
IRREDUCIBILITY AND GREATESTCOMMON DIVISOR

ALGORITHMS FORSPARSEPOLYNOMIALS

Michael Filaseta
Mathematics Department

University of South Carolina
Columbia, SC 29208

USA

Andrew Granville
Département de Mathématiques

Universit́e de Montŕeal
Montréal QC H3C 3J7

Canada

Andrzej Schinzel
Institute of Mathematics

Polish Academy of Sciences
ul. Śniadeckich 8, 00-956

Warsaw, Poland

1 Introduction

Let f(x) =
∑r

j=0 ajx
dj ∈ Z[x] with eachaj nonzero and withdr > dr−1 > · · · > d1 > d0 = 0.

For simplicity, we refer to the degreedr of f(x) asn. Observe thatr + 1 is the number of terms
of f(x). For convenience, we suppose bothn > 2 andr > 0. The heightH, as usual, denotes the
maximum of the absolute values of theaj.

The lattice base reduction algorithm of A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz [7] gives
a factoring algorithm forf(x) that runs in time that depends polynomially onlog H andn. This
clearly serves also as an irreducibility test forf(x). One problem we address in this paper is the
somewhat different issue of describing an irreducibility algorithm for sparse polynomials, that is
wherer is small compared ton. We view the input as being the list ofr+1 coefficientsaj together
with the list ofr + 1 exponentsdj. With this in mind, the input is of sizeO

(
r(log H + log n)

)
. We

give an algorithm for this problem that runs in time that is polynomial inlog n (but note that the
dependence onr andlog H in our arguments is not polynomial).

For f(x) ∈ Q[x], we definef̃ = xnf(1/x). We say thatf(x) is reciprocal if f(x) = ±f̃(x).
Otherwise, we say thatf(x) is nonreciprocal. We note thatf(x) is reciprocal if and only if the

2000 Mathematics Subject Classification:11Y16, 12Y05, 68W30, 11C08, 11R09
The first author was supported by the National Science Foundation and the National Security Agency and the second

author by the Natural Sciences and Engineering Research Council of Canada.

conditionf(α) = 0 for α ∈ C implies thatα 6= 0 andf(1/α) = 0. Our methods require the
additional assumption thatf(x) is nonreciprocal. We establish the following.

Theorem A. There is a constantc1 = c1(r,H) such that an algorithm exists for determining
whether a given nonreciprocal polynomialf(x) ∈ Z[x] as above is irreducible and that runs in
timeO

(
c1 log n (log log n)2 log log log n

)
.

The result relies heavily on some recent work by E. Bombieri and U. Zannier described by the
latter in an appendix of [11]. Alternatively, we can make use of [1], work by these same authors
and D. Masser, which describes a new simplified approach to the previous work. The other main
ingredients are the third author’s application of the work of Bombieri and Zannier, given originally
in [10], and an improvement on the the first and third authors’ joint work in [4].

The constantc1 can be made explicit. We note though thatc1 depends on some effectively
computable constants that are not explicitly given in the appendix of [11] or in [1]. We therefore
do not address this issue further here.

The algorithm will give, with the same running time, some information on the factorization of
f(x) in the case thatf(x) is reducible. Specifically, we have the following:

(i) If f(x) has a cyclotomic factor, then the algorithm will detect this and output anm ∈ Z+

such that the cyclotomic polynomialΦm(x) dividesf(x).

(ii) If f(x) does not have a cyclotomic factor but has a non-constant reciprocal factor, then the
algorithm will produce such a factor. In fact, the algorithm will produce a reciprocal factor
of f(x) of maximal degree.

(iii) Otherwise, iff(x) is reducible, then the algorithm outputs a complete factorization off(x)
as a product of irreducible polynomials overQ.

The algorithm for Theorem A will follow along the lines given above. First, we will check iff(x)
has a cyclotomic factor. If it does, the algorithm will producem as in (i) and stop. If it does
not, then the algorithm will check iff(x) has a non-cyclotomic non-constant reciprocal factor. If
it does, then the algorithm will produce such a factor as in (ii) and stop. If it does not, then the
algorithm will output a complete factorization off(x) as indicated in (iii).

Our approach to (i) will allow us to obtain additional information about the complete set of
cyclotomic factors off(x). In particular, we are able to describe, in the same running time given
for the algorithm in Theorem A, the factor off(x) which has largest degree and only cyclotomic
divisors. Details are given in the next section.

Our approach can be modified to show that iff(x) ∈ Z[x] is nonreciprocal and reducible, then
f(x) has a non-trivial factor inZ[x] containingO(c2) terms wherec2 = c2(r,H). We note that the
results of [9] imply that iff(x) also does not have a reciprocal factor, then every factor off(x) in
Z[x] containsO(c2) terms.

In the case thatf(x) ∈ Z[x] is reciprocal, one can modify our approach to obtain some informa-
tion on the factorization off(x). Define the nonreciprocal part off(x) to be the polynomialf(x)
removed of its irreducible reciprocal factors inZ[x] with positive leading coefficients. Then in the
case thatf(x) is reciprocal, one can still determine in timeO(c1(log n (log log n)2 log log log n)
whether the nonreciprocal part off(x) is irreducible. Furthermore, in this same time, one can

2

determine whetherf(x) has a cyclotomic factor and, if so, an integerm for which Φm(x) divides
f(x).

In addition, we address the problem of computing the greatest common divisor of two sparse
polynomials. For nonzerof(x) and g(x) in Z[x], we use the notationgcdZ(f(x), g(x)) to de-
note the polynomial inZ[x] of largest degree and largest positive leading coefficient that divides
f(x) andg(x) in Z[x]. Later in the paper, we will also make use of an analogous definition for
gcdZ(f, g) wheref andg are inZ[x1, . . . , xr]. In this case, we interpret the leading coefficient as
the coefficient of the expressionxe1

1 xe2
2 . . . xer

r with e1 maximal, thene2 maximal givene1, and so
on. Our main result for the greatest common divisor of two sparse polynomials is the following.

Theorem B. There is an algorithm which takes as input two polynomialsf(x) andg(x) in Z[x],
each of degree≤ n and height≤ H and having≤ r + 1 nonzero terms, with at least one off(x)
and g(x) free of cyclotomic factors, and outputs the value ofgcdZ(f(x), g(x)) and runs in time
O

(
c3 log n

)
for some constantc3 = c3(r,H).

Our approach will imply that iff(x), g(x) ∈ Z[x] are as above withf(x) or g(x) not divisible
by a cyclotomic polynomial, thengcdZ(f(x), g(x)) hasO(c4) terms wherec4 = c4(r,H). The
same conclusion does not hold if one omits the assumption that eitherf(x) or g(x) is not divisible
by a cyclotomic polynomial. The following example, demonstrating this, was originally noted in
the related work of the third author [12]. Leta andb be relatively prime positive integers. Then

gcd
(
xab − 1, (xa − 1)(xb − 1)

)
=

(xa − 1)(xb − 1)

x − 1
.

In connection with Theorem B, we note that D. A. Plaisted [8] has shown that computing
gcdZ(f(x), g(x)) for general sparse polynomialsf(x) andg(x) in Z[x] is at least as hard as any
problem in NP. On the other hand, his proof relies heavily on considering polynomialsf(x) and
g(x) that have cyclotomic factors. By contrast, our proof of Theorem B will rest heavily on the
fact that one off(x) or g(x) does not have any cyclotomic factors.

Our proof of Theorem A will rely on Theorem B. In fact, Theorem B is where we make use
of the work of Bombieri and Zannier already cited. It is possible to prove Theorem A in a slightly
more direct way, for example by making use of Theorem 80 in [11] instead of Theorem B and
Theorem 1 below. This does not avoid the use of the work of Bombieri and Zannier since Theo-
rem 80 of [11] is based on this work. We have chosen the presentation here, however, because it
clarifies that parts of the algorithm in Theorem A can rest on ideas that have been around for over
forty years. In addition, we want the added information given by (i), (ii) and (iii) above as well as
Theorem B itself.

