the binary form problem. The argument for the theorem mainly
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requires rewriting the argument of Nair for the single variable problem so that it applies to

the binary form problem and making use of an estimate of Greaves [5,6]. We will give most

of the details here to provide the reader with the author's slightly di�erent perspectives on

Nair's approach. The constant (2
p
2� 1)=4 appearing in the theorem is the best constant

the author has obtained from these methods, but (analogous to Nair's results and the work

of Huxley and Nair) one can �nd smaller k for speci�c values of n. In the �nal section

of this paper, we will brie
y address this issue. In particular, we note that Greaves [6]

comments that he is unable to show that for k � 3 and n � 2k + 2, there are in�nitely

many pairs of integers (a; b) for which f(a; b) is k�free. We will show how one can obtain

such a result for k � 5. Analogous to the previous work on this problem, we will also

discuss what can be said in the case that f(x; y) is reducible.

2. Preliminaries

The notation we will use is as follows:

f is an irreducible binary form in Z[x; y] with no �xed kth prime power divisor. The

degree of f is n with n � 2. Observe that in the binary form case, we get that the

coe�cient of xn and the coe�cient of yn are non-zero (otherwise, f would be divisible by

x or y and, hence, be reducible).

d is the leading coe�cient of f(x; 1); in other words, d is the coe�cient of xn in f(x; y).

k, a, and b will denote positive rational integers with k � 2, and we assume that f has

no �xed kth power divisors.

p; p1; p2; : : : denote primes.

X is a su�ciently large real number, X � X0(f; k).


 is a �xed root of f(x; 1). The identity f(x; y) = ynf(x=y; 1) implies that f(x; 1) is

irreducible in Z[x]. Also, observe that the degree of f(x; 1) is n.

K = Q(
).

R is the ring of integers in K.
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f!1; : : : ; !ng is a �xed integral basis for K over Q.

�1; : : : ; �n denote the homomorphisms of K which �x the elements of Q.

Ej and E will denote constants in R.

N(u) = NK=Q (u) =
Qn

j=1 �j(u) (where u 2 K). We will also use N(D) in referring to

the norm of an ideal D in R.

jjujj denotes the size of an element u in K (jjujj = max1�j�n j�j(u)j).
c1; c2 : : : and implied constants, unless otherwise stated, are positive constants depend-

ing on f and k.

u is primary means that jjujj � c1jN(u)j1=n where c1 is a constant (described below or

see [10]). This di�ers slightly from Nair's use of the word \primary," but it is su�cient for

obtaining our results.

\Cubes" in Zn refer to cubes with edges parallel to the axes in Zn.

Lemma 1. Let T � X2= logX. For f 2 Z[x; y] as above, let

Nk(X) = jf(a; b) : 1 � a; b � X; f(a; b) is k � freegj ;

P (X) =
���(a; b) : 1 � a; b � X; pkjf(a; b) for some prime p > T

	�� ;
and

�(pk) =
���(i; j) 2 f0; 1; : : : ; pk � 1g2 : f(i; j) � 0 (mod pk)

	�� :
Then

Nk(X) = X2
Y
p

�
1� �(pk)

p2k

�
+O

 
X
p
Tp

logX

!
+O (P (X))

and

P (X)� max
X

1;

where the maximum is over all E from a �xed �nite set of algebraic integers in K and the

sum is over all pairs (u; v) with u and v 2 R, u primary, jjujj > T 1=n, and ukv = E(a�
b)

for some rational integers a and b with 1 � a; b � X.

Observe that Lemma 1 is obvious unless �(pk) � p2k � 1 for all p. Suppose then that

this inequality holds. We will want a better but fairly simple estimate on �(pk) noting that
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a more detailed analysis of the function � can be found in [4]. Observe that if f(a; b) � 0

(mod pk) and pjb, then either p divides a or p divides d, the coe�cient of xn in f(x; y).

In the �rst case, we get at most p2k�2 choices for the pair (a; b) with 0 � a; b � pk� 1. We

note that we could interchange the roles of a and b. In particular, if p is su�ciently large,

then there are � p2k�2 distinct pairs (a; b) modulo pk such that f(a; b) � 0 (mod pk) and

pjab. In the second case, p is limited to the prime divisors of d and there will be only

a bounded number of such primes to consider. If f(a; b) � 0 (mod pk) and p - b, then

bnf(a=b; 1) � f(a; b) � 0 (mod pk) implies that a=b is a root of f(x; 1) modulo pk. The

number of such roots is � n if p - d� where � is the discriminant of f(x; 1). Thus, for

each prime p not dividing d� and each b relatively prime to p, we get � n choices for a

modulo pk such that f(a; b) � 0 (mod pk). This gives � npk values for the pair (a; b) in

this case. Hence,

�(pk) � p2k�2 + npk � p2k�2 provided p - d�:

To prove Lemma 1, we set � = � logX, where � > 0 will be speci�ed momentarily, and

estimate the three quantities

S1 =
���(a; b) : 1 � a; b � X; pk - f(a; b) for every p � �

	�� ;
S2 =

���(a; b) : 1 � a; b � X; pkjf(a; b) for some p 2 (�; T ]
	�� ;

and

S3 =
���(a; b) : 1 � a; b � X; pkjf(a; b) for some p > T

	�� :
Thus, Nk(x) = S1 +O(S2) +O(S3).

