IRREDUCIBILITY AND GREATESTCOMMON DIVISOR
ALGORITHMS FORSPARSEPOLYNOMIALS

Michael Filaseta Andrew Granville
Mathematics Department Département de Maématiques
University of South Carolina Universié de Monteal
Columbia, SC 29208 Montréal QC H3C 3J7
USA Canada

Andrzej Schinzel
Institute of Mathematics
Polish Academy of Sciences
ul. Sniadeckich 8, 00-956
Warsaw, Poland

1 Introduction

Let f(z) = 377, a;x% € 7Z[x] with eacha; nonzero and withl, > d,_; > -+ > d; > dy = 0.
For simplicity, we refer to the degreg of f(z) asn. Observe that + 1 is the number of terms
of f(x). For convenience, we suppose beth- 2 andr > 0. The height/, as usual, denotes the
maximum of the absolute values of thg

The lattice base reduction algorithm of A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovasz [7] gives
a factoring algorithm forf (z) that runs in time that depends polynomially log # andn. This
clearly serves also as an irreducibility test fgrz). One problem we address in this paper is the
somewhat different issue of describing an irreducibility algorithm for sparse polynomials, that is
wherer is small compared ta. We view the input as being the list of+- 1 coefficientsy; together
with the list ofr + 1 exponents!;. With this in mind, the input is of siz€ (r(log H + logn)). We
give an algorithm for this problem that runs in time that is polynomidbgwn (but note that the
dependence onandlog H in our arguments is not polynomial).

For f(z) € Q[z], we definef = 2" f(1/x). We say thatf () is reciprocalif f(z) = +f(z).
Otherwise, we say that(x) is nonreciprocal. We note thdtz) is reciprocal if and only if the

2000 Mathematics Subject Classificatiod1Y16, 12Y05, 68W30, 11C08, 11R09
The first author was supported by the National Science Foundation and the National Security Agency and the second
author by the Natural Sciences and Engineering Research Council of Canada.

condition f(«) = 0 for a € C implies thatee # 0 and f(1/«a) = 0. Our methods require the
additional assumption thdtx) is nonreciprocal. We establish the following.

Theorem A. There is a constant; = ¢;(r, H) such that an algorithm exists for determining
whether a given nonreciprocal polynomié{xz) € Z[z| as above is irreducible and that runs in
time O (c; log n (loglog n)?log loglogn).

The result relies heavily on some recent work by E. Bombieri and U. Zannier described by the
latter in an appendix of [11]. Alternatively, we can make use of [1], work by these same authors
and D. Masser, which describes a new simplified approach to the previous work. The other main
ingredients are the third author’s application of the work of Bombieri and Zannier, given originally
in [10], and an improvement on the the first and third authors’ joint work in [4].

The constant; can be made explicit. We note though tlkatdepends on some effectively
computable constants that are not explicitly given in the appendix of [11] or in [1]. We therefore
do not address this issue further here.

The algorithm will give, with the same running time, some information on the factorization of
f(z) in the case thaf(x) is reducible. Specifically, we have the following:

(i) If f(x) has a cyclotomic factor, then the algorithm will detect this and outpuhan Z+
such that the cyclotomic polynomid,, (x) divides f (z).

(i) If f(x) does not have a cyclotomic factor but has a non-constant reciprocal factor, then the
algorithm will produce such a factor. In fact, the algorithm will produce a reciprocal factor
of f(x) of maximal degree.

(iii) Otherwise, if f(x) is reducible, then the algorithm outputs a complete factorizatiof{.of
as a product of irreducible polynomials ov@r

The algorithm for Theorem A will follow along the lines given above. First, we will chegk if)

has a cyclotomic factor. If it does, the algorithm will produeeas in (i) and stop. If it does

not, then the algorithm will check if () has a non-cyclotomic non-constant reciprocal factor. If

it does, then the algorithm will produce such a factor as in (ii) and stop. If it does not, then the
algorithm will output a complete factorization ¢fx) as indicated in (iii).

Our approach to (i) will allow us to obtain additional information about the complete set of
cyclotomic factors off (z). In particular, we are able to describe, in the same running time given
for the algorithm in Theorem A, the factor ¢fx) which has largest degree and only cyclotomic
divisors. Details are given in the next section.