To aid in our discussions, we have used letters for labelling theorems that establish the exis-
tence of an algorithm and will refer to the algorithms using the corresponding format. As examples,
Algorithm A will refer to the algorithm given by Theorem A, and Algorithm B will refer to the
algorithm given by Theorem B. Also, we make use of the notationOr,H

(
w(n)

)
to denote a func-

tion with absolute value bounded byw(n) times a function ofr andH. Thus, the running time
for Algorithm A and Algorithm B can be expressed asOr,H

(
log n (log log n)2 log log log n

)
and

Or,H(log n), respectively.

3

2 The Proof of Theorem A

We begin with the following result which improves on the main result in [4].

Theorem C. There is an algorithm that has the following property: givenf(x) =
∑r

j=0 ajx
dj ∈

Z[x] of degreen > 1 and with r + 1 > 1 terms, the algorithm determines whetherf(x) has
a cyclotomic factor in running timeOr,H

(
log n (log log n)2 log log log n

)
, whereH denotes the

height off(x). Furthermore, with the same running time, iff(x) is divisible by a cyclotomic
polynomial, then the algorithm outputs a positive integerm for whichΦm(x) dividesf(x).

Proof. We begin as in the proof of Theorem 2 of [4] and initially give an argument for the existence
of an algorithm as in the theorem with running timeOr,H

(
(log n)2

)
. We then explain how the

algorithm can be sped up to produce the running time given in the statement of the theorem.
We describe and make use of Theorem 5 from [2]. Fork a positive integer, defineγ(k) =

2 +
∑

p|k(p − 2). Following [2], we call a vanishing sumS minimal if no proper subsum ofS

vanishes. We will be interested in sumsS =
∑t

j=1 ajωj wheret is a positive integer, eachaj is a
nonzero rational number and eachωj is a root of unity. We refer to the reduced exponent of such
anS as the least positive integerk for which (ωi/ω1)

k = 1 for all i ∈ {1, 2, . . . , t}. Theorem 5 of
[2] asserts then that ifS =

∑t
j=1 ajωj is a minimal vanishing sum, thent ≥ γ(k) wherek is the

reduced exponent ofS. Also, note that Theorem 5 of [2] implies that the reduced exponentk of a
minimal vanishing sum is necessarily squarefree.

To explain our algorithm, suppose first thatf(x) has a cyclotomic factorΦm(x), and that we
can writef(x) =

∑s
i=1 fi(x) where eachfi(x) is a nonzero polynomial divisible byΦm(x), no

two fi(x) have terms involvingx to the same power, ands is maximal. Observe that eachfi(x)
necessarily has at least two terms. Settingζm = e2πi/m, we see that eachfi(ζm) is a minimal
vanishing sum. For eachi ∈ {1, 2, . . . , s}, we writefi(x) = xbigi(x

ei) wheregi(x) ∈ Z[x], bi

andei are nonnegative integers chosen so thatgi(0) 6= 0 and the greatest common divisor of the
exponents appearing ingi(x) is 1. Thengi(ζ

ei
m) is a minimal vanishing sum with reduced exponent

mi = m/ gcd(m, ei). Necessarily, we havegi(ζmi
) = 0 andmi is squarefree. Also, ifti denotes

the number of nonzero terms ofgi(x), we have

ti ≥ γ
(
mi

)
= 2 +

∑
p|mi

(p − 2),

which implies each prime divisor ofmi is ≤ ti. Define

Mi = {` ∈ Z+ : Φ`(x) | gi(x), ` is squarefree, andγ(`) ≤ ti}.
In particular,mi ∈ Mi. In other words,

(1)
m

gcd(m, ei)
∈ Mi for all i ∈ {1, 2, . . . , s}.

We have not explained how we can writef(x) =
∑s

i=1 fi(x) as above. In particular, even if we
knowm exists withΦm(x) dividing f(x), we do not know whatm is. We circumvent this issue by
considering every possible partition of the set{0, 1, . . . , r} as a disjoint union of setsJ1, J2, . . . , Js

with each setJi containing at least two elements. For each partition, we consider the polynomials

fi(x) =
∑
j∈Ji

ajx
dj = xbigi(x

ei), 1 ≤ i ≤ s,

4

where as beforebi and ei are nonnegative integers chosen so thatgi(0) 6= 0 and the greatest
common divisor of the exponents appearing ingi(x) is 1. Definingti andMi as above, depending
on the partition of{0, 1, . . . , r}, we see then that iff(x) is divisible by someΦm(x), then there
is a partition for which (1) holds. On the other hand, if (1) holds for some positive integerm
and some partition of{0, 1, . . . , r} as above, then we havefi(ζm) = 0 for eachi ∈ {1, 2, . . . , s},
which impliesf(ζm) = 0 and henceΦm(x) | f(x). Thus, (1) holding for somem and some
partition of{0, 1, . . . , r} as above is a necessary and sufficient condition forf(x) to be divisible
by a cyclotomic polynomial.

With the above in mind, we describe the algorithm for determining whetherf(x) has a cyclo-
tomic factor, give further justification that the algorithm works and give a proof that its running time
is as claimed. The algorithm is as follows. We go through every partition of the set{0, 1, . . . , r}
into disjoint non-empty setsJ1, J2, . . . , Js with each setJi containing at least two elements. Ob-
serve that there areOr(1) such partitions. For each such partition and eachi ∈ {1, 2, . . . , s}, we
setu = u(i) to be the element ofJi for which du is minimal. In terms of our definition offi(x)
andgi(x), this meansbi = du andei is the greatest common divisor of the degrees of the terms of
the polynomialfi(x)/xdu . We computeei by taking the greatest common divisor of the numbers
dv − du wherev ∈ Ji. In terms of the complexity of the algorithm, givenJi, determiningdu can
be done inOr(log n) bit operations and computingei takes at mostOr

(
(log n)2

)
bit operations

(cf. the discussion of Euclid’s algorithm in [3, p. 79]). We can in fact obtain a running time of
Or

(
log n (log log n)2 log log log n

)
using a recursive gcd computation for large integers [3, p. 428]

leading to the running time stated in Theorem C, but for the moment we use theOr

(
(log n)2

)
estimate. The number of these computations that are needed as we vary over the partitions of
{0, 1, . . . , r} and vary over the setsJi making up the partitions isOr(1). The computations have
therefore thus far taken at mostOr

(
(log n)2

)
bit operations.

Next, for each partitionJ1, J2, . . . , Js of {0, 1, . . . , r} as above, we compute the setsMi as
follows. Observe thatti is the number of elements ofJi and is necessarily≤ r + 1. Thus, we can
construct a list of thè that are squarefree positive integers and such thatγ(`) ≤ ti in timeOr(1).
For each such̀, we want to check ifΦ`(x) dividesgi(x). An algorithm that works well here and in
more generality as well is given as Algorithm A in [4]. For our purposes, we can simply take each
termavx

(dv−du)/ei in gi(x), wherev ∈ Ji, and replace it withavx
d′v whered′

v ∈ {0, 1, . . . , ` − 1}
and

d′
v ≡ dv − du

ei

(mod `).

If we call the resulting polynomialhi(x), thengi(x) is divisible byΦ`(x) if and only if hi(x) is
divisible byΦ`(x). Observe that the degree ofhi(x) is ≤ ` ≤ (r + 1)r. Also, the height ofhi(x)
is ≤ (r + 1)H. Hence, one can check directly ifhi(x) is divisible byΦ`(x) in time Or,H(1).
The construction of eachhi(x) takes time no more thanOr,H

(
(log n)(log log n)2

)
where the main

contribution of the time required comes from the division ofdv − du by ei above. Hence, the
total time spent on constructing the variousMi as we vary over the partitionsJ1, J2, . . . , Js of
{0, 1, . . . , r} andi ∈ {1, 2, . . . , s} is Or,H

(
(log n)(log log n)2

)
.

