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1. Introduction

Grosswald conjectured that the Bessel Polynomials

yn(x) =

nX
j=0

(n+ j)!

2j(n� j)!j!
xj

are all irreducible over the rationals and obtained several results concerning their irre-

ducibility. The statement of this conjecture and his results are described in his book

Bessel Polynomials [7]. The author in [4] established that almost all Bessel Polynomials

are irreducible. More precisely, if k(t) denotes the number of n � t for which yn(x) is

reducible, then k(t) = o(t). He later [5] observed that the argument could be strengthened

to obtain k(t) � t= log log log t. More recently, it was shown by Sid Graham and the au-

thor [6] that a simpli�cation of these methods with some additional elementary arguments

lead to k(t) � t2=3. In this paper, we prove that yn(x) is irreducible for all but �nitely

many (possibly 0) positive integers n. Although the current methods lead to an e�ective

bound on the number of reducible yn(x), such a bound would be quite large and we do

not concern ourselves with it.

The coe�cient of xj in yn(x) is
�
n+j

2j

�Qj

k=1(2k � 1) and, hence, integral. The con-

stant term is 1. Thus, the irreducibility of yn(x) over the rationals is equivalent to the

irreducibility of yn(x) over the integers. It is slightly more convenient to consider

zn(x) = xnyn(2=x) =

nX
j=0

(2n� j)!

j!(n� j)!
xj
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rather than yn(x). The polynomials zn(x) are monic polynomials with integer coe�cients,

and yn(x) is irreducible if and only if zn(x) is irreducible. The methods we discuss here

will enable us to obtain the following general result from which the irreducibility of all but

�nitely many yn(x) is an immediate consequence.

Theorem 1. There exists an absolute constant n0 such that for any n � n0 and any

integers a0; a1; : : : ; an with ja0j = janj = 1,

nX
j=0

aj
(2n� j)!

j!(n� j)!
xj

is irreducible.

There is an equivalent formulation of Theorem 1 with the coe�cients of zn(x) replaced

by the coe�cients of yn(x). Speci�cally, for n su�ciently large and for arbitrary integers

a0; a1; a2; : : : ; an with ja0j = janj = 1, the polynomial

nX
j=0

aj
(n+ j)!

2j(n� j)!j!
xj

is irreducible. For computational reasons, which will not be elaborated on, the author

suspects that Theorem 1 holds with n0 = 1 and conjectures so here.

The remainder of the paper is divided up as follows. In Section 2, we discuss some

preliminary material related to Newton polygons. We also mention some errors that appear

in the literature. In Section 3, we illustrate the techniques in this paper by giving a new

proof of a related theorem of I. Schur [8]. Section 4 contains a proof of Theorem 1.

2. Newton Polygons

For a prime p and integers a and b with ab 6= 0, we make use of the p�adic notation

�(a=b) = �p(a=b) = e1 � e2 where pe1 jja and pe2 jjb:

We de�ne �(0) = +1. Let f(x) =
Pn

j=0 ajx
j 2 Z[x] with a0an 6= 0. Let S =

f(0; �(an)); (1; �(an�1)); : : : ; (n�1; �(a1)); (n; �(a0))g, a set of points in the extended plane.

Following Grosswald [7], we refer to the elements of S as spots. We consider the lower
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edges along the convex hull of these spots. The left-most edge has one endpoint being

(0; �(an)) and the right-most edge has (n; �(a0)) as an endpoint. The endpoints of every

such edge belong to the set S. The slopes of the edges are increasing when calculated from

left to right. The polygonal path formed by these edges is called the Newton polygon for

f(x) with respect to p. Dumas [2] established the following:

Lemma 1. Let g(x) and h(x) be in Z[x] with g(0)h(0) 6= 0, and let p be a prime. Let k

be a non-negative integer such that pk divides the leading coe�cient of g(x)h(x) but pk+1

does not. Then the edges of the Newton polygon for g(x)h(x) with respect to p can be

formed by constructing a polygonal path beginning at (0; k) and using translates of the

edges in the Newton polygons for g(x) and h(x) with respect to the prime p (using exactly

one translate for each edge). Necessarily, the translated edges are translated in such a way

as to form a polygonal path with the slopes of the edges increasing.