One can estimate S1 with a simple sieve argument. Speci�cally, setting P =
Q

p��
p

and using the trivial estimate �(pk) � p2k, one has that

S1 =
X
jjP

�(j)
Y
pjj

�(pk)

�
X

pk
+O(1)

�2

= X2
Y
p��

�
1� �(pk)

p2k

�
+O

0
@XY

p��

(1 + p2k)

1
A :
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Observe that Y
p��

(1 + p2k) �
Y
p��

(2p2k)� 2�(�)e2k� :

Taking � = 1=(5k), we get that

S1 = X2
Y
p��

�
1� �(pk)

p2k

�
+O

�
X3=2

�
:

Since X is su�ciently large, the primes p that divide d� are � � so that if we extend the

product above to a product over all the primes and use the bound we found for �(pk) when

p - d�, we obtain

S1 = X2
Y
p

�
1� �(pk)

p2k

�
+O

�
X2

logX

�
;

where we can conclude that the product here converges. The condition that T � X2 logX

in Lemma 1 implies that the error term above is � X
p
T=
p
logX .

For an upper bound on S2, we mainly refer to Greaves' work [5,6]. Recall the estimate

�(pk) � p2k�2 + npk if p - d�. We may suppose that � is su�ciently large so that

p > � =) p - d�. Also, we may suppose that p does not divide the coe�cient of yn

in f(x; y). The terms p2k�2 and npk in this bound for �(pk) arose from two separate

considerations: (i) pairs (a; b) such that pkjf(a; b), pja, and pjb, and (ii) other pairs (a; b).

Since 1 � a; b � X, we get that there are � ((X=p) +O(1))2 pairs (a; b) as in (i). In other

words, we get a contribution of

�
X

�<p�T

�
X

p
+O(1)

�2

= O

�
X2

logX

�
+O(X log log T ) +O(�(T ))

pairs (a; b) as in (i). We can ignore the second error term since it is smaller than at least one

of the other two error terms. The statement of Lemma 1 becomes trivial if T � X2 logX,

and for other T as in the lemma, it is easily checked that the remaining error terms above

are � X
p
T=
p
logX.

For S2, it remains to estimate the number of pairs (a; b) in (ii) for which pkjf(a; b) and
p - ab for some prime p 2 (�; T ]. We use Lemma 2 in Greaves paper [6] which provides

such an estimate. In the notation of that paper, one needs to take � = T=X2 and note
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that the condition � � (logX)�2 that appears there should read � � (logX)�1. We get

here that the number of pairs (a; b) in (ii) is � X
p
T=
p
logX.

By de�nition S3 = P (X) so that the estimate for Nk(X) in the statement of Lemma 1

follows. We are left with establishing the upper bound for P (X), and we will follow Nair

[10] closely here.

Fix ideals D1; D2; : : : ; Dh of R which represent the various ideal classes of K. For each

Di, there corresponds a unique Dj such that Dk
iDj is principal. For each such i and j,

�x �i such that Dk
iDj = (�i). Let Ei = d�i. We will take the maximum in the bound for

P (X) in Lemma 1 to be over E 2 fE1; : : : ; Ehg. To establish the bound for P (X) in the

lemma, it su�ces to show that for each pair (a; b) of integers with 1 � a; b � X and with

f(a; b) divisible by a prime > T , there exists E 2 fE1; : : : ; Ehg and elements u and v of R

such that u is primary, jjujj > T 1=n, and ukv = E(a � 
b) (where here we are using that

if two di�erent pairs (a; b) give rise to the same pair (u; v), then the corresponding values

of E must be di�erent).