For the algorithm, we consider each partitionJ1, J2, . . . , Js of {0, 1, . . . , r} as above one at a
time. We construct the numbersei and the setsMi as indicated. Next, we want to determine for
a fixed partition whether (1) holds for some positive integerm. In other words, we want to know

5

whether there is anm andmi ∈ Mi for which

(2) m = mi gcd(m, ei) for i ∈ {1, 2, . . . , s}.

For a positive integerk, we use the notationνp(k) to denote the positive integeru such thatpu‖k.
Then (2) holds if and only if each of the following is true:

• If p|m1 . . . ms, thenνp(m) ≤ νp(miei) for all i with equality wheneverp dividesmi.

• If p - m1 . . . ms, thenνp(m) ≤ νp(e0), wheree0 = gcd(e1, . . . , es).

Defining

D =
∏
pt‖e0

p-m1···ms

pt = e0

/(∏
pt‖e0

p|m1···ms

pt

)
and m0 = gcd(m1e1, . . . ,mses)/D,

then we see that a solution to (2) exists if and only if there existmi in Mi such that for every prime
p dividing somemi, the exact power ofp dividing m0 is the same as the exact power ofp dividing
miei. Furthermore, the set ofm satisfying (2) in this case is precisely the set ofm = m0d, where
d|D. Observe thatm0 is the uniquem satisfying (2) (if suchm exist) with the property that every
prime divisor ofm is a divisor ofm1m2 · · ·ms. Furthermore, every prime divisor ofm1m2 · · ·ms

is a divisor ofm0. We are interested in knowing whether there existm andmi satisfying (2), so
we simply restrict our attention to determining whether there existmi in Mi such that

(3) m0 = mi gcd(m0, ei) for i ∈ {1, 2, . . . , s}.

Recall that the numbersei and all elements ofMi have been computed (for eachi = 1, 2, . . . , s).
Also, as the partitions vary, the number of differentei andmi in Mi that arise isOr(1). We go
through all these possibilities and computeP, the set of primes dividingm1m2 · · ·ms. There are
Or(1) such primes and it takesOr(1) time to compute them. We computee0, D andm0 as defined
above and check whether (3) holds. Note that the second formula forD involves removing the
prime divisors frome0 that are inP, which is a fixed set of primes of sizeOr(1). Thus, bothe0

andD can be computed in timeOr

(
(log n)2

)
. We also computem0 and check (3) with the same

bound on the running time. If anm0 is obtained for which (3) holds, then we output thatf(x) has
a cyclotomic factor, indicate that the choice ofm = m0 is such thatΦm(x) dividesf(x) and end
the algorithm. If nom0 is obtained for which (3) holds, then we output thatf(x) does not have a
cyclotomic factor. As there areOr(1) differentm0 each of sizeOr(n), the running time estimate
is not affected by going through the variousm0 and outputting the result. Hence, the proof of the
theorem, but with running time onlyOr,H

(
(log n)2

)
, has been explained.

We improve the running time as follows. For the algorithm above, we made use of a few differ-
ent greatest common divisor computations. These were done to constructei for i ∈ {1, 2, . . . , s},
to calculatee0 = gcd(e1, . . . , es) andm0 = gcd(m1e1, . . . ,mses)/D, and to determine the value
of the right-hand side of (3). As noted earlier, we can apply known algorithms for gcd computa-
tions [3, p. 428] that would allow us to reduce the running time to that required by the theorem.
However, it is also worth noting that these gcd computations can be circumvented and the required
running time obtained in a different manner. We explain this approach now.

6

Let J1, J2, . . . , Js be a partition of{0, 1, . . . , r} as in the argument above. Writeei = e′ie
′′
i

where every prime divisor ofe′i is ≤ r + 1 and every prime divisor ofe′′i is > r + 1. Recall that
u = u(i) ∈ Ji is chosen so thatdu is minimal. One can computee′i without computingei from the
formula

e′i =
∏
p≤ti

pminv∈Ji
{νp(dv−du)}.

In other words, for eachp ≤ ti, we can calculate the minimum ofνp(dv − du) asv runs through
the elements ofJi and then form the product above to gete′i. As we shall see momentarily, the
numberse′i can be calculated in timeOr(log n (log log n)2 log log log n).

We note now that
gi

(
xe′′i

)
=

∑
v∈Ji

avx
(dv−du)/e′i ,

so we can computegi

(
xe′′i

)
without computinggi(x), ei or e′′i . Define

M ′
i = {` ∈ Z+ : Φ`(x) | gi

(
xe′′i

)
, ` is squarefree, andγ(`) ≤ ti}.

The setM ′
i can be computed in the same manner that we computedMi but withgi(x) replaced by

gi

(
xe′′i

)
. Thus, computingM ′

i , given the polynomialsgi

(
xe′′i

)
, takes timeOr,H

(
(log n)(log log n)2

)
.

Recall that the prime divisors ofe′′i are all> r + 1 ≥ ti. We deduce that the numbers` in the
definition of Mi andM ′

i are relatively prime toe′′i . It follows thatMi = M ′
i . Thus, the above

analysis allows us to computeMi without explicitly computing the numbersei and with running
timeOr,H

(
log n (log log n)2 log log log n

)
.

Next, we address how to determine whether (3) holds. Recall thatP is the set of prime divisors
of m1m2 · · ·ms, and note that these primes are≤ r + 1. The prime divisors ofm0 are precisely
the primes inP. We deduce that (3) holds if and only if

(4) νp(m0) = νp(mi) + min{νp(m0), νp(ei)}

for eachi ∈ {1, 2, . . . , s} and for eachp ∈ P. For each primep ∈ P, we compute the values of
νp(ei), for i ∈ {1, 2, . . . , s}, by using thatνp(ei) = νp(e

′
i). Next, we compute

νp(m0) = min
1≤i≤s

{νp(mi) + νp(ei)}.

Then we check if (4) holds. Observe that eachνp(mi) is either0 or 1, soνp(mi) can be computed
by a simple division. We want also a method to computeνp(ei) = νp(e

′
i), for i ∈ {1, 2, . . . , s}.

We further need to explain the computation ofνp(dv − du) to obtaine′i above. ForU a positive
integer andp a prime≤ r + 1, the value ofνp(U) can be computed as follows. We compute the
values ofp2j

successively forj ≥ 0 by squaring until we arrive at a positive integert for which
p2t

> U . Observe thatt = O(log log U). We setk0 = 0. For j ∈ {1, 2, . . . , t}, we successively
check ifp2t−j |U and, if so, setkj = kj−1 + 2t−j and replaceU with U/p2t−j

. If p2t−j
- U , then

we setkj = kj−1. Thenkt = νp(U). Using this procedure, we can computeνp(U) in time
Or(log U (log log U)2 log log log U). The theorem follows.

Although it does not affect our main results, it is of some value to note that the running time
of the algorithm can be shown to beOr

(
log n (log log n)2 log log log n + log H

)
. Indeed, the

7

coefficients off(x) only take part in the algorithm when we form the polynomialshi(x) and when
we check their divisibility byΦ`(x). Forming the polynomials involvesOr(1) additions of these
coefficients and checking the divisibility of anhi(x) by Φ`(x) takes timeOr(log(H + 1)). Note
that these divisions do not depend onn since the degrees and the coefficients of the polynomials
areOr(1) andOr(H), respectively.

