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x1. Introduction. The well-known abc-conjecture of Masser and Oesterl�e states:

Given � > 0, there is a number C(�) such that for any relatively prime positive integers a,

b, c with a+ b = c, we have

c < C(�)
�
Q(abc)

�1+�
; (1:1)

where Q(k) =
Q
pjk p denotes the product of the distinct primes dividing k.

See e.g. [11] for a discussion of the history and implications of the conjecture. It can of

course be expressed in terms of not necessarily positive integers a, b, c (which may be taken

to satisfy a+b+c = 0 if we prefer) in which case the bound is asserted for maxfjaj; jbj; jcjg.
The inequality (1.1) can be rewritten in the form

log(a+ b) < (1 + �) logQ
�
ab(a + b)

�
+ logC(�):

Denote

La;b =
log(a + b)

logQ
�
ab(a + b)

� ; (1:2)

and let (La;b) denote a sequence whose values are these numbers La;b, taken in some �xed

order. In this notation the conjecture asserts

(La;b) is a bounded sequence whose greatest limit point does not exceed 1.

On the other hand, there exist in�nitely many examples of La;b which are larger than

1 (see [13]). Currently, the greatest known, discovered by E. Reyssat (see [14] or [2]) is

1:62991 : : :, arising from taking a = 2, b = 310 � 109, c = 235.

If the abc-conjecture holds, the greatest limit point of (La;b) would in fact equal 1. To

see this, take a = 1, b = 2n � 1. Then

Q
�
ab(a + b)

�
= 2

Y
pj2n�1

p < 2n+1;

so La;b > n=(n+ 1)! 1 as n!1. So we can reformulate the abc-conjecture as

(La;b) is a bounded sequence with its greatest limit point equal to 1.

Now let

L = fLa;b : a � 1; b � 1; (a; b) = 1)g
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be the set of (distinct) values of (La;b), and let L0 be the \derived" set of limit points of
L. We are interested in seeing what can be actually proved about L0. By use of a sieve

method we obtain the following theorem.

Theorem 1. The set L0 of limit points of L contains the interval
�
1

3
; 15
16

�
.

The entry 1

3
here is the best possible because log(a + b) � 1

3
log
�
ab(a + b)

�
�

1

3
logQ

�
ab(a + b)

�
in (1.2). On the other hand, we will show in Theorem 4 that if the

abc-conjecture holds then 15

16
may be replaced by 1 in Theorem 1.

One might also enquire about the limit points of

M =

�
log a

logQ
�
ab(a + b)

� : 1 � a � b; (a; b) = 1

�

in addition to those of L. As will be seen, our methods show that�
0; 3

4

�
�M0; (1:3)

so that the set of combined limit points of L andM contains
�
0; 15

16

�
.

Our proof of Theorem 1 rests on the following result about squarefree values of binary

forms.

Theorem 2. (a) Let 1 � Y � X, where X is su�ciently large, and let f(x; y) 2Z[x; y]

be a binary form whose irreducible factors fi are distinct and all have degrees not exceeding

�. Let D denote the largest �xed divisor of f(x; y), and let S = D=
�Q

pjD p
�
. Let N(X;Y )

denote the number of pairs hx; yi with

X < x � 2X; Y < y � 2Y (1:4)

for which f(x; y)=S is squarefree. Suppose for some � > 0

X� < (XY )3��; Y > X�: (1:5)

Then

N(X;Y ) = CfXY

�
1 +O

�
1

logX

��
; (1:6)

where the constant Cf > 0 depends only on f as in (3.6) below, and the O-constant depends

only on �.

(b) In part (a), set X = Y �, where � > 1 is �xed. Then (1.6) holds

for any � when � � 3

if � < 3 when � = 4

if � < 3

2
when � = 5:

In this theorem, the �rst inequality in (1.5) implies Y > X�=3 when � � 3; for all

� we assume Y > X�, for our convenience. In particular we will take advantage of the
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implication 1= log Y � 1= logX. As a consequence, when f is quadratic our theorem does

not embody even the result of Nagell [12] in which Y = 1. It would be possible to re�ne

Theorem 2 into a result holding uniformly for 1 < Y � X, but at the cost of introducing

technicalities into the treatment that are not necessary for our purpose here.

Observe that Theorem 2 also marginally fails to include the results of Hooley [9],

where Y = 1, � = 3, and of one of the present authors [8], where X = Y , � = 6, and may

thus be regarded as a somewhat imperfect bridge between them. The imperfection stems

from our use in the proof of Lemma 2 of the estimate d(n)� n� for the divisor function.

There is therefore no need to take extra care about other factors that also contribute no

worse than X� to our requirements in (1.5).

The treatment in [8] was arranged on the assumption X = Y , and it is necessary to

modify the treatment to obtain part (a) of Theorem 2. For part (b), which is what we

actually use, we have only to observe that the given conditions are su�cient for (1.5).