Since T > X2= logX and X is su�ciently large, we deduce that

p > T =) p - d�:

Since 
 is a root of f(x; 1), we get that

dn�1f(x; y) = (dx� d
y)g(x; y);

where d, d
, and the coe�cients of g(x; y) all lie in R. Also, observe that g(x; y) is a form

of degree n � 1. Let p > T and (a; b) be such that pk
0 jjf(a; b) for some k0 � k. We get

that the ideal (p)k
0

divides the ideal (da� d
b)(g(a; b)). We factor (p) as

(p) = P1P2 � � � Pr;

where, since p > T , the prime ideals Pj are distinct.
We show that each Pj divides only one of (da � d
b) and (g(a; b)). Suppose to the

contrary that Pj divides both (da� d
b) and (g(a; b)). Then da � d
b (mod Pj) so that

0 � dn�1g(a; b) � g(da; db) � g(d
b; db) � bn�1g(d
; d) (mod Pj):
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On the other hand, p > T > X2= logX > b and Pj j(p) so that the above congruence

implies that Pj j(g(d
; d)). Since d and 
 are �xed, taking norms, we get that p divides

a �xed �nite number. Since p > T and, hence, su�ciently large, this can only happen if

g(d
; d) = 0 or, in other words, if g(
; 1) = 0. This is impossible as we would then get that


 is a multiple root of f(x; 1) and, therefore, f(x; y) is reducible. Thus, each Pj divides

only one of (da� d
b) and (g(a; b)).

Next, we observe that the norm of the ideal (da�d
b) is jdn�1f(a; b)j which is divisible

by p. It follows that some Pj divides (da� d
b). Fix such a j, and set P = Pj . Then, by
the previous paragraph, there is an ideal B such that

(da� d
b) = PkB:

Recall the de�nition of the Di. For some Di and some Dj , we have that PDi and BDj are

principal ideals in R. We use the following lemma, a proof of which can be found in [12].

Lemma 2. Given any principal ideal in R, there exists a generator u such that jjujj �
c1jN(u)j1=n (i.e., such that u is primary).

Thus, there exist u and u0 in R with u primary such that

Dk
iDj(da� d
b) = Dk

i PkDjB = (u)k(u0):

This implies that Dk
iDj is principal. From the de�nition of Ei, we get that

Ei(a� 
b) = ukv

for some v in R. Also, observe that since P is a prime ideal dividing both (p) and (u) with

p a rational prime, we get that pjN(P) and N(P)jN(u) so that jjujjn � jN(u)j � p > T .

Hence, we get the condition jjujj > T 1=n in the summation in Lemma 1. This completes

the proof of that lemma.

Before continuing, we brie
y explain the reason we have chosen to de�ne u being primary

in a slightly di�erent manner than Nair in [10]. There the inequality in Lemma 2 was

replaced by the (apparently) stronger inequality

c2jN(u)j1=n � jjujj � c1jN(u)j1=n:
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Nair uses this inequality to formulate the de�nition of u being primary. Indeed, this is

how c1 is chosen for our de�nition of primary (i.e., one uses Lemma 2 above to de�ne c1).

The reason we have chosen not to also include the inequality involving c2 in our de�nition

is simply a matter of taste. If we ever need such an inequality, we can still use it since

jN(u)j � jjujjn =) jjujj � jN(u)j1=n:

Observe that, in fact, we have already made use of this inequality in the last step of the

proof of Lemma 1.

We note immediately that for the purposes of the theorem, we will choose T = X2 in

Lemma 1 so that the error term O(X
p
T=
p
logX) is smaller than the main term. This

choice of T indicates a signi�cant di�erence (observed by Greaves [6]) between the binary

form problem and the single variable problem. The latter requires a considerably smaller

choice of T . To obtain our results, we are now left with estimating P (X). We observe that

since there are only �nitely many �xed possibilities for Ej in the maximum appearing for

our upper bound on P (X) in Lemma 1, we may �x E 2 R and write

P (X)� jf(u; v) 2R2 : u primary, jjujj > T 1=n;

ukv = E(a� 
b) for some (a; b) 2 (Z\ [1; X])2gj;

where it is understood that our bound on the right-hand side above (other than implied

constants) will be independent of E. To estimate the right-hand side, we consider H =

H(X;T ) to be determined explicitly later, and divide the interval [1; X] into [X=H] + 1

subintervals of length � H. Let I and J denote two �xed, not necessarily distinct, such

subintervals. Let S denote the set of u 2 R such that u is primary and such that there is a

v 2 R and rational integers a 2 I and b 2 J for which ukv = E(a� 
b). In a moment, we

will show that if H is chosen appropriately, then each u 2 S is such that the corresponding

v for which ukv = E(a� 
b) is unique. De�ne

S(t) = fu 2 S : t1=n < jjujj � 2t1=ng:
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Clearly, S(t) depends on the sets I and J , but we have suppressed this dependence to

emphasize that our goal is to �nd an upper bound for jS(t)j for t � T that is independent of

I and J . For example, to establish the theorem, we will show that for any s 2 f1; 2; : : : ; k�
1g, one has

jS(t)j � Xn=(2s+1)t(s�k)=(2s+1):

We clarify, however, that such a bound will depend on a proper choice for H. Observe

that if jS(t)j � B(X; t) where B(X; t) is a function of X and t only, then we can conclude

that

P (X)�
0
@ 1X
j=0

B(X; 2jnT )

1
A�X

H
+ 1

�2

;

where the second factor indicates a bound on the number of di�erent possibilities for I

and J . It would be reasonable to allow H to depend on the value of jjujj and, therefore, to
revise the above bound so that the second factor is part of the summand; however, doing

so will not lead to an improvement in the results we are establishing.