As it may be of interest in other contexts, we explain briefly how we can get a bit more out of
the algorithm. More precisely, we explain how to obtain the largest monic factorg(x) of f(x) with
each irreducible factor ofg(x) cyclotomic and in timeOr,H

(
log n (log log n)2 log log log n

)
. We

begin with determining the product of the distinct cyclotomic divisors off(x). We note, however,
that the representations ofg(x) and the product of the distinct cyclotomic divisors off(x) as
polynomials cannot be the obvious ones as it is not difficult to show that fora ≥ 2, the cyclotomic
factors ofx(a−1)2 +xa −x−1 are distinct and their product contains exactly2a−2 terms. In other
words, explicitly writing outg(x), for example, can take time considerably more than any power
of log n.

For given positive integersu, v, define the setC(u, v) = {ud : d|v}. In the algorithm above,
we determined valuesm0 andD such thatΦm(x) dividesf(x) wheneverm ∈ C(m0, D). Let S
be the set of all such pairs{m0, D} that can arise as a solution to (2) in Algorithm C. We proved
thatΦm(x) dividesf(x) if and only if m is in the set

CS =
⋃

{m0,D}∈S

C(m0, D).

We want to determine
ΦS(x) =

∏
m∈CS

Φm(x).

The obvious way to do this is by determining eachC(m0, D) explicitly, but that would involve
factoringD which, for complexity issues, should be avoided. However, we can get around deter-
miningC(m0, D) explicitly by taking advantage of the fact that∏

m∈C(u,v)

Φm(x) = Φu(x
v)

as follows.
We make a few observations about the setsC(u, v):

• One hasC(U, V) ⊆ C(u, v) if and only ifUV dividesuv, u dividesU and, as a consequence,
V dividesv.

• Given positive integersu, v, u′, v′ with gcd(u, v) = gcd(u′, v′) = 1, defineU = lcm(u, u′),
and letV = gcd(v, v′). Note thatgcd(U, V) = 1. Then

C(u, v) ∩ C(u′, v′) =

{
C(U, V) if UV divides gcd(uv, u′v′)

∅ otherwise.

• There is a natural ordering on the pairs{u, v} whereu, v ∈ N, taking{U, V } < {u, v} if
UV < uv, or if UV = uv andV < v. We see that ifC(U, V) ⊂ C(u, v) then{U, V } <
{u, v}.

8

Now |S| = Or(1). GivenS we create a new setT . We start withT0 = S, and then recursively
construct

Tk+1 = {{U, V } : C(U, V) = C(u, v) ∩ C(u′, v′) for some{u, v}, {u′, v′} ∈ Tk} ∪ Tk.

One can show thatTk+1 = Tk for somek = Or(1). WhenTk+1 = Tk, we setT = Tk. Note
that |T | = Or(1) andgcd(u, v) = 1 for all {u, v} ∈ T . For each{u, v} ∈ T , beginning withuv
minimal andv minimal givenuv, we define the polynomials

Φ{u,v}(x) = Φu(x
v)

/ ∏
{U,V }∈T

{U,V }<{u,v}
C(U,V)⊂C(u,v)

Φ{U,V }(x) ∈ Z[x].

We do not compute these polynomials explicitly but can give their values as the quotient above
where{u, v} and each{U, V } in the product are given explicitly. Then we have

ΦS(x) =
∏

{u,v}∈T

Φ{u,v}(x).

Obtaining this description ofΦS(x) takesOr

(
log n (log log n)2 log log log n

)
bit operations.

The polynomialΦS(x) is the product of all the distinct cyclotomic factors off(x). To deal with
cyclotomic factors to higher multiplicities, we make use of the following lemma due to G. Hajós [5]
(also, see [11, p. 187]).

Lemma 1. If (x − α)k dividesf(x), thenk ≤ r.

Recall thatS was defined as the set of{m0, D} that gave rise to solutions of (2) corre-
sponding to cyclotomic factors off(x). We construct similar setsSj corresponding to cyclo-
tomic factors off (j)(x) for everyj ∈ {0, 1, . . . , r − 1}. Observe that the coefficients off (j)(x)
are bounded bynjH, the degree off (j)(x) is n − j (assuming as we can thatn ≥ r) and
the number of terms inf (j)(x) is ≤ r + 1. Recalling that the running time of Algorithm C is
Or

(
log n (log log n)2 log log log n + log H

)
, it is not difficult to see that the running time for com-

puting the various setsSj is Or,H

(
log n (log log n)2 log log log n

)
. The exact multiplicity of a cy-

clotomic factor off(x) is k provided it dividesf (j)(x) for 0 ≤ j ≤ k−1 and notf (k)(x). Lemma 1
further implies that if a cyclotomic polynomial dividesf (j)(x) for everyj ∈ {0, 1, . . . , r−1}, then
the multiplicity of the factor isr (i.e., there is no need to check if the cyclotomic factor divides
f (r)(x)). However, we need to be able to determine the common cyclotomic factors determined by
various setsSj. To do this, we setS∗

0 = S0, and then construct recursively

S∗
k+1 = {{U, V } : C(U, V) = C(u, v) ∩ C(u′, v′) for some{u, v} ∈ S∗

k , {u′, v′} ∈ Sk+1}
for eachk ∈ {1, 2, . . . , r−1}. One can then proceed by determiningT ∗

k from S∗
k as we constructed

T from S above, and then computeΦS∗
k
(x), the product of the distinct cyclotomic polynomials

dividing f(x) with multiplicity at leastk + 1. The product of the polynomialsΦS∗
k
(x) for k ∈

{0, 1, . . . , r − 1} is therefore the largest degree factor off(x) that is a product of cyclotomic
polynomials. The total running time isOr,H

(
log n (log log n)2 log log log n

)
for describing this

factor off(x).

9

We are now ready to return to our description of Algorithm A. Algorithm A begins by taking
the input polynomialf(x) and applying Algorithm C. Iff(x) has a cyclotomic factor, we obtainm
as in (i). Asf(x) is not reciprocal,f(x) cannot be a constant multiple of a cyclotomic polynomial.
Hence,f(x) is reducible and (i) holds.

This part of the algorithm does not actually depend onf(x) being nonreciprocal. The proof
of Algorithm C shows in fact that iff(x) has a cyclotomic factor, then one can determinem as in
(i) with every prime divisor ofm being≤ r + 1. Thus, it would not be difficult to factorm and
computeφ(m) in the running time required for Theorem A. Onceφ(m) is computed, then one can
determine iff(x) is a constant multiple of the cyclotomic polynomialΦm(x) by comparingφ(m)
with n.

We suppose now thatf(x) does not have a cyclotomic factor. The next step in Algorithm A is
to determine whetherf(x) has a reciprocal factor. We shall do this by making use of Theorem B,
which we establish in the next section.

We compute

f̃(x) = xnf(1/x) =
r∑

j=0

ajx
n−dj .

Sincef(x) does not have a cyclotomic factor, we can apply Algorithm B to computeh(x) =
gcdZ(f(x), f̃(x)). Observe thath(x) is reciprocal and each reciprocal factor off(x) dividesh(x).
As f(x) is not reciprocal, we must havedeg h < deg f . If h(x) is not constant, thenf(x) is
reducible,h(x) is a non-constant reciprocal factor off(x) and (ii) holds ash(x) is a reciprocal
polynomial of largest possible degree dividingf(x). Otherwise,f(x) does not have a non-constant
reciprocal factor. Theorem B implies that this part of Algorithm A has running timeOr,H

(
log n

)
.

We are now left with considering the case thatf(x) does not have any non-constant reciprocal
factor. The basic idea here is to make use of the third author’s work in [9] (see also Theorem 74 in
[11]). For a polynomialF

(
x1, . . . , xr, x

−1
1 , . . . , x−1

r

)
, in the variablesx1, . . . , xr and their recipro-

calsx−1
1 , . . . , x−1

r , we define

J F = xu1
1 · · · xur

r F
(
x1, . . . , xr, x

−1
1 , . . . , x−1

r

)
,

where eachuj is an integer chosen as small as possible so thatJ F is a polynomial inx1, . . . , xr.
In the way of examples, if

F = x2 + 4x−1y + y3 and G = 2xyw − x2z−3w − 12w,

then
J F = x3 + 4y + xy3 and J G = 2xyz3 − x2 − 12z3.