Denote the n-th cyclotomic polynomial by �n(x). In x6 we establish the following

theorem.

Theorem 3. Assume the abc-conjecture holds. Then, for every positive integer n,

there exist in�nitely many integers m for which �n(m) is squarefree.

As we indicate in x6, the same method su�ces to show that (assuming the abc-

conjecture) for all positive integers n the polynomial (xn � 1)=(x � 1) takes in�nitely

many squarefree values.

Unconditionally, it has not been shown that there exists an irreducible f(x) 2 Z[x]

of degree � 4 having the property that f(m) is squarefree for in�nitely many integers m.

Before the stronger result of Hooley [9] mentioned earlier Erd}os [4] had established that

all irreducible cubics with largest �xed divisor equal to 1 possess this property.

Finally, and also in x6, we point out what is conjectured to be true in the direction of

our Theorem 1.

Theorem 4. Assume the abc-conjecture holds. Then the set of limit points of L is

precisely the interval [1
3
; 1].

By the same method an analogous result can be obtained about M0, as described in

(1.3):

Assume the abc-conjecture holds. Then the set of limit points of M is precisely the

interval [0; 1].

Throughout this article the symbol p denotes a prime. The arbitrarily small real

number � > 0 need not be the same on each occurrence.

x2. The treatment of Theorem 1. We describe here how Theorem 1 follows once Theorem 2

has been established.

First we use the following construction, which in conjunction with a simpler version of

Theorem 2 leads to the weaker form of our Theorem 1 in which the right-hand end-point
15

16
is replaced by 6

7
. Take

a = y� ; b = x� � y� :
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Thus c = a+b = x� . We will specify � = 1, 2, 4, or 6. Fix an exponent � > 1 and consider

X = Y �; X < x � 2X; Y < y � 2Y; (2:1)

as in Theorem 2. For the speci�ed values of � the irreducible factors of x� � y� are of

degree at most 2. It is then a relatively easy case of Theorem 2 that we can, for any � � 1,

�nd x, y satisfying (2.1) so that xy(x� � y�) is squarefree.

For La;b, as de�ned in (1.2), this construction gives Q
�
ab(a + b)

�
= xy(x� � y�),

(a; b) = 1, and

La;b =
logx�

log
�
xy(x� � y�)

� = ��

(� + 1)�+ 1
+O

�
1

logX

�
:

The limit points of these La;b cover the interval
�
�=(�+2); �=(�+1)

�
. On taking the union

of these for � = 1, 2, 4, 6 we cover (1
3
; 6
7
) n f1

2
; 2
3
g, whence

�
1

3
; 6
7

�
� L0; (2:2)

since the set L0 contains the derived set of the set of limit points of the sequence (La;b).

The construction with � = 6 also gives

log a

logQ
�
ab(a + b)

� = �

(� + 1)�+ 1
+O

�
1

logX

�
;

which leads in a similar way to the assertion (1.3) about M0.
Next, we show how Theorem 2 can further be used to obtain that [ 6

7
; 12
13
] � L0. We

invoke the polynomial identity

y3(2x+ y) + (x + y)3(x � y) = x3(x + 2y):

We replace the pair hx; yi by hx3; y3i and set

a = y9(2x3 + y3); b = (x3 + y3)
3

(x3 � y3):

Thus a + b = x9(x3 + 2y3). We apply Theorem 2 to

f
�
x; y

�
= xy(x3 + 2y3)(2x3 + y3)(x3 + y3)(x3 � y3):

One easily checks that S = 2. We deduce that Q
�
ab(a + b)

�
= f(a; b)=2 provided this last

expression is squarefree. Since the irreducible factors of f(x; y) have degree at most 3, we

obtain from Theorem 2 that we can arrange this for any � in (2.1). Proceeding as earlier

we obtain

La;b =
12�

13�+ 1
+O

�
1

logX

�
;

whence
�
6

7
; 12
13

�
� L0.
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To complete the inference of Theorem 1 from Theorem 2, we describe now how to

obtain [12
13
; 15
16
] � L0. As above, we make use of a certain polynomial identity, namely

(x+ y)7(x� y)(x2 � xy + y2) + y7(2x+ y)(3x2 +3xy + y2) = x7(x+ 2y)(x2 + 3xy +3y2):

These polynomial identities were obtained by considering special cases of the identities

described by Lemma 3 in [5]. For example, this last identity follows from considering

k = 7, s = 3 there. Such identities were explicitly given earlier by Huxley and Nair in

[10], but they also go back even further as part of the general theory of Pad�e approximants

(cf. [1]).