We show next, as promised, that if H is chosen appropriately, then for each primary

u 2 R with jjujj > T 1=n, there is at most one v 2 R such that ukv = E(a � 
b) for some

rational integers a 2 I and b 2 J . Assume otherwise, and �x a primary number u 2 R with

jjujj > T 1=n, v1 and v2 2 R with v1 6= v2, and rational integers a1; a2 2 I and b1; b2 2 J

such that ukvj = E(aj � 
bj) for j = 1 and 2. Since u is primary, jN(u)j � jjujjn. Thus,

j�(u)j � jN(u)j
jjujjn�1 � jjujj � T 1=n for every � 2 f�1; : : : ; �ng:

Since v1 and v2 2 R with v1 6= v2, we get that there is a � 2 f�1; : : : ; �ng such that

j�(v1 � v2)j � 1. Hence,

T k=n �
���(uk)�� j� (v1 � v2)j =

��� �ukv1 � ukv2
��� = j�(E)j j(a1 � a2)� 
(b1 � b2)j :

Recalling the the aj and bj are in intervals of length � H, we get that T k=n � H. Hence,

we get that there is some su�ciently small constant c3 such that the condition

(1) H � c3T
k=n
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leads to a contradiction and, hence, also implies the uniqueness of v 2 R as described

above.

Lemma 3. Let t � 1; and let u 2 R. Let u1; u2; : : : ; un be rational integers such that

u = u1!1 + u2!2 + � � � + un!n:

Then

juj j � jjujj for j 2 f1; 2; : : : ; ng;

where the implied constant depends on n and the choice of the integral basis f!1; : : : ; !ng:

Proof. Let f!�1 ; : : : ; !�ng be the dual basis of the basis f!1; : : : ; !ng: Thus,

uj =

nX
i=1

�i(!
�

ju) for each j 2 f1; : : : ; ng:

Since jj!�j jj � 1; we get that

juj j =
�����
nX
i=1

�i(!
�

ju)

����� �
nX
i=1

j�i(!�j )j j�i(u)j �
nX
i=1

jj!�j jj jjujj � jjujj;

completing the proof.

To estimate jS(t)j, we consider cubes C(t) in Zn de�ned by

C(t) =
n
(u1; : : : ; un) : uj 2 Z and juj j � 2c4t

1=n for j = 1; : : : ; n
o
;

where c4 is the implied constant in Lemma 3. Thus, if u 2 S(t), then u = u1!1 + u2!2 +

� � �+un!n where (u1; : : : ; un) 2 C(t). Observe that with u so chosen and � 2 f�1; : : : ; �ng;
we get that

(2) j�(u)j = j�(u1!1 + u2!2 + � � � + un!n)j =
������
nX
j=1

uj�(!j)

������� max
1�j�n

juj j:

This means that with u 2 S(t), we cannot have that juj j is small for every j 2 f1; : : : ; ng
(as small as c5t

1=n for some su�ciently small c5). Thus, the cube C(t) contains a smaller
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cube with n�tuples which do not correspond to u 2 S(t). It is not really to our advantage

to take this into account; however, we will make use of (2) momentarily. We will �nd

r cubes Cj = Cj(t) with C = [rj=1Cj and such that each Cj contains � 1 n�tuples
(u1; : : : ; un) with u1!1 + u2!2 + � � � + un!n 2 S(t). It will then follow that

jS(t)j � r � jC(t)j
min1�j�r jCj j �

t

min1�j�r jCj j :

Fix H satisfying (1) and intervals I and J as before. For each u 2 S(t), we denote by
v(u) 2 R, a(u) 2 I, and b(u) 2 J numbers satisfying

E (a(u)� 
b(u)) = ukv(u):

Now, �x u 2 S(t). For each � 2 R with u+ � 2 S(t), we have that

E (a(u+ �)� 
b(u+ �)) = (u+ �)
k
v(u + �):

Since u 2 S(t); we have that u is primary and that t1=n < jjujj � 2t1=n: Thus,

j�(u)j � jN(u)j
jjujjn�1 � jjujj � t1=n for every � 2 f�1; : : : ; �ng:

Therefore, there is a constant c6 such that

(3) c6t
1=n < j�(u)j � 2t1=n

for every � 2 f�1; : : : ; �ng.