In particular, note that althoughw is a variable inG, the polynomialJ G does not involvew. We
call a multi-variable polynomialF (x1, . . . , xr) ∈ Q[x1, . . . , xr] reciprocal if

J F
(
x−1

1 , . . . , x−1
r

)
= ±F (x1, . . . , xr).

For example,x1x2 − x1 − x2 + 1 andx1x2 − x3x4 are reciprocal. Note that this is consistent with
our definition of a reciprocal polynomialf(x) ∈ Z[x].

To motivate the next result and begin our approach, we set

F (x1, . . . , xr) = arxr + · · · + a1x1 + a0 ∈ Z[x1, . . . , xr].

10

The plan is to associate the factorization off(x) = F (xd1 , xd2 , . . . , xdr) with the factorization of a
multi-variable polynomial of the form

J F
(
ym11

1 · · · ym1t
t , . . . , ymr1

1 · · · ymrt
t

)
,

where the number of variablest is ≤ r andmij ∈ Z for 1 ≤ i ≤ r and1 ≤ j ≤ t. The above
multi-variable polynomial can be expressed as

yu1
1 · · · yut

t F (ym11
1 · · · ym1t

t , . . . , ymr1
1 · · · ymrt

t),

where

(5) uj = −min{m1j,m2j, . . . ,mrj} for 1 ≤ j ≤ t.

To make the connection with the factorization off(x), we want the matrixM = (mij) to be such
that

(6)




d1
...
dr


 = M




v1
...
vt




for some integersv1, v2, . . . , vt. In this way, the substitutionyj = xvj for 1 ≤ j ≤ t takes any
factorization

(7) yu1
1 · · · yut

t F (ym11
1 · · · ym1t

t , . . . , ymr1
1 · · · ymrt

t) = F1(y1, . . . , yt) · · ·Fs(y1, . . . , yt)

in Z[y1, . . . , yt] into the form

(8) xu1v1+···+utvtF (xd1 , xd2 , . . . , xdr) = F1(x
v1 , . . . , xvt) · · ·Fs(x

v1 , . . . , xvt).

We restrict our attention to factorizations in (7) where theFi(y1, . . . , yt) are non-constant. We will
be interested in the case thats is maximal; in other words, we will want the right-hand side of (7)
to be a complete factorization of the left-hand side of (7) into irreducibles overQ. For achieving
the results in this paper, we want some algorithm for obtaining such a complete factorization of
multi-variable polynomials; among the various sources for this, we note that A. K. Lenstra’s work
in [6] provides such an algorithm. For the moment, though, we need not takes maximal.

Sincef(x) = F (xd1 , xd2 , . . . , xdr), the above describes a factorization off(x), except that we
need to take some caution as somevj may be negative so the expressionsFi(x

v1 , . . . , xvt) may not
be polynomials inx. For1 ≤ i ≤ s, definewi as the integer satisfying

(9) J Fi(x
v1 , . . . , xvt) = xwiFi(x

v1 , . . . , xvt).

We obtain from (8) that

xu1v1+···+utvt+w1+···+wsf(x) =
s∏

i=1

xwiFi(x
v1 , . . . , xvt).

The definition ofwi implies that this product is over polynomials inZ[x] that are not divisible by
x. The conditionsa0 6= 0 andd0 = 0 imposed onf(x) in the introduction imply thatf(x) is

11

not divisible byx. Hence, the exponent ofx appearing on the left must be0, and we obtain the
factorization

(10) f(x) =
s∏

i=1

xwiFi(x
v1 , . . . , xvt) =

s∏
i=1

J Fi(x
v1 , . . . , xvt).

The factorization given in (10) is crucial to our algorithm. As we are interested in the case that
f(x) has no non-constant reciprocal factor, we restrict our attention to this case. From (10), we see
that the polynomialsxwiFi(x

v1 , . . . , xvt) cannot have a non-constant reciprocal factor. There are,
however, still two possibilities that we need to consider for eachi ∈ {1, 2, . . . , s}:

(i′) Fi(y1, . . . , yt) is reciprocal.

(ii ′) J Fi(x
v1 , . . . , xvt) ∈ Z.

Although we will not need to know a connection between (i′) and (ii′), we show here that if (i′)
holds for somei, then (ii′) does as well. We consider then the possibility that

(11) J Fi

(
y−1

1 , . . . , y−1
t

)
= ±Fi(y1, . . . , yt).

In other words, suppose that

(12) ye1
1 · · · yet

t Fi

(
y−1

1 , . . . , y−1
t

)
= ±Fi(y1, . . . , yt),

whereej = ej(i) is the degree ofFi(y1, . . . , yt) as a polynomial inyj. Substitutingyj = xvj into
(12), we obtain

(13) xwi+e1v1+···+etvtFi

(
x−v1 , . . . , x−vt

)
= ±xwiFi

(
xv1 , . . . , xvt

)
.

By the definition ofwi, the polynomial on the right does not vanish at0. Assume (ii′) does not
hold. Letα be a zero of this polynomial. Then substitutingx = 1/α into (13) shows that1/α is
also a zero. On the other hand, we have already demonstrated in (10) that the right-hand side of
(13) is a factor off(x). This contradicts thatf(x) has no non-constant reciprocal factor. Hence,
(ii ′) holds.

We make use of a special case of a result due to the third author in [9]. In particular, the more
general result implies that the above idea can in fact always be used to factorf(x) if f(x) has two
nonreciprocal irreducible factors. In other words, there exist a matrixM andvj satisfying (6) and
a factorization of the form (7) that leads to a non-trivial factorization off(x), if it exists, through
the substitutionyj = xvj . We are interested in the case thatf(x) has no non-constant reciprocal
factor. In this case, we can obtain a complete factorization off(x) into irreducibles.

Theorem 1. Fix
F = F (x1, . . . , xr) = arxr + · · · + a1x1 + a0,

where theaj are nonzero integers. There exists a finite computable set of matricesS with integer

entries, depending only onF , with the following property: Suppose the vector
−→
d = 〈d1, d2, . . . , dr〉

is in Zr with dr > dr−1 > · · · > d1 > 0 and such thatf(x) = F (xd1 , xd2 , . . . , xdr) has no non-
constant reciprocal factor. Then there is anr×t matrixM = (mij) ∈ S of rankt ≤ r and a vector−→v = 〈v1, v2, . . . , vt〉 in Zt such that (6) holds and the factorization given by (7) inZ[y1, . . . , yt] of
a polynomial int variablesy1, y2, . . . , yt as a product ofs irreducible polynomials overQ implies
the factorization off(x) given by (10) as a product of polynomials inZ[x] each of which is either
irreducible overQ or a constant.

12

We are ready now to apply the above to assist us in Algorithm A. As suggested by the statement
of Theorem 1, we take the coefficientsaj of f(x) and consider the multi-variable polynomial
F = F (x1, . . . , xr). We compute the setS. SinceF is a linear polynomial withr + 1 terms
and heightH, the time required to computeS is Or,H(1). Sincef(x) = F (xd1 , . . . , xdr) has no
non-constant reciprocal factors, there is a matrixM = (mij) ∈ S of rankt ≤ r and a vector−→v in
Zt as in Theorem 1. We go through each of theOr,H(1) matricesM in S and solve for the vectors
−→v = 〈v1, v2, . . . , vt〉 in Zt satisfying

−→
d = M−→v , wheret is the number of columns inM and we

interpret
−→
d and−→v as column vectors. From the definition ofS, we have that the rank ofM is t

andt ≤ r. Hence, there can be at most one such vector−→v for eachM ∈ S. However, for each
−→
d ,

there may be manyM ∈ S and−→v for which
−→
d = M−→v , and we will consider all of them.