In the above identity, we replace hx; yi with hx2; y2i. Set
a = (x2 + y2)7(x2 � y2)(x4 � x2y2 + y4); b = y14(2x2 + y2)(3x4 + 3x2y2 + y4):

We apply Theorem 2 with � = 4 and

f(x; y) = xy(x + y)(x � y)(x2 + y2)(2x2 + y2)(x2 + 2y2)

� (x4 � x2y2 + y4)(3x4 + 3x2y2 + y4)(x4 + 3x2y2 + 3y4):

Here, S = 6. We deduce that Q
�
ab(a + b)

�
= f(a; b)=6 for in�nitely many pairs ha; bi

de�ned as above with x 2 (X; 2X], y 2 (Y; 2Y ], and X = Y �, where � can be an arbitrary

number from the interval (1; 3). Proceeding as before, the result [ 12
13
; 15
16
] � L0 easily follows,

completing the proof that Theorem 1 is a consequence of Theorem 2.

x3. The treatment of Theorem 2. In this section we reduce the proof of Theorem 2 to that

of Lemmas 1 and 2 below. The general structure of the argument resembles that in [9], [7]

and [8], where some points are discussed at greater length than below.

Let N 0(X;Y ) denote the number of pairs hx; yi of integers satisfying (1.4) such that

f(x; y)=S 6� 0;mod p2 for all p � � = 1

3
log Y; (3:1)

this providing the de�nition of �. Then

N(X;Y ) = N 0(X;Y ) +O
�
E(X;Y )

�
; (3:2)

where

E(X;Y ) =
X

X<x�2X;Y<y�2Y
p2jf(x;y) for some p>�

1: (3:3)

The Inclusion-Exclusion Principle su�ces to estimate N 0. We obtain

N 0(X;Y ) =
X

X<x�2X;Y<y�2Y

X
`2jf(x;y)=S
pj`)p��

�(`)

=
X
`

pj`)p��

�(`)
X

1�u�S`2; 1�v�S`2
f(u;v)�0;mod S`2

X
X<x�2X;Y<y�2Y
x�u;y�v;mod S`2

1

=
X
`

pj`)p��

�(`)
X

1�u�S`2; 1�v�S`2
f(u;v)�0;mod S`2

�
X

S`2
+O(1)

��
Y

S`2
+O(1)

�
:
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Denote

�(r) =
X

1�u�r; 1�v�r
f(u;v)�0;mod r

1: (3:4)

When ` is squarefree and Y su�ciently large the condition p j`) p � � gives ` �
Q
p�� p =

exp
�P

p�� log p
�
� e9�=8 = Y 3=8, since � is as de�ned in (3.1). Thus Y=(S`2)� 1 and it

follows that

N 0(X;Y ) = XY
X
`

pj`)p��

�(`)�(S`2)

S2`4
+O

�
X

X
`�Y 3=8

�(S`2)

`2

�

= CfXY

�
1 +O

�
1

logY

��
;

(3:5)

where

Cf =
Y
p

�
1� �(p�+2)

p2�+4

�
> 0; (3:6)

the exponent � = �(p) being de�ned by p� kS. The properties of the function � needed

to support (3.5), in particular �(p2)� p2 , can be obtained as in [7]. The de�nition of S

given in Theorem 2 implies that �(p�+2) < p2�+4 for all p, so that Cf > 0.

Because of (3.2), (3.5) and (3.6) the proof of the main assertion (1.6) of Theorem 2

will be complete when we have shown

E(X;Y )� XY

log Y
: (3:7)

The irreducible factors fi of the form f are all distinct, so the discriminant � of f

is non-zero. If Y is large enough, as the theorem allows, then p > � implies that p does

not divide � or any non-zero coe�cient of any fi. If p - (x; y) in (3.3) then p2 jfi(x; y) for
some i (since p - �). Except when fi(x; y) is x or y this implies p - xy. So we can write

E(X;Y )� E(0)(X;Y ) +
X
i

E
(1)

i (X;Y ) +
X
i

E
(2)

i (X;Y ); (3:8)

where

E(0)(X;Y ) =
X

X<x�2X;Y <y�2Y; p>�
p2jxy

1;

E
(1)

i (X;Y ) =
X

X<x�2X;Y <y�2Y; �<p�XY �
fi(x;y)=kp

2; p-xy

1; (3:9)

E
(2)

i (X;Y ) =
X

X<x�2X;Y <y�2Y; p>XY �
fi(x;y)=kp

26=0; p-xy

1; (3:10)
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We may suppose fi(x; y) 6= 0 in (3.10) since otherwise the contribution to E(X;Y ) of the

pair hx; yi would already have been counted in (3.9). We will specify

� = 1= logX; (3:11)

although a smaller choice, even 1=X�, would be satisfactory for our purposes.

When Z = X or Z = Y the number of multiples of d in (Z; 2Z] does not exceed the

number in (0; 2Z], which is � Z=d. Hence

E(0)(X;Y )�
X
p>�

XY

p2
� XY

�
� XY

log Y
; (3:12)

since we speci�ed � = 1

3
log Y in (3.1).

The proof of Theorem 2 will be completed via the following two lemmas, which we

give in a form that is uniform in X, Y , �, �.