Lemma 4. Let s be a non-negative integer � k�1. There exist polynomials Ps = Ps(u; �)

and Qs = Qs(u; �) satisfying:

(i) Ps and Qs are homogeneous polynomials in Z[u; �] of degree s.

(ii) (u+�)kPs�ukQs is a polynomial of degree k� s� 1 in the variable u (and, hence,

divisible by �2s+1).

(iii) The coe�cient of �s in Ps is (�1)s(k� 1)!=(k� s� 1)!, and the coe�cient of �s in

Qs is (k + s)!=k!.

In the case that s = k � 1, the polynomials in Lemma 3 were �rst considered by

Halberstam and Roth [7]. In the general form, they were �rst used by Nair [10,11] and
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later by Huxley and Nair [9]. The author [2] made further use of the polynomials in the

special cases s = k�2 and s = k�3 (combined with the Halberstam and Roth polynomials

with s = k � 1). Recently, Trifonov [13] has discussed consequences of the general case in

his work on the gap problem for k�free numbers. The coe�cients of the polynomials in

the general case were �rst determined in the work of Huxley and Nair [9]. In particular the

information listed in the statement of Lemma 4 can be found there, but a couple of minor

observations are worth mentioning. First, their polynomials were written in a slightly

di�erent form. Second, the comment about the degree with respect to the variable u in

(ii) is not mentioned explicitly; instead they only mention (and only needed) k � s � 1

as an upper bound on the degree, but it is easy to get this additional information from

their work. We omit the proofs, but note that an alternative approach and some further

polynomials with similar properties can be found in [3].

3. The Proof of the Theorem

In this section, we show how Nair's analog of the Halberstam and Roth method for

algebraic number �elds (cf. [10, 11]) results in the theorem. Our discussion follows closely

the description of the Halberstam and Roth method given in [2]. Throughout this section,

we consider k � n � 1. We return to viewing u as a �xed element of S(t), and recall the

discussion preceding Lemma 4 so that, in particular, a and b are functions of u with a 2 I

and b 2 J for some subintervals I and J of [1; X] of lengths � H. We also �x Y to be

some number of the form a0 � 
b0 with a0 2 I and b0 2 J , and observe that

�(Y )� X for all � 2 f�1; : : : ; �ng:

Since for any � 2 f�1; : : : ; �ng and any � 2 R,

j(a(u+ �) � �(
)b(u+ �))� �(Y )j � ja(u + �)� a0j+ j�(
)jjb(u + �)� b0j � H;

we get that

a(u+ �)� �(
)b(u+ �)

�(u+ �)k
=

�(Y )

�(u+ �)k
+O

�
H=j�(u + �)jk� :
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Note that the above holds for any u+ � 2 S(t) so that, in particular, it holds with � = 0.

Consider now a �xed � with u+ � 2 S(t). Observe that since u and u+ � 2 S(t),

j�(�)j = j�(u+ �)� �(u)j � j�(u+ �)j+ j�(u)j � 4t1=n:

Actually, we will be restricting our attention to u and u + � corresponding to elements

in a cube Cj(t) as described earlier and will be able to get a better upper bound for

j�(�)j, but the above estimate will serve our immediate purposes. With Ps = Ps(u; �) and

Qs = Qs(u; �) as in Lemma 4, we get that v(u)Ps � v(u+ �)Qs is an algebraic integer in

K so that there is a � 2 f�1; : : : ; �ng (depending on u, �, and s) such that

(4) v(u)Ps � v(u+ �)Qs = 0 or j�(v(u)Ps � v(u+ �)Qs)j � 1:

We �x such a �. Using (3) and the de�nitions of a(u + �), b(u + �), and v(u + �), we

obtain that

(5) � (v(u)Ps � v(u+ �)Qs)

=
�(E) (a(u)� �(
)b(u))

�(u)k
Ps(�(u); �(�))

� �(E) (a(u+ �)� �(
)b(u+ �))

�(u+ �)k
Qs(�(u); �(�))

=
�(E)�(Y )

�(u)k
Ps(�(u); �(�)) � �(E)�(Y )

�(u+ �)k
Qs(�(u); �(�))

+O

�
maxfj�(u)j; j�(�)jgsH
minfj�(u)j; j�(u + �)jgk

�

= �(E)�(Y )
(�(u) + �(�))kPs(�(u); �(�)) � �(u)kQs(�(u); �(�))

�(u)k(�(u) + �(�))k
+O

�
H=t(k�s)=n

�
:

The main term above involves the expression

L = L (�(u); �(�)) = (�(u) + �(�))kPs(�(u); �(�)) � �(u)kQs(�(u); �(�)):
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The purpose of the polynomials Ps and Qs is to control the size of this expression while at

the same time not allowing the error term to get too large. The in
uence of the polynomials

to the error term is the �s occuring in the exponent of t. The smaller s is the smaller the

error term will be. On the other hand, as will be clearer shortly, larger values of s will

make L smaller. Observe that by Lemma 4 (ii), L is a polynomial of degree k � s � 1 in

�(u) and L is divisible by �(�)2s+1.