We make use of the following simple result in this section and the next.

Theorem D. There is an algorithm with the following property. Given anr×t integral matrixM =

(mij) of rank t ≤ r andmax{|mij|} = Or,H(1) and given an integral vector
−→
d = 〈d1, . . . , dr〉

with max{|dj|} = Or,H(n), the algorithm determines whether there is an integral vector−→v =
〈v1, . . . , vt〉 for which (6) holds, and if such a−→v exists, the algorithm outputs the solution vector−→v . Furthermore,max{|vj|} = Or,H(n) and the algorithm runs in timeOr,H(log n).

Proof. There are a variety of ways we can determine if
−→
d = M−→v has a solution and to determine

the solution if there is one within the required timeOr,H(log n). We use Gaussian elimination.
Performing elementary row operations onM and multiplying by entries from the matrix as one
proceeds to use only integer arithmetic allows us to rewriteM in the form of anr × t matrix
M ′ = (m′

ij) with eachm′
ij ∈ Z and the firstt rows ofM ′ forming at × t diagonal matrix with

nonzero integers along the diagonal. These computations only depend on the entries ofM and,
hence, take timeOr,H(1). We perform the analogous row operations and integer multiplications on

the vector
−→
d = 〈d1, d2, . . . , dr〉 to solve

−→
d = M−→v for −→v . As the entries ofM are integers that

areOr,H(1) and eachdj is an integer that isOr,H(n), these operations take timeOr,H(log n). We

are thus left with an equation of the form
−→
d′ = M ′−→v where the entries ofM ′ are integers that are

Or,H(1) and the components of
−→
d′ = 〈d′

1, d
′
2, . . . , d

′
r〉 are integers that areOr,H(n).

For eachj ∈ {1, 2, . . . , t}, we check ifd′
j ≡ 0 (mod m′

jj). If for somej ∈ {1, 2, . . . , t} we

haved′
j 6≡ 0 (mod m′

jj), then a solution to the original equation
−→
d = M−→v , if it exists, must be

such thatvj 6∈ Z. In this case, an integral vector−→v does not exist. Now, suppose instead that
d′

j ≡ 0 (mod m′
jj) for everyj ∈ {1, 2, . . . , t}. Then we divided′

j by m′
jj to determine the vector

−→v . This vector may or may not be a solution to the equation
−→
d = M−→v . We check whether it is by

a direct computation. If it is not a solution to the equation
−→
d = M−→v , then there are no solutions to

the equation. Otherwise,−→v is an integral vector satisfying
−→
d = M−→v . Checking whetherd′

j ≡ 0

(mod m′
jj) for 1 ≤ j ≤ t, solving for−→v if it holds, and checking whether

−→
d = M−→v all takes

timeOr,H(log n). We also haveOr,H(n) as a bound for the absolute value of the componentsvj of−→v . We output−→v if it exists which takes timeOr,H(log n). Combining the running times above,
the theorem follows.

Algorithm D is performed for each of theOr,H(1) matricesM in S. The running time for each
application of Theorem D isOr,H(log n), so the total running time spent applying Algorithm D
for the variousOr,H(1) matrices inS is Or,H(log n). This leads toOr,H(1) factorizations of the

13

form given in (7) into irreducibles, each having a potentially different value fors. For each of
these, we compute the values ofFi

(
xv1 , . . . , xvt

)
and determinewi as in (9). We produce then

Or,H(1) factorizations off(x) as in (10). As we obtain these factorizations, we keep track of the
number of non-constant polynomialsxwiFi

(
xv1 , . . . , xvt

)
appearing in (10). We choose a factor-

ization for which this number is maximal. Recalling that (10) follows from
−→
d = M−→v and (7), we

deduce from Theorem 1 that the factorization off(x) we have chosen provides a factorization of
f(x) with eachxwiFi

(
xv1 , . . . , xvt

)
either irreducible or constant. Recalling that the polynomials

Fi(y1, . . . , yt) in (7) are independent ofn and that the components of−→v are bounded in absolute
value byOr,H(n), we see that producing the factorization off(x) into irreducibles and constants
as in (10) takes timeOr,H(log n). For a factorization off(x) into irreducibles overQ, we mul-
tiply together the constants appearing on the right of (10) and one of the irreducible polynomials
J Fi

(
xv1 , . . . , xvt

)
. This does not affect the bound given for the running time of Algorithm A.

Thus, we have demonstrated an algorithm for Theorem A as stated in the introduction and justi-
fied that the algorithm satisfies the statement of Theorem A as well as (i), (ii) and (iii). Combining
the above running time estimates, we deduce that the algorithm also has the stated running time
bound given in Theorem A.

3 The Proof of Theorem B

As mentioned in the introduction, our proof of Theorem B relies heavily on the recent work of
Bombieri and Zannier outlined by Zannier in an appendix in [11]. In particular, as a direct conse-
quence of their more general work, we have

Theorem 2. Let
F (x1, . . . , xk), G(x1, . . . , xk) ∈ Q[x1, . . . , xk]

be coprime polynomials. There exists an effectively computable numberB(F,G) with the follow-
ing property. If−→u = 〈u1, . . . , uk〉 ∈ Zk, ξ 6= 0 is algebraic and

F (ξu1 , . . . , ξuk) = G(ξu1 , . . . , ξuk) = 0,

then eitherξ is a root of unity or there exists a nonzero vector−→v ∈ Zk having components bounded
in absolute value byB(F,G) and orthogonal to−→u .

It is important for our algorithm that the quantitiesB(F,G) are effectively computable. We
note that the factB(F,G) is effectively computable is not explicitly stated in the appendix of [11],
but U. Zannier (private communication) has pointed out that the approach given there does imply
that this is the case. The more recent paper [1] notes explicitly thatB(F,G) can be calculated.

Our description of Algorithm B has similarities to the third author’s application of Theorem 2 in
[10] and [11]. In particular, we make use of the following lemma which is Corollary 6 in Appendix
E of [11]. A proof is given there.

Lemma 2. Let ` be a positive integer and−→v ∈ Z` with −→v nonzero. The lattice of vectors−→u ∈
Z` orthogonal to−→v has a basis−→v1

′,−→v2
′, . . . ,−−→v`−1

′ such that the maximum absolute value of a
component of any vector−→vj

′ is bounded bỳ/2 times the maximum absolute value of a component
of−→v .

14

For our algorithm, we can suppose thatf(x) does not have a cyclotomic factor and do so. We
consider only the case thatf(0)g(0) 6= 0 as computinggcdZ(f(x), g(x)) can easily be reduced to
this case by initially removing an appropriate power ofx from each off(x) andg(x) (that is, by
subtracting the least degree of a term from each exponent). This would need to be followed up by
possibly multiplying by a power ofx after our gcd computation.

We furthermore only consider the case that the content off(x), that is the greatest common
divisor of its coefficients, and the content ofg(x) are 1. Otherwise, we simply divide by the
contents before proceeding and then multiply the final result by the greatest common divisor of the
two contents.

We express our two polynomials in the form

f(x) =
k∑

j=0

ajx
dj and g(x) =

k∑
j=0

bjx
dj ,

where above we have possibly extended the lists of exponents and coefficients describingf(x)
andg(x) so that the exponent lists are identical and the coefficient lists are allowed to include
coefficients which are0. Also, we takedk > dk−1 > · · · > d1 > 0. Thus,d0 = 0, a0b0 6= 0 and
k ≤ 2r. The time required to modifyf(x) andg(x) so that they are not divisible byx and have
content1 and to adjust the exponent and coefficient lists as above isOr,H(log n).