Lemma 1. Suppose 1 � Y � X and � � logX. Let fi be any one of the irreducible

factors of the form f , as described in Theorem 2. Then the expression E
(1)

i (X;Y ) given

in (3.9) satis�es

E
(1)

i (X;Y )� XY
p
�p

logX
+
XY

�
:

When �, � are as in (3.1), (3.11), and Y > X� as in Theorem 2, this estimate reduces

to E
(1)

i (X;Y )� XY= logX, which is what is needed for Theorem 2. Observe in particular

that the corresponding estimate obtained in [8], namely X2= logX, is not adequate in the

present context.

Lemma 2. Suppose 1 < Y � X, and let f be a form with no linear factors over Z.

De�ne

S(X;Y;K) =
X
jkj�K

X
X<x�2X;Y <y�2Y
f(x;y)=kp2; p-xy

1:

Then

S(X;Y;K)� X�=5
�
X
p
Y +K

1
4 (XY )

3
4

�
:

In (3.10) the form fi is irreducible. We can suppose it is not linear, for if so then the

sum (3.10) would be empty. In this sum, the variable k satis�es jkj � K, whereK � X�=p2

and p > XY �. Under the condition (1.5) of Theorem 2 this gives K � (XY )1��=�2, where
� is as in (3.11). Thus Lemma 2 gives

E
(2)

i (X;Y )� X�=5

�
X
p
Y +

(XY )1��=4p
�

�
� XY

log Y
:

With (3.12) and (3.8) these estimates for E
(1)

i (X;Y ) and E
(2)

i (X;Y ) establish (3.7)

and hence Theorem 2.

In [8] a weaker form of Lemma 2 was obtained (in the case X = Y ) using Selberg's

sieve method. The procedure could be adapted to the context X 6= Y to yield a result

useful for the same range of K as is Lemma 2. We use the two-dimensional Large Sieve to

obtain the sharper version stated.
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x4. Lemmas on linear congruences. In the proofs of Lemmas 1 and 2 we will need the

following results relating to the solutions of a congruence ax + by � 0, modm, that lie

in a box X < x � 2X, Y < y � 2Y . It is here that we introduce the rescaling of the

procedures used in [8] that is essential in the context X 6= Y . In the case X = Y Lemma 3

and part (a) of Lemma 4 reduce to Lemmas 1 and 2 in [8].

We will consider the points hx; yi for which

x � !y;mod r; (4:1)

where r > 0. In the language of the Geometry of Numbers, the solutions of (4.1) form a

lattice �!, given by

hx; yi = `h!; 1i+mhr; 0i:
This lattice has (positive, by convention) determinant r:

We use the maximum norm jhx; yij = maxfjxj; jyjg, although the Euclidean norm, or

any other equivalent one, could be employed.

Consider the modi�ed lattice �! consisting of non-integral vectors

z = hz1; z2i =
D x
X
;
y

Y

E
; (4:2)

where x; y satisfy (4.1). This has determinant

� =
r

XY
: (4:3)

Choose a basis a;b for this modi�ed lattice (Minkowski-reduced with respect to the

norm j � j) as follows: let jaj be minimal so that a 6= 0, and let jbj be minimal so that b is

independent of a. Then

�� jajjbj � �;

where � is the determinant described in (4.3), the implied constants being absolute. These

inequalities go back at least to Minkowski (see, for example, chapter 8 of [3]), but were

derived ab initio (for the case X = Y ) in [8]. (They are also immediately accessible to

geometrical intuition; one can see, when j � j is the Euclidean norm, that the angle between
a and b is not less than �=3.)

The region X < x � 2X; Y < y � 2Y becomes the square 1 < z1 � 2; 1 < z2 � 2

in z-space. Write z = `a+mb. Then j`j = jb2z1 � b1z2j=�; jmj = ja2z1 � a1z2j=�. Since
jzij � 2 in (4.2), this gives

j`j � L =
jbj
�
; jmj �M =

jaj
�
; M � L; LM =

jajjbj
�2

� 1

�
: (4:4)

Thus the integer vector h`;mi is con�ned to a parallelogram with area � XY=r and

perimeter � L� 1=(�M) = 1=jaj. This proves Lemma 3, as follows.
Lemma 3. The number N!(X;Y; r) of solutions of (4.1) for which X < x � 2X,

Y < y � 2Y satis�es

N!(X;Y; r)�
XY

r
+

1

jaj ;
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where a = a(!; r) is, as above, the shortest non-zero vector in the lattice �! = �!(r) given

by (4.2).

We will need to average the error term 1=jaj appearing in Lemma 3 over certain values
of r and of !, mod r. Since it causes little extra trouble, we establish Lemma 4 in a form

uniform in y, �.