A proof of Lemma 1 can be found in [11] and further discussions and examples related

to them can be found in [1]. We emphasize that, for our purposes, when referring to the

\edges" of a Newton polygon, we shall not allow 2 di�erent edges of the same Newton

polygon to have the same slope.

Many of the irreducibility results of Grosswald [7] concerning Bessel Polynomials are

based on making use of Newton polygons. The author was unable to verify one of these

results, Theorem 1 (f) on page 99 of [7]. The result asserts that if p is the largest prime

factor of n or of n+1, then zn(x) cannot have any factors of degree < p�1. Later (cf. [4]),

Grosswald used this result to help establish that zn(x) is irreducible for all n � 106. This

consequence of Theorem 1 (f) would now be in question, but Sid Graham has meanwhile

veri�ed that zn(x) is irreducible for n � 107 using methods from [6]. Much of the work in

this paper began as an e�ort to correct Theorem 1 (f).

Before ending this discussion, we mention that the statement of Theorem A0 in [7] is

not correct. The reference to this theorem in [7], however, has a correct statement of a

similar result. The error in Theorem A0 is that spots are considered along the edges of

the Newton polygon rather than arbitrary lattice points. The polynomial f(x) = (x+ 2)2

with the prime p = 2 provides a simple counterexample.
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Our use of Newton polygons is summarized in the following lemma.

Lemma 2. Let k and ` be integers with k > ` � 0. Suppose g(x) =
Pn

j=0 bjx
j 2 Z[x]

and p is a prime such that p - bn, pjbj for all j 2 f0; 1; : : : ; n � `� 1g, and the right-most

edge of the Newton polygon for g(x) with respect to p has slope < 1=k. Then for any

integers a0; a1; : : : ; an with ja0j = janj = 1, the polynomial f(x) =
Pn

j=0 ajbjx
j cannot

have a factor with degree in the interval [`+ 1; k].

Proof. We �rst consider the case that aj = 1 for all j 2 f0; 1; : : : ; ng so that f(x) = g(x).

Assume f(x) in this case has a factor with degree in [` + 1; k]. Then there exist u(x) and

v(x) in Z[x] with f(x) = u(x)v(x) and ` + 1 � deg u(x) � k. We consider the Newton

polygon for f(x) = g(x) with respect to p. Since the slopes of the edges of the Newton

polygon for f(x) increase from left to right, the conditions of the lemma imply that each

edge has slope in [0; 1=k). The left-most edge of the Newton polygon may have slope 0.

For now, we consider an edge of the Newton polygon which does not have slope 0. Let

(a; b) and (c; d) be 2 lattice points on such an edge. Then the slope of the line passing

through these points is the slope of the edge so that

1

jc� aj
�
jd� bj

jc� aj
<

1

k
:

Hence, jc� aj > k. In other words, any 2 lattice points on an edge with non-zero slope of

the Newton polygon for f(x) with respect to p have their x�coordinates separated by a

distance > k. Since degu(x) � k, we get that translates of the edges of the Newton polygon

for u(x) with respect to p cannot be found within those edges of the Newton polygon for

f(x) with respect to p which have non-zero slope. From Lemma 1 (with k = 0), the left-

most edge of the Newton polygon for f(x) must have slope 0 and length � deg u(x). The

conditions of the present lemma imply that �(bn�j) � 1 for j 2 f`+1; `+2; : : : ; ng so that

if the left-most edge of the Newton polygon for f(x) with respect to p has slope 0, then it

has length � ` < degu(x), giving a contradiction.

Next, we consider the general case of arbitrary integers a0; a1; : : : ; an with a0 = �1 and

an = �1. The conditions on a0 and an imply that the left and right-most endpoints of

the Newton polygon for f(x) with respect to p are the same as the left and right-most
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endpoints of the Newton polygon for g(x) with respect to p, respectively. Also, pjajbj for

all j 2 f0; 1; : : : ; n� `� 1g. All the edges of the Newton polygon for g(x) with respect to p

lie above or on the line containing the right-most edge. The same statement holds for f(x)

in place of g(x). Note that �(ajbj) � �(bj) for all j 2 f0; 1; : : : ; ng. Hence, we also get

that all the edges of the Newton polygon for f(x) lie above or on the line containing the