Our approach can be modified to show that(if:) € Z|[x] is nonreciprocal and reducible, then
f(z) has a non-trivial factor itZ|x] containingO(c,) terms where, = co(r, H). We note that the
results of [9] imply that iff (x) also does not have a reciprocal factor, then every factgs.of in
Z[z] containsO(cz) terms.

In the case thaf(z) € Z[z] is reciprocal, one can modify our approach to obtain some informa-
tion on the factorization of (). Define the nonreciprocal part ¢fz) to be the polynomiaf ()
removed of its irreducible reciprocal factorsZir| with positive leading coefficients. Then in the
case thatf(x) is reciprocal, one can still determine in tinigc; (log n (loglogn)? log log logn)
whether the nonreciprocal part ¢fz) is irreducible. Furthermore, in this same time, one can

determine whethef(z) has a cyclotomic factor and, if so, an integeffor which ®,,(z) divides
f(@).

In addition, we address the problem of computing the greatest common divisor of two sparse
polynomials. For nonzerg(z) and g(x) in Z[x], we use the notatiogcd, (f(z), g(z)) to de-
note the polynomial irZ|x] of largest degree and largest positive leading coefficient that divides
f(z) andg(z) in Z[z]. Later in the paper, we will also make use of an analogous definition for
ged,(f, 9) wheref andg are inZzy, ..., z,]. In this case, we interpret the leading coefficient as
the coefficient of the expressiaff' 25> . .. z¢~ with e; maximal, there, maximal givene;, and so
on. Our main result for the greatest common divisor of two sparse polynomials is the following.

Theorem B. There is an algorithm which takes as input two polynomjgls) and g(x) in Z[z],
each of degreec n and height< H and having< r + 1 nonzero terms, with at least one ffz)
and g(z) free of cyclotomic factors, and outputs the valuesat,(f(x), g(z)) and runs in time
O(c3logn) for some constant; = c3(r, H).

Our approach will imply that iff (z), g(z) € Z[x] are as above witlfi(x) or g(x) not divisible
by a cyclotomic polynomial, theped, (f(x), g(z)) hasO(c,) terms wherery = c¢4(r, H). The
same conclusion does not hold if one omits the assumption that githeor g(z) is not divisible
by a cyclotomic polynomial. The following example, demonstrating this, was originally noted in
the related work of the third author [12]. Letandb be relatively prime positive integers. Then

(2% — 1) (2 — 1)‘

ged (20 — 1, (2 — 1) (2" — 1)) = o

In connection with Theorem B, we note that D. A. Plaisted [8] has shown that computing
gedy(f(x), g(x)) for general sparse polynomiaf§z) andg(z) in Z[z| is at least as hard as any
problem in NP. On the other hand, his proof relies heavily on considering polynofifialsand
g(x) that have cyclotomic factors. By contrast, our proof of Theorem B will rest heavily on the
fact that one off (x) or g(x) does not have any cyclotomic factors.

Our proof of Theorem A will rely on Theorem B. In fact, Theorem B is where we make use
of the work of Bombieri and Zannier already cited. It is possible to prove Theorem A in a slightly
more direct way, for example by making use of Theorem 80 in [11] instead of Theorem B and
Theorem 1 below. This does not avoid the use of the work of Bombieri and Zannier since Theo-
rem 80 of [11] is based on this work. We have chosen the presentation here, however, because it
clarifies that parts of the algorithm in Theorem A can rest on ideas that have been around for over
forty years. In addition, we want the added information given by (i), (ii) and (iii) above as well as
Theorem B itself.

To aid in our discussions, we have used letters for labelling theorems that establish the exis-
tence of an algorithm and will refer to the algorithms using the corresponding format. As examples,
Algorithm A will refer to the algorithm given by Theorem A, and Algorithm B will refer to the
algorithm given by Theorem B. Also, we make use of the notafipp (w(n)) to denote a func-
tion with absolute value bounded ly(n) times a function of- and H. Thus, the running time
for Algorithm A and Algorithm B can be expressed @sﬂ(logn (loglogn)? log log log n) and
O, u(logn), respectively.

2 The Proof of Theorem A

We begin with the following result which improves on the main result in [4].