Lemma 4. Suppose !, mod r runs over the roots of a congruence g(!; 1) � 0, mod

r, where g is a form with no linear factors over Z[x; y]. Let a be as in Lemma 3. Suppose

1 � Y � X, 0 < � � logX, and that X is su�ciently large.

(a) Denote

�(2)(X;Y; �) =
X

X<p�XY �

X
!;mod p2

1

ja(!; p)j ;

where the sum is over primes p. Then

�(2)(X;Y; �)� XY
p
�p

logX
:

(b) Denote

�(3)(R;X; Y ) =
X

1�r�R

X
!;mod r

1p
rjaj

:

Then

�(3)(R;X; Y )� R�
�p

X + (XY R)
1
4

�
:

From (4.2) we can express a as a = hu1=X; u2=Y i; where u1, u2 are integers, not

both 0. Then

jaj = maxfju1j=X; ju2j=Y g > 0:

Here a is in the lattice �!, so

u1 � !u2;mod r; (4:5)

so that in Lemma 4 we have

g(u1; u2) � 0;mod r: (4:6)

In part (a) of the Lemma, where r = p2 and p > X, consider �rst those p; ! for which

u1u2 = 0. If u2 = 0, so that u1 6= 0, then (4.5) gives p2 ju1, so that in particular ju1j � p2.

Hence

p2 � p4

X2
� ju1j2

X2
� jaj2 � jajjbj � � =

p2

XY
;

which is impossible for large X. Hence u2 6= 0. Similarly we deduce u1 6= 0, unless ! � 0,

mod p, which does not arise as soon as X exceeds the coe�cients of g. So in establishing

part (a) we may now suppose u1u2 6= 0.

The terms where jaj � p
�=
p
logX, i.e. where

min

�
X

ju1j
;
Y

ju2j

�
�
p
logXp
�

; (4:7)
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contribute to �(2) an amount

�
X

X<p�XY�

X
!;mod p2

p
logXp
�

� XY
p
�p

logX
;

since there are only O(1) roots !;mod p2 .

The remaining contribution to �(2) is from p; ! with p > X;u1 6= 0; u2 6= 0 and

where (4.7) is false. The minimality of jaj and X su�ciently large imply that juij � p2 �
(XY �)2 � X5. The terms with X=ju1j < Y=ju2j contribute

�
X
u1;u2

0 X
p>X

X
!;mod p2

p2ju1�!u2

X

ju1j
;

where
P0

denotes a sum over all u1 and u2 satisfying 0 < juij � X5 and
p
logX=

p
� <

X=ju1j < Y=ju2j. The condition p2 j u1 � !u2 is (4.5), which implies p2 j g(u1; u2), as in
(4.6). Here g(u1; u2) 6= 0 because the form g has no linear factors overZ. Since juij � X5,

this divisibility condition occurs for only �nitely many primes exceeding X. Since the

value u2 = 0 does not occur the number of values of u2 for given u1 is at most 2Y ju1j=X.

Thus this contribution to �(2) is at most

�
X

ju1j< X
p
�p

logX

X

ju1j
Y

X
ju1j �

XY
p
�p

logX
:

The contribution from terms with Y=ju2j � X=ju1j is estimated similarly. This com-

pletes the proof of part (a) of Lemma 4.

We argue along the same general lines for part (b). Deal �rst with

X
P<r�2P

X
!;mod r

1p
r
min

(s
X

ju1j
;

s
Y

ju2j

)
; (4:8)

where if u1 or u2 equals 0 then the minimum is the expression involving the non-zero ui.

We will take

P =
R

2�
: 1 � �� logR: (4:9)

First consider those pairs r; ! for which

min

�
X

ju1j
;
Y

ju2j

�
� 1

 
; (4:10)

where  will be speci�ed below. The contribution to (4.8) from these pairs is

X
P<r�2P

X
!;mod r

1p
r 

� P
1
2
+�

p
 
; (4:11)
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since there are � r� values of ! for each r:

There remains the contribution to (4.8) from those pairs r; ! for which (4.10) is false.

It is not necessary to attempt to deal with the terms where u1u2 = 0 with the same care

as in part (a). The terms where X=ju1j < Y=ju2j (possibly with u2 = 0) contribute

X
1

 
< X
ju1j<

Y
ju2j

X
P�r�2P

X
!;mod r
rju1�!u2

1p
r

r
X

u1
: (4:12)

As in part (a) the divisibility condition implies r j g(u1; u2), where g(u1; u2) 6= 0, whence

the number of such r is � g(u1; u2)
� � (X )� � P �, when  � P=X as speci�ed below.

The number of !;mod r is also � P �, so the contribution (4.12) is at most

X
ju1j<X 

X
ju2j<Y ju1j=X

P �

s
X

ju1jP
�

X
ju1j<X 

P �

s
X

ju1jP

�
1 +

Y ju1j
X

�

� 1

P
1
2
��

n
X
p
 +XY  

3
2

o
; (4:13)

and since Y < X the similar contribution from the terms where X=ju1j > Y=ju2j is not
larger.