right-most edge of the Newton polygon for g(x). Since the right-most endpoint for each

of these 2 Newton polygons is the same, we deduce that the slope of the right-most edge

of the Newton polygon for f(x) is less than or equal to the slope of the right-most edge of

the Newton polygon for g(x). Therefore, the right-most edge of the Newton polygon for

f(x) must have slope < 1=k. Thus, f(x) satis�es the same conditions imposed on g(x) in

the statement of the lemma so that by appealing to the �rst part of the proof, the lemma

follows. �

Observe that one may strengthen Lemma 2 by requiring only p - a0an rather than

ja0j = janj = 1. We will not, however, make use of this stronger version of Lemma 2 in the

proof of Theorem 1.

3. A Theorem of I. Schur

As mentioned in the previous section, this paper began partially as an e�ort to correct

Theorem 1 (f) in [7]. A second motivation for the author's approach to establishing

Theorem 1 is based on an interest of the author to �nd a proof of a result of I. Schur

[8] that makes use of Newton polygons. This result of Schur is the following.

Theorem 2. Let n be a positive integer, and let a0; a1; : : : ; an denote arbitrary integers

with ja0j = janj = 1. Then

an
xn

n!
+ an�1

xn�1

(n� 1)!
+ � � � + a1x+ a0

is irreducible over the rationals.

Schur's approach made use of prime ideals in algebraic number �elds rather than Newton

polygons. We note that other than the use of Newton polygons, the approach used here

makes considerable use of the techniques in Schur's paper. In particular, Schur's argument
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made use of a very nice lemma given next, the proof of which was the largest portion of

his paper [8]. As it turned out, the lemma had already been established by Sylvester [9].

It is a generalization of Bertrand's postulate that for every integer m � 1, there is a prime

in the interval (m; 2m] (take k = m).

Lemma 3. Let m and k be positive integers with m � k. Then there is a prime p � k+1

which divides one of the numbers m + 1;m + 2; : : : ;m + k.

Proof of Theorem 2. To make use of Lemma 2, we consider

g(x) =

nX
j=0

n!

j!
xj and f(x) =

nX
j=0

aj
n!

j!
xj :

It su�ces to show that f(x) is irreducible over the integers. Assume f(x) is reducible.

Let k be the smallest degree of an irreducible factor of f(x). Necessarily, k � n=2. Thus,

n � k � k so that Lemma 3 implies there is a prime p � k + 1 dividing n � ` for some

` 2 f0; 1; : : : ; k � 1g. We consider the Newton polygon for g(x) with respect to such a

prime p. For j 2 f0; 1; : : : ; n� `� 1g, we get that n!=j! is divisible by n� ` and, hence, p.

To obtain a contradiction and thereby prove the theorem, Lemma 2 implies that it su�ces

to show that the right-most edge of the Newton polygon for g(x) with respect to p has

slope < 1=k. Observe that the slope of the right-most edge can be determined by

max
1�j�n

�
�(n!)� �(n!=j!)

j

�
:

Fix j 2 f1; : : : ; ng. Note that p�(n!)��(n!=j!) is the largest power of p which divides j!. Let

r be the non-negative integer for which pr � n < pr+1. Then for j 2 f1; : : : ; ng,

�(n!)� �(n!=j!) =

�
j

p

�
+

�
j

p2

�
+ � � � +

�
j

pr

�
� j

�
1

p
+ � � � +

1

pr

�
= j

pr � 1

pr(p� 1)
:

Therefore,

max
1�j�n

�
�(n!)� �(n!=j!)

j

�
�

pr � 1

pr(p� 1)
<

1

p � 1
:

Recall that p � k + 1. Hence, the right-most edge of the Newton polygon for g(x) with

respect to p has slope < 1=k, and the proof is complete. �
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4. The Proof of Theorem 1

Throughout this section, we set

f(x) =

nX
j=0

aj
(2n� j)!

j!(n� j)!
xj ;

where the aj 's are as in the statement of Theorem 1. Our goal is to show that if n is

su�ciently large, then f(x) is irreducible. Lemma 2 implies that we can obtain information

about the degrees of the factors of f(x) by considering the Newton polygon for zn(x).