We now show how to use (5) to establish that if C1(t) is a sub-cube of C(t) with edge

length

� c7X
�1=(2s+1)t(k+s+1)=(n(2s+1));

then the number of n�tuples (u1; : : : ; un) in C1(t) with u1!1 + � � �+ un!n 2 S(t) is � 2s.

Here we will choose c7 to be a su�ciently small constant. Assume that such a C1(t)

exists with > 2s � 2 such n�tuples. Let u = u1!1 + � � � + un!n, � = a1!1 + � � � +
an!n, and � = b1!1 + � � � + bn!n be such that u, u + �, and u + � + � 2 S(t) and

(u1; : : : ; un), (u1 + a1; : : : ; un + an), and (u1 + a1 + b1; : : : ; un + an + bn) 2 C1(t). Then

for j 2 f1; : : : ; ng, we get that

jaj j � c7X
�1=(2s+1)t(k+s+1)=(n(2s+1))

and

jbjj � c7X
�1=(2s+1)t(k+s+1)=(n(2s+1)):

Since u 2 S(t) and a(u) and b(u) 2 [1; X], we get by taking norms of both sides of the

equation E (a(u)� 
b(u)) = ukv(u) that

tk=n � X:

Thus, since we are considering k � n� 1,

max fj�(�)j; j�(�)jg � c7X
�1=(2s+1)t(k+s+1)=(n(2s+1))(6)

� t(s+1)=(n(2s+1)) = o
�
t1=n

�
:
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Although we are viewing � as �xed so that (4) holds, observe for future purposes that (6)

is true with � replaced by any homomorphism of K �xing Q. From (3), we can view j�(u)j
as being considerably larger than j�(�)j and j�(�)j. We deduce from Lemma 4 that

L� j�(u)jk�s�1 j�(�)j2s+1 :

Thus, by (3), (5), and (6), we obtain that

�(v(u)Ps�v(u+ �)Qs)� j�(�)j2s+1X
j�(u)jk+s+1

+O
�
H=t(k�s)=n

�

� c2s+17

�
X�1=(2s+1)t(k+s+1)=(n(2s+1))

�2s+1
X

t(k+s+1)=n
+O

�
H=t(k�s)=n

�
� c2s+17 +O

�
H=t(k�s)=n

�
;

where we have indicated above only the dependence on c7 in the constants. In particular,

the constant c6 appears as part of the implied constant. We choose

H = c8T
(k�s)=n;

where c8 is su�ciently small. Then (1) holds. Having already �xed c6, we are now in a

position to �x c7 in such a manner that the last expression above has absolute value < 1;

in other words, we get that

j� (v(u)Ps � v(u+ �)Qs)j < 1:

By (4), we now obtain that

(7) v(u)Ps(u; �) � v(u+ �)Qs(u; �) = 0:

Observe that the above identity holds whenever u and u + � are in S(t) and their corre-

sponding n�tuples are in C1(t). Therefore, we also get that

v(u)Ps(u; � + �)� v(u+ � + �)Qs(u; � + �) = 0
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and

v(u+ �)Ps(u+ �; �)� v(u + � + �)Qs(u+ �; �) = 0:

Using these last 2 identities, we obtain that

v(u)Ps(u; � + �)Qs(u+ �; �)� v(u+ �)Ps(u+ �; �)Qs(u; � + �) = 0

so that from the �rst identity we get that

v(u) (Ps(u; �)Ps(u+ �; �)Qs(u; � + �)� Ps(u; � + �)Qs(u+ �; �)Qs(u; �)) = 0:

Since E(a(u) � 
b(u)) = ukv(u) and 
 is a root of an irreducible polynomial of degree

n � 2, we easily get that v(u) 6= 0. Hence,

(8) Ps(u; �)Ps(u+ �; �)Qs(u; � + �)� Ps(u; �+ �)Qs(u+ �; �)Qs(u; �) = 0:

We now show that the left-hand side of (8) is a non-zero polynomial in � of degree 2s.

In fact, as a polynomial in �, it follows from Lemma 4 (iii) that the coe�cient of �2s on

the left-hand side of (8) is

Ps(u; �)

�
(�1)s (k � 1)!

(k � s� 1)!

�
(k + s)!

k!
�
�
(�1)s (k � 1)!

(k � s� 1)!