This contribution (4.13) has to be added to the entry (4.11). Of these, (4.13) will not

be larger than (4.11) if we choose  = min
�
P=X;

p
P=(XY )

	
, in which case (4.11), and

therefore (4.8), is � P �
�p
X + (XY P )

1=4�
.

On summing over the values of P indicated in (4.9) we obtain the estimate for

�(3)(R;X; Y ) stated in Lemma 4.

x5. The sifting argument. We complete the proof of Theorem 2 by establishing

Lemmas 1 and 2, as enunciated earlier.

In proving Lemma 1 we may suppose that X is as large as desired, since otherwise

the Lemma is trivial.

In the notations of Lemmas 3 and 4 we have from (3.9)

E
(1)

i (X;Y ) �
X

�<p�XY �

X
1�!�p2

fi(!;1)�0;mod p2

N!(X;Y; p
2): (5:1)

When p� X we do not use Lemma 3, but make a separate estimate for each y. The

contribution of these p to E
(1)

i (X;Y ), as de�ned in (3.9), is

�
X

�<p�X

X
Y <y�2Y

p-y

X
1� �p2

fi( ;y)�0;mod p2

X
X<x�2X
x� ;mod p2

1

�
X

�<p�X

X
Y <y�2Y

�
X

p2
+O(1)

�
� XY

�
;

11



since there are at most O(1) values of  for each p when p - y.

In particular, if the irreducible form fi is of degree 1 or 2 then all primes p in (3.9) for

which E
(1)

i (X;Y ) 6= 0 satisfy p � X, so that the proof of Lemma 1 is already complete.

Accordingly to prove Lemma 1 we may suppose in particular that fi has no linear factor

over Z, so that Lemma 4 may be applied.

Lemma 3 gives

N!(X;Y; p
2) � XY

p2
+O

�
1

jaj

�
:

The contribution to (5.1) from the summand XY=p2 is

X
�<p�XY �

X
!;mod p

XY

p2
� XY

�
:

The contribution from the other summand 1=jaj is estimated in part (a) of Lemma 4. This
completes the proof of Lemma 1.

Proceed to the proof of Lemma 2, in which we may suppose K � X�, where � is the

degree of f . A certain amount of removal of common factors is necessary, as in [8]. Thus

we �rst set

(x; y) = d; x = dx1; y = dy1; X = dX1; Y = dY1: (5:2)

Then (d; p) = 1, so we obtain d� jk and

k = d�k1; f(x1; y1) = p2k1; (x1; y1) = 1;

X1 < x1 � 2X1; Y1 < y1 � 2Y1; jk1j � K=d�:

Second, set � = (y1; k1), so that

� jc0 6= 0; (5:3)

where c0 is the coe�cient of x
� in f ; c0 6= 0 because f has no linear factors overZ. Write

y1 = �y2; x1 = x2; k1 = �r; X2 = X1; Y2 = Y1=�: (5:4)

Then

f(x1; y1) = �g(x2; y2);

where g(x; y) is again a binary form having no linear factors over Z. Thus, in Lemma 2,

S(X;Y;K) does not exceed the number of solutions of

g(x2; y2) = p2r; (y2; x2r) = 1; � jc0;
X2 < x2 � 2X2; Y2 < y2 � 2Y2; r � R;

)
(5:5)

where

R =
K

d��
� X�: (5:6)

12



Since (y2; r) = 1 we can de�ne !, mod r by

x2 � !y2;mod r: (5:7)

Then g(!; 1) � 0, mod r. We deal with this using the lattice structure described in x4,
where X, Y have to be replaced by X2, Y2. Thus we write z = `a +mb, where L, M

satisfy (4.4), with

� =
r

X2Y2
: (5:8)

Write a = hu1=X2; u2=Y2i, b = hv1=X2; v2=Y2i, the notation for a being as in

Lemma 4. In this situation we obtain

p2r = g(x2; y2) = g(`u1 +mv1; `u2 +mv2) = G(`;m);

say, divisible by r for all h`;mi.
Now let q denote a \sifting" prime, which will satisfy q � Q; q - r; where Q is to

be speci�ed. The sifting condition in the ensuing argument is that G(`;m)=r is either a

quadratic residue $ or is 0, mod q. Denote by  (q) the number of pairs h`;mi, mod q
that satisfy this condition. Thus  (q) � q2.