Lemma 4. Let n be a positive integer. Suppose that p is a prime, that k and r are

positive integers, and that ` is a non-negative integer for which

(i) prjj(n� `);

(ii) p � 2`+ 1;

and

(iii)
log(2n)

pr log p
+

1

p� 1
�

1

k
:

Then f(x) cannot have a factor with degree 2 [`+ 1; k].

Proof. The result is trivial unless ` � n� 1, so we suppose this to be the case. Using the

notation in Grosswald [7], we de�ne for m 2 f0; 1; : : : ; ng,

cm =
(n+m)!

m!(n�m)!
; (1)

so that zn(x) =
Pn

m=0 cmx
n�m. The proof consists of verifying the hypotheses of Lemma

2. Observe that c0 = 1 so that p - c0. From (1), we see that

cm =

�
n+m

n

�
n(n� 1) � � � (n�m+ 1) for m � 1;

therefore pjcm for m = `+ 1; : : : ; n:
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Now we need to show that the right{most edge of the Newton polygon of zn(x) with

respect to p has slope < 1=k. The right-most edge has slope

= max
1�u�n

�
�(cn)� �(cn�u)

u

�

so that, by (iii), it su�ces to establish that

�(cn)� �(cn�u)

u
<

log(2n)

pr log p
+

1

p� 1

for 1 � u � n.

From (1), we see that

�(cn)� �(cn�u) = �(u!) + �

�
(2n)!

(2n� u)!

�
� �

�
n!

(n� u)!

�
: (2)

Note that

�(u!) =

1X
j=1

�
u

pj

�
<

1X
j=1

u

pj
=

u

p� 1
:

To handle the remaining terms in (2), we introduce the notation

a(n; j) =

�
n

pj

�
�

�
n� u

pj

�
;

so that

�

�
(2n)!

(2n� u)!

�
� �

�
n!

(n� u)!

�
=

1X
j=1

(a(2n; j)� a(n; j)) :

We note that a(n; j) is the number of multiples of pj in the interval (n� u; n]. Moreover,

the sum above may be truncated at j = [log(2n)= log p] since a(2n; j) = a(n; j) = 0 when

pj > 2n. To complete the proof it therefore su�ces to show that

a(2n; j)� a(n; j) � u=pr (3)

for j � 1. We distinguish three cases: j � r; u � 2`; j > r and u > 2`.

Suppose j � r. By condition (i), there is some m such that n = prm + `. From (ii),

2` < p � pj . Thus,

a(2n; j) =

�
2n

pj

�
�

�
2n� u

pj

�

=

�
2mpr�j +

2`

pj

�
�

�
2mpr�j +

2`� u

pj

�

=

�
2`

pj

�
�

�
2`� u

pj

�
= �

�
2`� u

pj

�
:
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Similarly,

a(n; j) = �

�
`� u

pj

�
:

Since [w] is an increasing function, we see that

a(2n; j) � a(n; j) =

�
`� u

pj

�
�

�
2`� u

pj

�
� 0 if 1 � j � r:

Since u > 0, (3) follows in this case.

Now suppose that u � 2`. Since 2` < p, 2n�2` is the only multiple of p in [2n�2`; 2n].

Therefore, (2n � u; 2n] has no multiples of p, and so a(2n; j) = 0: Thus, (3) holds in this

case.

Finally, suppose that j > r and u > 2`. The number of multiples of pr in (2n�u; 2n] is

� [u=pr ] + 1. Moreover, one of these multiples, 2n� 2`, is not divisible by pj since j > r.

Therefore,

a(2n; j) � a(2n; r)� 1 �

�
u

pr

�
:

Since a(n; j) � 0, inequality (3) holds in this case, completing the proof. �

The next lemma is a version of Lemma 4 for negative values of `. For the purposes of

establishing Theorem 1, we will only require a weakened form of the next lemma corre-

sponding to the case ` = �1.

Lemma 5. Let n be a positive integer. Suppose that p is a prime, that k and r are

positive integers, and that ` is a negative integer for which

(i0) prjj(n� `);

(ii0) p � 2j`j+ 1;

and

(iii0) max

�
1

p � 2j`j + 1
;

log(2n)

(pr � 2j`j + 1) log p

�
+

1

p� 1
�

1

k
:
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Then f(x) cannot have a factor with degree 2 [j`j; k].

