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Let Q(n) denote the squarefree part of n so that Q(n) =
Q

pjn
p. Throughout, we set

a,b, and c to be positive relatively prime integers with c = a+ b. De�ne

La;b =
log c

logQ(abc)
:

The abc-conjecture of Masser and Oesterl�e asserts that the greatest limit point of the

double sequence fLa;bg is 1. Recently, in joint work with Browkin, Greaves, Schinzel, and

the �rst author [1], it was shown that the abc-conjecture is equivalent to the assertion that

the precise set S of limit points of fLa;bg is the interval [1=3; 1]. Unconditionally, using

certain polynomial identities and a theorem concerning squarefree values of binary forms,

they showed that [1=3; 15=16] � S. Further polynomial identities of Greaves and Nitaj

(private communication) imply that [1=3; 36=37] � S. By considering a = 1 and b = 2n, it

is easy to see that fLa;bg has a limit point � 1 in the extended real line. The purpose of

this note is to establish the following:

Theorem. S
T�

1;
3

2

�
6= ;.

In other words, we prove that there is a limit point of fLa;bg somewhere in the interval

[1; 3=2).

Before proving the theorem, it is of some value to discuss simpler arguments for two

weaker results. First, we observe that the existence of a �nite limit point � 1 can be

established as follows. Fix a positive integer k, and let n � 2 be a squarefree number.

Observe that

n � Q(n(nk � 1)) � n
k+1

:
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Taking a = 1 and b = nk � 1, we deduce that

k

k + 1
� La;b � k:

As n varies, we obtain in�nitely many such La;b. Suppose S \ (1;1) = ;. Then the

existence of in�nitely many values of La;b in [k=(k + 1); k] implies that there must be

in�nitely many a and b for which

k

k + 1
� La;b � 1 +

1

k
:

As this must be true for each positive integer k, we obtain that 1 2 S. In other words, it

follows that S \ [1;1) 6= ;.

Next, we show that S \ [1; 2] 6= ;. Let n be a positive integer, and let t be the smallest

integer > 2n for which

Q(t(t� 1)) � 2t and Q((t+ 1)t) � 2(t+ 1):

The above inequalities can be seen to be possible as the �rst inequality holds when t = 2n+1

and the second holds when t+ 1 is squarefree. Observe that

2(t+ 1) � Q((t+ 1)t) � Q(t(t� 1)(t+ 1)) � Q(t(t� 1))(t+ 1) � 2t(t+ 1):

We take a = 1 and b = (t� 1)(t+ 1) so that c = a+ b = t2. As a function of n (or t), we

obtain from the above inequality that

1 + o(1) �
2 log t

log(2t(t+ 1))
� La;b �

2 log t

log(2(t+ 1))
� 2:

The conclusion that S \ [1; 2] 6= ; follows.

Our above result that S contains a number in [1; 2] can be viewed as following from the

simple polynomial identity

1 + (x� 1)(x+ 1) = x
2
:

To establish our main result, we modify the above argument somewhat and, in particular,

replace the use of the above polynomial identity with

(1) x
2(x� 9) + 27(x� 1) = (x� 3)3:

It may be possible that other polynomial identities will lead to a further shortening of the

interval in the statement of the theorem. In this regard, we will also make use of the fact

that the polynomial f(x) = x(x � 1)(x � 3) is such that f(m) is squarefree for in�nitely
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many positive integers m. This follows from simple sieve considerations. More is true

which may be of value for future identities of the type given in (1). As �rst noted by

Gouvêa and Mazur [2], work of Hooley [3] implies that if f(x) 2 Z[x] with each irreducible

factor of f(x) having degree � 3, then there are in�nitely many positive integers t for

which f(t)=R is squarefree where

R =
Y
pejjD

p
e�1 with D = gcd(f(m) : m 2 Z):

An analogous result for binary forms of degree � 6 can be found in [1].

Proof of Theorem. Fix " > 0 su�ciently small. Let t be a large positive integer, say

t � t0(�), with t(t� 1)(t� 3) squarefree (as noted above, such t exist). Observe that

Q(t(t� 1)(t� 3)) � t
2+2"

:

We choose a positive integer m as small as possible such that

Q((3m�1
t)(3m�1

t� 1)(3m�1
t� 3)) � (3m�1

t)2+2"

and

Q((3mt)(3mt� 1)(3mt� 3)) � (3mt)2+2":

Such an m exists as the �rst inequality holds when m = 1 and the second inequality holds

if m is su�ciently large. Combining these two inequalities, we deduce

(2) (3m�1
t)2+2" � Q((3mt)(3mt� 1)(3mt� 3)(3mt� 9)) � (3mt)3+2":

We use the equation (1) with x = 3mt. With this substitution, each of the three terms

appearing in (1) is divisible by 27. As we wish for a and b to be relatively prime, we set

a = (3m�1
t)2(3m�1

t� 3) and b = 3mt� 1:

Here c = a+ b = (3m�1t� 1)3, and from (2) we obtain

1

3
(3m�1

t)2+2" � Q(abc) � (3mt)3+2":

Recalling that t is large, it is easy to see that

(3)
3

3 + 3"
� La;b �

3

2 + "
:

We �nish the proof by supposing that S \ (1; 3=2) = ; and proving that 1 2 S. Since (3)

holds for in�nitely many di�erent pairs (a; b) (as there are in�nitely many choices for t
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that give rise to such a pair), S \ (1; 3=2) = ; implies that there are in�nitely many (a; b)

for which La;b 2 [3=(3 + 3"); 1=(1� ")]. As this is true for each choice of " > 0 su�ciently

small, it follows that 1 2 S, completing the proof. �

We end the paper by noting that the interval [1; 3=2) in the theorem can be shifted to

the left. More speci�cally, a slight modi�cation of the argument above gives that

S
\�

3

3 + "
;

3

2 + "

�
6= ;

for every " 2 (0; 1). Thus, for example, there must be an � 2 S satisfying

36

37
< 0:98 � � �

147

101
< 1:46

though currently no such � is known.
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