�
(k + s)!

k!
Qs(u; �)

= (�1)s (k � 1)!(k + s)!

(k � s� 1)!k!
(Ps(u; �) �Qs(u; �)) :

The inequality in (6) holds with � replaced by the identity homomorphism so that j�j
is small compared to juj. It is easy to establish, therefore, that Ps(u; �) 6= 0. Now, if

Ps(u; �) = Qs(u; �), then it would follow from (7) that v(u+ �) = v(u) and, hence, that

E((a(u+ �)� a(u))�
(b(u+ �) � b(u)))

= E (a(u+ �) � 
b(u+ �))�E (a(u)� 
b(u))

=
�
(u+ �)k � uk

�
v(u)

=

�
kuk�1 +

k(k � 1)

2
�uk�2 + � � �

�
�v(u):
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Note that there is a homomorphism �j 2 f�1; : : : ; �ng such that j�j(�v(u))j � 1. If we

apply such a homomorphism to the equation above, we get that the right-hand side will

be� jujk�1 � t(k�1)=n. Also, since a(u+�) and a(u) 2 I and b(u+�) and b(u) 2 J with

jIj and jJ j each � H, the left-hand side will be� H. We will take s � 1 so that the above

is impossible. Thus, we get that the left-hand side of (8) is a non-zero polynomial in � of

degree 2s. Hence, there are at most 2s possible values of � as above including � = 0 and

� = ��. In other words, with s � 1, there are � 2s di�erent u = u1!1+ � � �+un!n 2 S(t)
with (u1; : : : ; un) 2 C1(t). We divide C(t) into as few sub-cubes as possible with each edge

length � c7X
�1=(2s+1)t(k+s+1)=(n(2s+1)). Recall that t � Xn=k. By the above and our

previous comments, we obtain that

jS(t)j � t

cn7X
�n=(2s+1)t(k+s+1)=(2s+1)

+ 1(9)

� Xn=(2s+1)t(s�k)=(2s+1);

(where now the implied constant depends on c7). In our upper bound for P (X), we can

therefore take B(X; t) to be the last expression in (9). Recalling from Lemma 3, we will

need s � k � 1, we obtain that

P (X)� Xn=(2s+1)T�(k�s)=(2s+1)
�
X

H
+ 1

�2

:

Except for the power of 2 appearing in this last factor, this bound for P (X) is the same

bound one gets in the single variable problem (cf. [10, 11]). Recall that 1 � s � k � 1,

H = c8T
(k�s)=n, and T = X2. Observe that by de�nition, P (X) = 0 unless there exist

integers a and b in [1; X] such that pkjf(a; b) for some prime p > T . But this means

X2k = T k < pk � f(a; b)� Xn;

where we have used that f(a; b) 6= 0 since f(x; y) is irreducible and of degree � 2. Thus,

P (X) = 0 if k > n=2, and the theorem trivially follows from Lemma 1. In fact, it is not

di�cult to modify this simple observation to deal with the case that f(x; y) is of degree 1.

Consider now the case that k � n=2. Then one easily gets H � X. We deduce that

P (X)� Xr;
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where

r = 2 +
n+ 2s� 2k

2s+ 1
� 4k � 4s

n
:

To obtain an asymptotic result from Lemma 1, we require r < 2. In other words, we need

n(n+ 2s� 2k)� (2s+ 1)(4k � 4s) < 0:

We expand the left-hand side and complete a square to reduce the problem to showing

that

1

2

�
4s � 4k � n� 2

2

�2

+
1

8

�
7n2 � 16k2 � 8kn� 4n� 16k � 4

�
< 0

To simplify matters, we only consider n � 8; the remaining n can be dealt with similarly.

We consider k � (2
p
2 � 1)n=4. For such k and n, we have that (4k � n � 2)=2 � 2 and

k � 2. Also, one checks that 4(k � 1) � (4k � n � 2)=2. We conclude that there is an

s 2 f1; 2; : : : ; k � 1g such that the multiple 4s of 4 is within 2 of (4k � n � 2)=2. Hence,

using this choice for s, we need only show that

2 +
1

8

�
7n2 � 16k2 � 8kn� 4n� 16k � 4

�
< 0:

Since the left-hand side is a decreasing function of k and k � (2
p
2 � 1)n=4, we will be

through if the value of the left-hand side is < 0 when we replace k with (2
p
2 � 1)n=4.

Doing so, the left-hand side becomes (3 � 2
p
2n)=2, giving the desired result. Thus, we

have established the theorem in the case that n � 8.