Before continuing with the algorithm, we motivate it with some discussion. Letw(x) denote
gcdZ(f(x), g(x)). We will apply Theorem 2 to construct two finite sequences of polynomials in
several variablesFu andGu with integer coefficients and a corresponding finite sequence of vectors−→
d (u) that will enable us to determine a polynomial inZ[x] that has the common zeros, to the correct
multiplicity, of f(x) andg(x). This then will allow us to computew(x).

Let ξ be a zero ofw(x), if it exists. Observe thatξ 6= 0, and sinceξ is a zero off(x) which
has no cyclotomic factors, we haveξ is not a root of unity. Sinceξ is a common zero off(x) and
g(x), we have

k∑
j=0

ajξ
dj =

k∑
j=0

bjξ
dj = 0.

We recursively constructFu, Gu and
−→
d (u), for 0 ≤ u ≤ s, wheres is to be determined, beginning

with

(14) F0 = F0(x1, . . . , xk) =
k∑

j=0

ajxj and G0 = G0(x1, . . . , xk) =
k∑

j=0

bjxj,

and
−→
d (0) = 〈d1, d2, . . . , dk〉. As u increases, the number of variables definingFu andGu will

decrease. The value ofs then will be≤ k. Observe that

F0(x
d1 , . . . , xdk) = f(x) and G0(x

d1 , . . . , xdk) = g(x).

We deduce thatF0 andG0, being linear, are coprime inQ[x1, . . . , xk] and that

(15) F0(ξ
d1 , . . . , ξdk) = G0(ξ

d1 , . . . , ξdk) = 0.

15

Now, suppose for someu ≥ 0 that nonzero polynomialsFu andGu in Z[x1, . . . , xku] and a

vector
−→
d (u) = 〈d(u)

1 , . . . , d
(u)
ku

〉 ∈ Zku have been determined, whereku < ku−1 < · · · < k0 = k.
Furthermore, suppose thatFu andGu are coprime inQ[x1, . . . , xku] and that we have at least one
zeroξ of w(x) such that

(16) Fu

(
ξd

(u)
1 , . . . , ξd

(u)
ku

)
= Gu

(
ξd

(u)
1 , . . . , ξd

(u)
ku

)
= 0.

In particular,ξ 6= 0 andξ is not a root of unity. Note that thed(u)
j may be negative. We will require

(17) J Fu(x
d
(u)
1 , . . . , xd

(u)
ku) | f(x) and J Gu(x

d
(u)
1 , . . . , xd

(u)
ku) | g(x).

Observe thatJ Fu(x
d
(u)
1 , . . . , xd

(u)
ku) and f(x) are inZ[x]. We take (17) to mean that there is a

polynomialh(x) ∈ Z[x] such that

f(x) = h(x) · J Fu(x
d
(u)
1 , . . . , xd

(u)
ku)

with an analogous equation holding forg(x) andJ Gu(x
d
(u)
1 , . . . , xd

(u)
ku). In particular, we want

J Fu(x
d
(u)
1 , . . . , xd

(u)
ku) andJ Gu(x

d
(u)
1 , . . . , xd

(u)
ku) to be nonzero. Note that these conditions which

are being imposed onFu and Gu are satisfied foru = 0 providedw(x) is not constant. For
0 ≤ u < s, we describe next how to recursively constructFu+1 and Gu+1 having analogous
properties. The specifics of the algorithm and its running time will be discussed later.

There is a computable boundB(Fu, Gu) as described in Theorem 2. We deduce that there is a
nonzero vector−→v = 〈v1, v2, . . . , vku〉 ∈ Zku such that each|vi| ≤ B(Fu, Gu) and−→v is orthogonal
to

−→
d (u). From Lemma 2, there is aku × (ku − 1) matrixM with each entry ofM having absolute

value≤ kuB(Fu, Gu)/2 and such that
−→
d (u) = M−→v (u) for some−→v (u) ∈ Zku−1, where we view

the vectors as column vectors. We define integersmij (written alsomi,j) andv
(u)
j , depending onu,

by the conditions

M =




m11 · · · m1,ku−1
...

...
...

mku1 · · · mku,ku−1


 and −→v (u) = 〈v(u)

1 , . . . , v
(u)
ku−1〉.

The relations
xi = ymi1

1 · · · ymi,ku−1

ku−1 for 1 ≤ i ≤ ku

transform the polynomialsFu(x1, . . . , xku) andGu(x1, . . . , xku) into polynomials in some, possi-
bly all, of the variablesy1, . . . , yku−1. These new polynomials we callFu andGu, respectively.
More precisely, we define

(18) Fu(y1, . . . , yku−1) = J Fu

(
ym11

1 · · · ym1,ku−1

ku−1 , . . . , y
mku1

1 · · · ymku,ku−1

ku−1

)
and

(19) Gu(y1, . . . , yku−1) = J Gu

(
ym11

1 · · · ym1,ku−1

ku−1 , . . . , y
mku1

1 · · · ymku,ku−1

ku−1

)
.

16

The polynomialsFu andGu will depend on the matrixM so that there may be many choices for
Fu andGu for eachFu andGu. We need only consider one suchFu andGu and do so. Note
that this still may require considering variousM until we find one for which

−→
d (u) = M−→v (u) is

satisfied for some−→v (u) ∈ Zku−1. The equation
−→
d (u) = M−→v (u) implies that for some integers

ef (u) andeg(u) we have

(20) Fu

(
xv

(u)
1 , . . . , xv

(u)
ku−1

)
= xef (u)Fu

(
xd

(u)
1 , . . . , xd

(u)
ku

)
and

(21) Gu

(
xv

(u)
1 , . . . , xv

(u)
ku−1

)
= xeg(u)Gu

(
xd

(u)
1 , . . . , xd

(u)
ku

)
.

In particular,Fu andGu are nonzero. Also,

(22) J Fu

(
xv

(u)
1 , . . . , xv

(u)
ku−1

) | f(x) and J Gu

(
xv

(u)
1 , . . . , xv

(u)
ku−1

) | g(x).

Furthermore, withξ as in (16), we have

Fu

(
ξv

(u)
1 , . . . , ξv

(u)
ku−1

)
= Gu

(
ξv

(u)
1 , . . . , ξv

(u)
ku−1

)
= 0.

The idea is to suppress the variables, if they exist, which do not occur inFu andGu and the
corresponding components of−→v (u) to obtain the polynomialsFu+1 andGu+1 and the vector

−→
d (u+1)

for our recursive construction. However, there is one other matter to consider. The polynomials
Fu andGu may not be coprime, and we requireFu+1 andGu+1 to be coprime. Hence, we adjust
this idea slightly.

Let

(23) Du = Du(y1, . . . , yku−1) = gcdZ(Fu,Gu) ∈ Z[y1, . . . , yku−1].

Recall thatf(0)g(0) 6= 0. Hence, (20), (21) and (22) imply thatJ Du

(
xv

(u)
1 , . . . , xv

(u)
ku−1

)
divides

gcdZ(f, g) in Z[x]. We define

(24) Fu+1 =
Fu(y1, . . . , yku−1)

Du(y1, . . . , yku−1)
and Gu+1 =

Gu(y1, . . . , yku−1)

Du(y1, . . . , yku−1)
,

and setku+1 ≤ ku − 1 to be the total number of variablesy1, . . . , yku−1 appearing inFu+1 and
Gu+1. Note thatFu+1 andGu+1 are coprime and that (17) holds withu replaced byu + 1 and the
appropriate change of variables.

We describe next how the recursive construction will end. Suppose we have just constructed
Fu, Gu and

−→
d (u) and proceed as above to the next step of constructingFu+1, Gu+1 and

−→
d (u+1).