We can estimate  (q) as on p. 56 of [8]. When (m; q) = 1 set ` � �m, mod q. Then

the congruence $r � m�G(�; 1), mod q has 1

2
q + O(

p
q) solutions for h�;$i, mod q (in

fact, half as many as there are solutions h�; i of m�G(�; 1) � r2, mod q). In this way

we obtain  (q) = 1

2
q2 +O

�
q3=2

�
:

De�ne  �(q) = q2� (q), so that  �(q) � 0, and make  ,  � multiplicative. We need

an estimate for

� =
X

1�n�Q; (n;r)=1

j�(n)j  (n)
 �(n)

;

with the trivial interpretation � = +1 if some  �(n) were 0, in which case the quantity

to be estimated in Lemma 5 below is also 0. Estimating � can be accomplished, with

su�cient accuracy for our purposes, much more simply than in [8]. For our convenience

de�ne  (q) = 1

2
q2 when q jr. Then

�
Y
pjr

�
1 +

 (p)

 �(p)

�
�
X
n�Q

j�(n)j  (n)
 �(n)

�
X
p�Q

 (p)

 �(p)
� Q

logQ
;

so that

�� Q

(Qr)�
:

The sum � occurs both in Selberg's sieve and in the Large Sieve method, either of

which we might employ at this point. We will use the following two-dimensional version

of the arithmetic formulation of the Large Sieve inequality. Lemma 5 was established by

Gallagher [6] (whose account is restricted to the case where the numbers Ni are all equal).
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Lemma 5. Suppose c(n) = 0 if n = h`;mi is in any one of a certain set of  (q)

\forbidden" residue classes, mod q, for each prime q � Q. Let B denote the box given by

the inequalities M1 � ` �M1 +N1, M2 � m �M2 +N2. Then

����X
n2B

c(n)

����
2

� �

�

X
n2B

jc(n)j2

where � = (N1 +Q2)(N2 +Q2) and � is as above.

Now let �(d; �; r; !) denote the number of solutions of (5.5), for given d, �, r, X2, Y2,

! satisfying (5.2), (5.3), (5.4), (5.7), so that in Lemma 2

S(X;Y;K) =
X

1�d�X;�jc0

X
1�r�R

X
g(!;1)�0;mod r

�(d; �; r; !);

R being as in (5.6). Then Lemma 5 gives the estimate

�(d; �; r; !)� (L +Q2)(M +Q2)(rQ)�

Q
:

HereM = jaj=� � L, LM � 1=� = X2Y2=r, as in (4.4) and (5.8). So we chooseQ =
p
M ,

and we obtain

�(d; �; r; !)� LMX�

p
M

� X�

�
p
M

� X�p
�jaj

=
X�
p
X2Y2p
rjaj

:

We can apply part (b) of Lemma 4, in which we replace X;Y by X2; Y2. Using (5.6) we

obtain X
1�r�R

X
g(!;1)�0;mod r

�(d; �; r; !)� X�
�
X2

p
Y2 + (X2Y2)

3
4R

1
4

�
;

where we may replace � by �=5. Since (5.4), (5.2), (5.3) give X2 = X=d, Y2 = Y=(d�), � jc0,
where c0 6= 0 is a constant, summing this estimate over d; � gives the estimate stated in

Lemma 2.

This completes the proof of Theorem 2.

x6. The proofs of Theorem 3 and Theorem 4. We begin with Theorem 3. We make

use of our approach to establishing (2.2), where we took a = yv, b = xv � yv. We will

simplify matters here by considering y = 1.

We suppose, as we may, that n > 1. We consider F (x) = x
�
xn

2 � 1
�
. Let X be

su�ciently large. Fix N so that if p > N then p does not divide the discriminant of F (x),

and so that X
p>N

n2 + 1

p2
< 1

2
:
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Let

P =
Y
p�N

p: (6:1)

Set G(s) = F
�
P 2s � P

�
. Observe that G(s) has no roots modulo p2 if p � N . Also, if

p > N , then G(s) has at most n2 + 1 roots modulo p2. Therefore, the number of integers

s 2 (X=P 2; 2X=P 2] for which G(s) is divisible by p2 for some prime p � 2X is bounded

above by

X
N<p�2X

(n2 + 1)

�
X=P 2

p2
+ 1

�
�
�X
p>N

n2 + 1

p2

�
X

P 2
+ (n2 + 1)�(2X) � 3X

4P 2
:

By letting X vary, we deduce that there are in�nitely many integers t having the property

that if p is a prime � t then p2 - F (t). We show now that if t is a su�ciently large integer

with this property, then either �n(t) or �n2(t) must be squarefree, so that Theorem 3

will then follow since �n2(x) = �n(x
n). Suppose that neither are squarefree. Let a = 1,

b = tn
2 � 1. Note that there is a g(x) 2 Z[x] such that F (x) = �n(x)�n2(x)g(x). By

our assumption, we deduce that there are primes p1, p2, not necessarily distinct, satisfying

p2
1
p2
2
jF (t). Since p2 - F (t) for every prime p � t, we deduce that p1 and p2 are > t. Hence

Q
�
ab(a + b)

�
= Q

�
F (t)

�
< F (t)=t2 < tn

2�1;

and we obtain

La;b >
n2

n2 � 1
:

By our assumption that the abc-conjecture holds, there can be only �nitely many such

pairs (a; b). This implies as desired that if t is su�ciently large then either �n(t) or �n2(t)

is squarefree. This completes the proof of Theorem 3.