4. Further Remarks

In this section, we make some remarks concerning improvements on the theorem in the

introduction. In Gouvêa and Mazur [4], they made the nice observation that Hooley's

method can be used to obtain results about k�free values of reducible polynomials f(x) 2
Z[x] and k�free values of reducible binary forms f(x; y) 2 Z[x; y]. More speci�cally, in the

case that f(x) 2 Z[x], one can show that if f(x) is squarefree with no �xed kth prime power

divisor and each irreducible factor of f(x) has degree � k + 1, then there are in�nitely
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many integersm for which f(m) is k�free and the density of suchm is
Q
p

�
1� (�(pk)=pk)

�
.

From the work of Greaves [6], one gets that if f(x; y) is a squarefree binary form of degree

n with non-zero coe�cients for xn and yn which has no �xed kth prime power divisor and

if the degree of each irreducible factor of f(x; y) is � 6 in the case k = 2 and is � 2k + 1

in the case of k > 2, then there are in�nitely many integer pairs (a; b) for which f(a; b)

is k�free and the density of such pairs is
Q
p

�
1� (�(pk)=p2k)

�
. The analogous extensions

of Nair's method hold for both the single variable problem and the binary form problem.

To explain these comments brie
y, we consider the case of a binary form f(x; y) and we

refer back to the proof of Lemma 1. We considered there three quantities S1, S2, and S3.

One checks that the estimates given for S1 remain valid when f(x; y) is reducible as above.

Observe here, though, that the other assumptions made are essential. For example, we

must have f(x; y) squarefree or else � = 0 and our bounds on �(pk) need revising andQ
p

�
1� (�(pk)=p2k)

�
= 0. For S2 and S3, one works separately with the contribution of

each irreducible factor of f(x; y) and then pieces them together (cf. [4],[6]). (We avoided

the situation that deg f = 1 in the previous sections, but it is not di�cult to deal with

factors of degree one as well.) The di�erence between Hooley's method and Nair's is in

the estimating of S3, but in either case, one can piece together the contribution of each

irreducible factor provided f(x; y) is squarefree.

Suppose now that Nf denotes the greatest common divisor of the values of f(m) if

f(x) 2 Z[x] and of f(a; b) if f(x; y) 2 Z[x; y]. In either case, denote the degree of f by n.

In the case that f(x) 2 Z[x], Hensel (cf. [1]) showed that one can compute Nf from

Nf = gcd(f(0); f(1); : : : ; f(n)):

It is fairly easy to conclude from the situation in one variable, that in the binary case

Nf = gcd (f(i; j) : i; j 2 f0; 1; : : : ; ng) :

We factor Nf as UfVf where Vf is the largest k-free factor of Nf . We observe that it

is possible to replace the role of f(x) and f(x; y) in the results obtained from Hooley's
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and Nair's methods by f(x)=Uf and f(x; y)=Uf ; then one needn't require that f has no

�xed kth prime power divisor. Thus, for example, if f(x; y) is a squarefree binary form of

degree n with non-zero coe�cients for xn and yn with each irreducible factor of f(x; y) of

degree � 4k=(2
p
2� 1), then there are in�nitely many integer pairs (a; b) for which f(a; b)

is k�free and the density of such pairs is

Y
p-Uf

�
1� (�(pk)=p2k)

� Y
pr jjUf

�
1� (�(pk+r)=p2k+2r)

�
:

It is perhaps worth noting that one has as an example that for any non-negative integer

n, there are in�nitely many integers m for which
�
m

n

�
is squarefree and the density of such

m is Y
p>n

�
1� n

p2

�Y
p�n

�
1� �(pe(p))

pe(p)

�

where e(p) = 2+[n=p]+[n=p2 ]+� � � and �(pe(p)) is the number of positive integers u � pe(p)

such that pe(p) divides u(u + 1) � � � (u+ n � 1). We note, however, that the result in this

example is an easy consequence of sieve methods.

As mentioned in the introduction, the constant (2
p
2� 1)=4 appearing in the theorem

is the best constant that comes out of these methods, but the theorem does not in general

give the best k for a given n. For example, a direct application of the theorem suggests

that these methods only improve on Greaves' results when k � (2
p
2� 1)(2k+2)=4 or, in

other words, when k � 11. However, we can obtain k�free values for binary forms f (as

described above or in the previous sections) of degree 2k + 2 whenever k � 5 as follows.

Take T = X2
p
logX . Take H = c8T

(k�s)=n as in Section 3. Recall that

(10) P (X)� Xn=(2s+1)T�(k�s)=(2s+1)
�
X

H
+ 1

�2

:

Since 1 � s � k � 1, one easily checks that logX appears to a negative exponent on the

right-hand side. Thus, to obtain that f(a; b) is k�free for in�nitely many (a; b), we only

need

n+ 2s� 2k

2s + 1
� 4k � 4s

n
:

Taking s = 1 and n = 2k + 2, we easily obtain the above inequality whenever k � 5.
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