Proof. We only sketch the �rst part of the proof as it is essentially the same as the �rst

part of the proof of Lemma 4. We suppose that j`j � n since otherwise the conclusion of

the lemma is trivial. By considering Lemma 2 and

cm =

�
n

m

�
(n+m)(n+m � 1) � � � (n+ 1) for m � 1;

it su�ces to show that the right-most edge of the Newton polygon of zn(x) with respect

to p has slope < 1=k. We continue as in the proof of Lemma 4 modifying the way we deal

with the last two terms on the right-hand side of (2). To get our desired result, it follows

from (iii0) that we need only establish the inequality

�

�
(2n)!

(2n� u)!

�
� �

�
n!

(n� u)!

�
=

1X
j=1

(a(2n; j)� a(n; j)) (4)

� umax

�
1

p� 2j`j + 1
;

log(2n)

(pr � 2j`j+ 1) log p

�

for 1 � u � n.

Next, we observe that the argument in the proof of Lemma 4 gives here that if j � r,

then

a(2n; j) =

�
2`

pj

�
�

�
2`� u

pj

�
= �1�

�
2`� u

pj

�
:

and

a(n; j) = �1�

�
`� u

pj

�
:

Hence,

a(2n; j) � a(n; j) =

�
`� u

pj

�
�

�
2`� u

pj

�
:

This last expression on the right is simply the number of multiples of pj in the interval

I = (2`� u; `� u], and condition (ii0) assures that there is at most one such multiple.

We consider now three cases depending on the size of u and establish that (4) holds in

each case. First, we consider 1 � u � p+ 2`. For such u, one checks that

n� `� p < n� u+ 1 � n and 2n� 2`� p < 2n� u+ 1 � 2n:
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Hence, each of the expressions (2n)!=(2n � u)! and n!=(n � u)! occuring at the beginning

of (4) is not divisible by p, and the inequality in (4) easily follows.

Next, we consider the case that p+ 2` < u � pr + 2`. For such u,

n� `� pr < n� u+ 1 � n and 2n� 2`� pr < 2n� u+ 1 � 2n;

and we deduce that none of n; n� 1; : : : ; n�u+1 are divisible by pr and none of 2n; 2n�

1; : : : ; 2n � u + 1 are divisible by pr. In other words, we can restrict the sum in (4) to

j < r. As mentioned above, for each j < r, we have that a(2n; j) � a(n; j) = 0 or 1.

Furthermore, a(2n; j)� a(n; j) = 1 precisely when there is a multiple of pj in the interval

I = (2`� u; `� u]. The latter can only happen if there is an integer `0 such that

2`� u+ 1 � `0pj � `� u:

Since `� u < 0, we deduce that `0 < 0 and

pj � �`0pj � �2`+ u� 1 = 2j`j + u� 1:

It follows that we can now restrict the sum in (4) to

j �

�
log(u+ 2j`j � 1)

log p

�
�

log(u+ 2j`j � 1)

log p
:

Since a(2n; j) � a(n; j) � 1 for each such j, it su�ces to show in this case that

log(u+ 2j`j � 1)

u log p
�

1

p� 2j`j+ 1
:

This inequality holds since u � p + 2`+ 1 = p � 2j`j + 1 and since the left-hand side is a

decreasing function of u.

Finally, we consider the case that pr + 2` < u � n. As in the proof of Lemma 4,

we restrict the sum in (4) to j � [log(2n)= log p]. As above, for each j < r, we obtain

a(2n; j)� a(n; j) � 1. Among the numbers 2n; 2n � 1; : : : ; 2n� u+ 1, the multiples of pr

are precisely the numbers of the form 2n� 2`� tpr where t 2 f1; 2; : : : ; [(u+2j`j� 1)=pr ]g.

It follows that for j � r,

a(2n; j) � a(2n; r) �

�
u+ 2j`j � 1

pr

�
:
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Therefore,

a(2n; j)� a(n; j) �
u+ 2j`j � 1

pr

for j � r. Since u � pr + 2` + 1, one checks that the right-hand side above is � 1 and,

hence, the above inequality also holds for j < r. We obtain that

�

�
(2n)!

(2n� u)!

�
� �

�
n!

(n� u)!