As was remarked in x1, a similar approach leads to the slightly stronger result that

the polynomial

fn(x) =
xn � 1

x � 1

is in�nitely often squarefree. To show this one would observe

F (x) = x(x � 1)fn(x)fn(x
n);

where F (x) is as before, and argue as above to show that either fn(t) or fn(t
n) is squarefree

when t is large.

We follow a similar approach in proving Theorem 4, but do not take y = 1. Set

F (x; y) = xy(x2n � y2n) for n = 1; 2; : : : :

With N su�ciently large and P as in (6.1) take G(s; t) = F (x; y), where

x = P 2s � P; y = Pt� 1: (6:2)
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If p2 jG(s; t) then p > N , because G(s; t) � �P , mod p2 when p � N .

Let C(X;Y; p2) denote the number of hx; yi such that (6.2) holds and

F (x; y) � 0;mod p2; X < x � 2X; Y < y � 2Y; (6:3)

where we will take X = Y � with � > 1, as elsewhere in this paper. We wish to estimateX
N<p�2X

C(X;Y; p2) (6:4)

from above. It will not be necessary to use the arguments from x4.
For the terms with p - y observe that t takes at most Y=P + 1 values and for each of

these the integer s lies in at most 2n+1 residue classes mod p2, in each of which there are

at most X=(Pp)2 + 1 values of s for which X < x � 2X. Thus the contribution to (6.4)

from such terms does not exceed

X
N<p�2X

(2n+ 1)

�
Y

P
+ 1

��
X=P 2

p2
+ 1

�
:

When p k y the congruence in (6.3) gives p jx, so the contribution from these terms does

not exceed X
N<p�2X

�
Y=P

p
+ 1

��
X=P 2

p
+ 1

�
:

When p2 jy (6.3) gives p �
p
2Y , so the contribution from these terms does not exceed

X
N<p�

p
2Y

�
Y=P

p2
+ 1

��
X

P 2
+ 1

�
:

We will choose N (and hence P ) su�ciently large, and then take X, Y su�ciently

large (in terms of N). Since X� < Y < X all the contributions to (6.4) are

� XY

NP 3
+
Y

P
�(2X) +

�
X

P 2
+
Y

P

�
log logX +

X

P 2
�(
p
2Y );

and we obtain X
N<p�2X

C(X;Y; p2) <
3XY

4P 3

when N , X, Y are large enough.

But the total number of pairs hx; yi such that (6.2) holds and X < x � 2X, Y <

y � 2Y is asymptotic to XY=P 3. Hence there exists such a pair hx; yi with the property

that p2 - F (x; y) for every p � 2X. Now by letting X vary we obtain in�nitely many pairs

hx; yi for which there exists an X such that

X < x � 2X; X� < y � 2X�; p2 jF (x; y)) p > 2X; (6:5)
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so that in particular x and y are squarefree.

From this we can deduce, using the abc-conjecture, that for in�nitely many of these

pairs hx; yi at least one of the numbers xy
�
xn + yn

�
, xy

�
xn � yn

�
is squarefree. For if

p2
1
j xy

�
xn + yn

�
, p2

2
j xy

�
xn � yn

�
we would obtain p1 > 2X, p2 > 2X, so that actually

p1 - xy, p2 - xy. Take a = y2n, b = x2n � y2n. Then

Q
�
ab(a + b)

�
= Q

�
xy(x2n � y2n)

�
� xy(x2n � y2n)

p1p2
< 22nY (2n�1)�+1:

Consequently

La;b >
log x2n

log
�
22nY (2n�1)�+1

� > 2n� log Y

2n log 2 +
�
(2n� 1)�+ 1

�
log Y

! 2n�

(2n � 1)� + 1
> 1 as Y !1;

since � > 1. This contradicts the abc�conjecture.
We can now complete the proof of Theorem 4. If xy

�
xn � yn

�
is squarefree for

in�nitely many pairs hx; yi appearing in (6.5), then put a = yn, b = xn � yn. Then

Q
�
ab(a + b)

�
= xy(xn � yn). Otherwise xy

�
xn + yn

�
is squarefree in�nitely often, and we

take a = yn, b = xn, so that Q
�
ab(a + b)

�
= xy(xn + yn). In either case, we obtain

La;b =
n�

(n+ 1)�+ 1
+On

�
1

logY

�
:

With � �xed, let Y ! 1. Then let � vary over (1;1). Since the set of limit points is

closed, we get that all points of the interval [n=(n + 2); n=(n + 1)] are limit points, and

Theorem 4 now follows using

1[
n=1

�
n

n+ 2
;

n

n+ 1

�
= [1

3
; 1);

together with the observation made in the introduction that the abc-conjecture implies

that there are no limit points of L outside [ 1
3
; 1].
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