At this point,Du−1 will have been defined but notDu. We want to findM and a−→v (u) such that−→
d (u) = M−→v (u) whereM is aku × (ku − 1) matrix with entries bounded in absolute value by
kuB(Fu, Gu)/2. So we computeB(Fu, Gu) and the boundkuB(Fu, Gu)/2 on the absolute values
of the entries ofM. We consider suchM and apply Algorithm D to see if there is an integral
vector−→v (u) for which

−→
d (u) = M−→v (u). Once such anM and−→v (u) are found, we can proceed

with the construction ofFu+1 andGu+1 given above. On the other hand, it is possible that no such

17

M and−→v (u) will be found. Given Theorem 2, this will be the case only if the supposition that
(16) holds for some zeroξ of w(x) is incorrect. In particular, (16) does not hold for some zeroξ of
w(x) if Fu andGu are coprime polynomials in< 2 variables (i.e.,ku ≤ 1), but it is also possible
that (16) does not hold for someu with Fu andGu polynomials in≥ 2 variables (i.e.,ku ≥ 2).
Given thatM is aku × (ku − 1) matrix, we consider it to be vacuously true that noM and−→v (u)

exist satisfying
−→
d (u) = M−→v (u) in the case thatku ≤ 1. If no suchM and−→v (u) exist, we consider

the recursive construction of the polynomialsFu andGu complete and sets = u. We will want the
values ofDu for every1 ≤ u ≤ s − 1, so we save these as we proceed.

The motivation discussed above can be summarized into a procedure to be used for Algorithm B
as follows. Beginning withF0 and G0 as in (14) and

−→
d (0) = 〈d1, . . . , dk〉, we construct the

multi-variable polynomialsFu andGu and vectors
−→
d (u) = 〈d(u)

1 , . . . , d
(u)
ku

〉 ∈ Zku recursively.

GivenFu, Gu and
−→
d (u), we computeB(Fu, Gu) and search for aku × (ku − 1) matrixM with

integer entries having absolute value≤ kuB(Fu, Gu)/2 for which
−→
d (u) = M−→v (u) is solvable

with −→v (u) = 〈v(u)
1 , . . . , v

(u)
ku−1〉 ∈ Zku−1. We check for solvability and determine the solution−→v (u)

if it exists by using Algorithm D. If no suchM and−→v (u) exist, then we sets = u and stop our
construction. Otherwise, once such anM = (mij) and−→v (u) are determined, we defineFu+1 and
Gu+1 using (18), (19), (23) and (24). After using (24) to constructFu+1 andGu+1, we determine
the variablesy1, . . . , yku−1 which occur inFu+1 andGu+1 and define

−→
d (u+1) as the vector with

corresponding components fromv(u)
1 , . . . , v

(u)
ku−1; in other words, ifyj is theith variable occurring

in Fu+1 andGu+1, thenv
(u)
j is theith component of

−→
d (u+1).

For the running time for this recursive construction, we use thatB(Fu, Gu) is Or,H(1) asu
varies and, furthermore, the numbersB(Fu, Gu) can be computed in timeOr,H(1). In particular,
this implies that for a fixedu, there areOr,H(1) choices forM and, hence, a total ofOr,H(1)

possible values forFu+1 andGu+1 independent of the value of
−→
d (u). In other words, without even

knowing the values ofd1, . . . , dk, we can use Theorem 2 to deduce that there are at mostOr,H(1)
possibilities forF1 and G1. For each of these possibilities, another application of Theorem 2
implies that there are at mostOr,H(1) possibilities forF2 andG2. And so on. Ass ≤ k ≤ 2r,
we deduce that the total number of matricesM that we need to consider during the recursive
construction is bounded byOr,H(1). The recursive construction depends onn only when applying

Theorem D to see if
−→
d (u) = M−→v (u) holds for some−→v (u) and to determine−→v (u) if it exists. For

a fixedM, Theorem D implies that these computations can be done in timeOr,H(log n). As the
total number ofM to consider is bounded byOr,H(1), we deduce that the recursive construction

of theFu, Gu and
−→
d (u) takes timeOr,H(log n).

As we proceed in our recursive construction of theFu and Gu, an important aspect of the
construction is that themij are bounded in absolute value byOr,H(1) and, hence, the coefficients
and exponents appearing inFu andGu are bounded byOr,H(1). In other words,Fu andGu can
be written in timeOr,H(1). Another important aspect of the construction is to note that as we are

dividing by Du to constructFu+1 andGu+1, we obtain not simply thatJ Du

(
xv

(u)
1 , . . . , xv

(u)
ku−1

)
dividesgcdZ(f, g) in Z[x] but also

(25)
u∏

j=0

J Dj

(
xv

(j)
1 , . . . , x

v
(j)
kj−1

)
divides gcdZ(f, g) in Z[x].

18

This can be seen inductively by observing that

(26) J Fu

(
xv

(u)
1 , . . . , xv

(u)
ku−1

)
=

f(x)
u−1∏
j=0

J Dj

(
xv

(j)
1 , . . . , x

v
(j)
kj−1

)

and

(27) J Gu

(
xv

(u)
1 , . . . , xv

(u)
ku−1

)
=

g(x)
u−1∏
j=0

J Dj

(
xv

(j)
1 , . . . , x

v
(j)
kj−1

) .

Algorithm B ends by making use of the identity

(28) gcdZ

(
f(x), g(x)

)
=

s−1∏
u=0

J Du

(
xv

(u)
1 , . . . , xv

(u)
ku−1

)
.

We justify (28). Recall that we have denoted the left side byw(x). Observe that (25) implies that
the expression on the right of (28) dividesw(x). By the definition ofs, when we arrive atu = s in
our recursive construction, (16) fails to hold for every zeroξ of w(x). Therefore, takingu = s− 1
in (24), (26) and (27) implies that the right-hand side of (28) vanishes at all the zeros ofw(x) and
to the same multiplicity. As noted earlier, we are considering the case that the contents off(x)
andg(x) are1. We deduce that (28) holds. Observe that the computation ofgcdZ

(
f(x), g(x)

)
by expanding the right side of (28) involvesOr,H(1) additions of exponents of sizeOr,H(n). This
computation can be done in timeOr,H(log n). Theorem B follows.

References

[1] E. Bombieri, D. Masser and U. Zannier,Anomalous subvarieties - structure theorems and
applications, preprint.

[2] J. H. Conway and A. J. Jones,Trigonometric Diophantine equations (On vanishing sums of
roots of unity), Acta Arith.30 (1976), 229–240.

[3] R. Crandall and C. Pomerance, Prime Numbers, A Computational Perspective, Springer-
Verlag, New York, 2001.

[4] M. Filaseta and A. Schinzel,On testing the divisibility of lacunary polynomials by cyclotomic
polynomials, Math. Comp.73 (2004), 957–965.

[5] G. Hajós, Solution of Problem 41 (Hungarian), Mat. Lapok 4 (1953), 40–41.

[6] A. K. Lenstra, Factoring multivariate polynomials over algebraic number fields, SIAM
J. Comput.16 (1987), 591–598.

[7] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász,Factoring polynomials with rational coeffi-
cients, Math. Ann.261(1982), 515–534.

19

[8] D. A. Plaisted,Sparse complex polynomials and polynomial reducibility, J. Comput. System
Sci.14 (1977), 210–221.

[9] A. Schinzel,Reducibility of lacunary polynomials, I, Acta Arith.16 (1969/1970), 123–159.

[10] A. Schinzel,Reducibility of lacunary polynomials, XII, Acta Arith.90 (1999), 273–289.

[11] A. Schinzel, Polynomials with Special Regard to Reducibility, Encyclopedia of Mathematics
and its Applications, 77, Cambridge University Press, 2000.

[12] A. Schinzel,On the greatest common divisor of two univariate polynomials, I, A panorama
of number theory or the view from Baker’s garden (Zürich, 1999), Cambridge Univ. Press,
Cambridge, 2002, 337–352.

20