�
=

1X
j=1

(a(2n; j)� a(n; j)) �
(u+ 2j`j � 1) log(2n)

pr log p
:

It su�ces therefore to show that

(u+ 2j`j � 1) log(2n)

upr log p
�

log(2n)

(pr � 2j`j+ 1) log p
;

and this inequality holds since (u + 2j`j � 1)=u is a decreasing function and since in this

case u � pr � 2j`j + 1. �

To prove Theorem 1, let n be su�ciently large and assume f(x) is reducible. Let

k = k(n) denote the smallest degree of an irreducible factor of f(x). Necessarily, k � n=2.

We consider di�erent arguments depending on the size of k.

Case 1. n2=3 � k � n=2.

We begin by making use of the prime number theorem and a result of Grosswald [7]. We

consider a non-negative integer ` as small as possible such that p = n+`+1 is prime. Since n

is su�ciently large, we may take ` � 2n= log n. Then Theorem 4 on page 111 of Grosswald

[7] implies that zn(x) cannot have an irreducible factor with degree in the interval (`; n�`);

more speci�cally, the endpoints of the right-most edge of the Newton polygon for zn(x)

with respect to p are (`; 0) and (n; 1) so that zn(x) has an irreducible factor of degree

� n � ` and any remaining factor must have degree � ` � 2n= log n. From the point of

view of Lemma 2, taking g(x) = zn(x), we get that pjbj for all j 2 f0; 1; : : : ; n� `� 1g and

the right-most edge of the Newton polygon for g(x) with respect to p has slope 1=(n� `).

Thus, we get that f(x) cannot have a factor with degree in the interval [`+ 1; n � `� 1].

Hence, since ` � 2n= log n, f(x) cannot have a factor of degree k 2 (2n= log n; n=2]. Thus,

we deduce that k � 2n= log n.
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Recall in this case that k � n2=3 and n is large. We show that there is some prime

p > 3k > n2=3 that divides n(n� 1) : : : (n� k + 1) so that

log(2n)

pr log p
+

1

p� 1
<

log(2n)

3k log(n2=3)
+

1

3k
<

2

3k
+

1

3k
=

1

k
:

By Lemma 4, it will then follow that f(x) cannot have a factor of degree k, giving the

desired contradiction (for this case). To see that such a prime exists, we observe that since

n and, hence, k are large,

�(3k) <
4k

log k
:

We follow an argument of Erd}os [3] (also described by Tijdeman [10]). For each prime

p � 3k, we consider a number among n; n� 1; : : : ; n� k+1 which is divisible by pe where

e = e(p) is as large as possible. We dispose of all of these numbers, and let S denote the set

of numbers that are left. Since �(3k) � 4k= log k, we are left with at least k � (4k= log k)

numbers each of size � n� k + 1 > n=2. Thus,

Y
m2S

m �
�n
2

�k�(4k= log k)

:

For each prime p, let Np denote the exponent in the largest power of p dividing
Q
m2Sm.

Then for p � 3k,

Np �

�
k

p

�
+

�
k

p2

�
+ � � �

so that Y
p�3k

pNp � k! � kk �

�
2n

log n

�k
:

Therefore,

Y
p>3k

pNp � (n=2)k�(4k= log k)2�kn�k(log n)k � n�(4k= log k)

�
log n

4

�k
:

An easy calculation shows that this last expression is > 1. Thus,

Y
p>3k

pNp > 1;

from which the existence of a prime p > 3k that divides n(n� 1) : : : (n� k + 1) follows.
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Case 2. k0 � k < n2=3 with k0 a su�ciently large positive integer.

For k0 so chosen and k � k0, it easily follows that

�(3k) �
k

10
:

We follow the argument in Case 1 replacing 4k= log k by k=10. Thus, we obtain here that

Y
m2S

m �
�n
2

�9k=10

and Y
p�3k

pNp � k! � kk � n2k=3:

Hence, Y
p>3k

pNp �
�n
2

�9k=10
n�2k=3 =

� n

227

�k=30
nk=5 � nk=5: (5)

Note that since p > 3k in the product above, if p divides the product n(n�1) � � � (n�k+1),

then p divides exactly one of n; n�1; : : : ; n�k+1. For p > 3k and pjn(n�1) � � � (n�k+1),

we take r = r(p) > 0 and ` = `(p) 2 f0; 1; : : : ; k � 1g such that conditions (i) and (ii) of