Theorem C. There is an algorithm that has the following property: givéir) = > 7, a;x% €
Zlx] of degreen > 1 and withr + 1 > 1 terms, the algorithm determines wheth&rr) has
a cyclotomic factor in running timé)rvH(logn (loglogn)?log log log n) where H denotes the
height of f(x). Furthermore, with the same running time,fifx) is divisible by a cyclotomic

polynomial, then the algorithm outputs a positive integefor which®,,(z) dividesf(z).

Proof. We begin as in the proof of Theorem 2 of [4] and initially give an argument for the existence

of an algorithm as in the theorem with running tirée ;; ((log n)?). We then explain how the

algorithm can be sped up to produce the running time given in the statement of the theorem.
We describe and make use of Theorem 5 from [2]. Far positive integer, define(k) =

2 + Zp‘k(p — 2). Following [2], we call a vanishing sur minimal if no proper subsum of

vanishes. We will be interested in surfis= Z;Zl a;w; Wheret is a positive integer, eaaf) is a
nonzero rational number and eachis a root of unity. We refer to the reduced exponent of such
an S as the least positive integérfor which (w; /w;)* = 1 foralli € {1,2,...,t}. Theorem 5 of
[2] asserts then that i = Z;Zl a;w; is a minimal vanishing sum, then> ~(k) wherek is the
reduced exponent &f. Also, note that Theorem 5 of [2] implies that the reduced expohefita
minimal vanishing sum is necessarily squarefree.

To explain our algorithm, suppose first thét:) has a cyclotomic factob,,(z), and that we
can write f(z) = 3 _:_, f;(z) where eacly;(z) is a nonzero polynomial divisible b$,,(z), no
two f;(x) have terms involving: to the same power, andis maximal. Observe that eagh(x)
necessarily has at least two terms. Settjpg= ¢*"/, we see that eaclfi((,,) is a minimal
vanishing sum. For eache {1,2,...,s}, we write fi(x) = z%g;(2%) whereg;(z) € Z[x], b;
ande; are nonnegative integers chosen so thél) # 0 and the greatest common divisor of the
exponents appearing i(x) is 1. Theng; () is a minimal vanishing sum with reduced exponent
m; = m/ ged(m, e;). Necessarily, we have ((,,,) = 0 andm; is squarefree. Also, if; denotes
the number of nonzero terms gfx), we have

ti >vy(m) =2+ (p—2),
plm;

which implies each prime divisor of; is < ¢;. Define
M; ={l e Z" : ®yx) | g:(x), ¢ is squarefree, ang(¢) < t;}.

In particular,m; € M;. In other words,

m
1 ———— e M; forallie{l,2,...,s}.
(@) ged(m, e;) et o}

We have not explained how we can wrjtér) = > °_, fi(x) as above. In particular, even if we
knowm exists with®,, (z) dividing f(x), we do not know whatn is. We circumvent this issue by
considering every possible partition of the §et1, ..., r} as a disjoint union of set#, .J, ..., J,
with each set/; containing at least two elements. For each partition, we consider the polynomials

=3 aat = abig(a®), 1<i<s,

Jj€J;

where as beforé, ande; are nonnegative integers chosen so #hél) # 0 and the greatest
common divisor of the exponents appearingiifx) is 1. Definingt;, andM; as above, depending
on the partition of0, 1,...,r}, we see then that if (x) is divisible by someb,,(x), then there
is a partition for which (1) holds. On the other hand, if (1) holds for some positive integer
and some partition of0, 1,...,r} as above, then we have(¢,,) = 0 for eachi € {1,2,...,s},
which implies f(¢,,) = 0 and henceb,,(z) | f(x). Thus, (1) holding for some: and some
partition of {0, 1,...,r} as above is a necessary and sufficient conditioryfaer to be divisible
by a cyclotomic polynomial.

With the above in mind, we describe the algorithm for determining whether has a cyclo-
tomic factor, give further justification that the algorithm works and give a proof that its running time
is as claimed. The algorithm is as follows. We go through every partition of thgset. .., r}
into disjoint non-empty setg,, Js, ..., J; with each set/; containing at least two elements. Ob-
serve that there ar@,. (1) such partitions. For each such partition and eaeh{1,2, ..., s}, we
setu = u(7) to be the element aof; for which d,, is minimal. In terms of our definition of;(z)
andg;(x), this means; = d, ande; is the greatest common divisor of the degrees of the terms of
the polynomialf;(z)/z%. We compute:; by taking the greatest common divisor of the numbers
d, — d, wherev € J;. Interms of the complexity of the algorithm, givelpy determiningd, can
be done inO, (logn) bit operations and computing takes at mos0, ((logn)?) bit operations
(cf. the discussion of Euclid’s algorithm in [3, p. 79]). We can in fact obtain a running time of
O, (log n (loglogn)? log log log n) using a recursive gcd computation for large integers [3, p. 428]
leading to the running time stated in Theorem C, but for the moment we us(ér(mh)g n)2)
estimate. The number of these computations that are needed as we vary over the partitions of
{0,1,...,r} and vary over the set§ making up the partitions i®,(1). The computations have
therefore thus far taken at mast ((log n)?) bit operations.