Lemma 4 are satis�ed. Observe that r � Np (with equality holding if Np 6= 0). Hence,

since we are assuming f(x) has a factor of degree k, Lemma 4 implies that for every prime

p > 3k such that pjn(n� 1) � � � (n� k + 1), we have

log(2n)

pNp log p
+

1

p� 1
�

log(2n)

pr(p) log p
+

1

p� 1
>

1

k
: (6)

For each prime p > 3k, we have 1=(p � 1) � 1=(3k). Therefore, we deduce from (6) that

log(2n)

pNp log p
>

2

3k
;

or, in other words,

pNp <
3k log(2n)

2 log p
: (7)

Since p > 3k � 3k0 and n � 2k � 2k0, we get that for k0 su�ciently large, if Np 6= 0, then

p <
k log n

7
and Np <

log k + log log n� log 7

log p
:
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Therefore,

X
p>3k

Np log p �
X

3k<p�k log n=7

(log k + log log n� log 7) �
k log n

6
;

where in the last inequality we have used that �(x) � (7=6)x= log x for x su�ciently large.

On the other hand, from (5),

X
p>3k

Np log p �
k log n

5
:

This gives a contradiction, so f(x) has no factor of degree k 2 [k0; n
2=3).

Case 3. 5 � k < k0.

The number of primes � 2k is less than or equal to the number of even primes (i.e., 1)

plus the number of odd numbers � 2k minus 2 (for the odd numbers 1 and 9 which are

not prime). Hence, �(2k) � k� 1. Using an argument as in Case 1, we get that one of the

numbers n; n � 1; : : : ; n � k + 1, say n � `, can be written as a product m1m2 satisfying

m1 � k! � k0! and gcd(m2;
Q
p�2k p) = 1. We get that m2 � c1n for some constant c1 (for

example, c1 = 1=(2 � k0!)). Assuming f(x) has a factor of degree k, we get from Lemma

4 that for every prime power divisor pr of m2,

log(2n)

pr log p
+

1

p� 1
>

1

k
:

Since each such p is � 2k + 1, we get that

log(2n)

pr log p
>

1

2k
�

1

2k0
:

Thus,

pr <
c2 log n

log p

for some constant c2. Then one gets that

p <
2c2 log n

log log n
and r <

2 log log n

log p
:
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These lead to a contradiction since for n su�ciently large,

logm2 =
X

pr jjm2

r log p �
X

p<2c2 log n= log log n

2 log log n

log p
log p

�
5c2 logn

log logn
< log (c1n) � logm2:

Thus, f(x) cannot have a factor of degree k 2 [5; k0).

Case 4. 1 � k � 4.

For these values of k, we get that �(2k) = k. We repeat the argument in Case 3 except

now we consider the k + 1 numbers n + 1; n; n � 1; : : : ; n � k + 1. Among these there is

an n � ` = m1m2 with m1 � 12, m2 � (n � `)=12 � n=15 and gcd(m2;
Q

p�2k p) = 1.

Observe that if pr is a prime power divisor of m2, then p � 2k + 1 so that either (i) and

(ii) (if ` � 0) or (i0) and (ii0) (if ` = �1) hold. Furthermore, if ` = �1 and the maximum

appearing on the left-hand side of (iii0) is 1=(p�2j`j+1) = 1=(p�1), then (iii0) also holds,

implying f(x) does not have an irreducible factor of degree k 2 f1; 2; 3; 4g and giving a

contradiction. Hence, using Lemma 4 if ` � 0 and Lemma 5 if ` = �1, we get that

log(2n)

(pr � 1) log p
+

1

p� 1
>

1

k
:

Since p � 2k + 1 and k � 4, we deduce

log(2n)

(pr � 1) log p
>

1

2k
�

1

8
:

We then obtain

pr � 2 (pr � 1) <
16 log(2n)

log p
�

20 log n

log p
:

The argument in Case 3 now easily follows through with c1 replaced by 1=15 and c2 replaced

by 20.

Combining the cases, we get that for n su�ciently large, f(x) cannot have a factor of

degree k 2 [1; n=2], from which Theorem 1 follows.
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