Next, for each partition/y, Js, ..., Js of {0,1,...,r} as above, we compute the sét5 as
follows. Observe that; is the number of elements of and is necessaril r + 1. Thus, we can
construct a list of thé that are squarefree positive integers and suchtfat< ¢; in time O,.(1).

For each such, we want to check ib,(x) dividesg;(z). An algorithm that works well here and in

more generality as well is given as Algorithm A in [4]. For our purposes, we can simply take each

terma,z(@~%)/¢ in g;(x), wherev € J;, and replace it withu,z% whered,, € {0,1,...,¢ — 1}

and

dv - du
€;

If we call the resulting polynomiak;(z), theng;(z) is divisible by ®,(z) if and only if h;(z) is

divisible by ®,(z). Observe that the degree bf(z) is < ¢ < (r + 1)". Also, the height of:;(z)

is < (r + 1)H. Hence, one can check directly /if(x) is divisible by ®,(x) in time O, y(1).

The construction of each; () takes time no more thad,. ; ((log n)(log log n)?) where the main

contribution of the time required comes from the divisiondpf— d, by e; above. Hence, the

d =

(mod ¢).

total time spent on constructing the variolis as we vary over the partitiong,, Js, ..., J, of
{0,1,...,r}andi € {1,2,...,s}is O, u((logn)(loglogn)?).
For the algorithm, we consider each partitidn J, ..., J; of {0,1,...,r} as above one at a

time. We construct the numbegsand the setd/; as indicated. Next, we want to determine for
a fixed partition whether (1) holds for some positive integerin other words, we want to know

whether there is am andm,; € M, for which
(2) m =m;ged(m,e;) forie {1,2,... s}

For a positive integek, we use the notation, (k) to denote the positive integersuch thap*|| k.
Then (2) holds if and only if each of the following is true:

o If p|my ... mg, theny,(m) < v,(m,e;) for all i with equality whenevep dividesm,;.
o If ptmy...ms, theny,(m) < v,(ey), whereey = ged(ey, .. ., e5).

Defining

D= H pt:eo/(H pt) and mgy = ged(myey, ..., mges)/D,

p'lleo p'lleo
pima--ms plma--ms

then we see that a solution to (2) exists if and only if there exjan M; such that for every prime
p dividing somem;, the exact power gf dividing m, is the same as the exact powempafividing
m;e;. Furthermore, the set of satisfying (2) in this case is precisely the setiof= mqd, where
d|D. Observe thatn, is the uniquen satisfying (2) (if suchm exist) with the property that every
prime divisor ofm is a divisor ofmms - - - m,. Furthermore, every prime divisor of;ms - - - mj

is a divisor ofm,. We are interested in knowing whether there exisandm, satisfying (2), so
we simply restrict our attention to determining whether there exjsh M; such that

3) mo = m; ged(mg,e;) forie {1,2,...,s}.

Recall that the numbeks and all elements of/; have been computed (for eack- 1,2, ..., s).
Also, as the partitions vary, the number of differepandm; in M; that arise isO,.(1). We go
through all these possibilities and comp@®ethe set of primes dividing:y;ms - - - m,. There are
O,(1) such primes and it takes,.(1) time to compute them. We compuig D andm, as defined
above and check whether (3) holds. Note that the second formul® favolves removing the
prime divisors frome, that are inP, which is a fixed set of primes of siz@,(1). Thus, bothey
and D can be computed in tim@r((log n)2). We also computen, and check (3) with the same
bound on the running time. If am, is obtained for which (3) holds, then we output thfét) has
a cyclotomic factor, indicate that the choiceraf= m, is such thatb,,(x) divides f(x) and end
the algorithm. If nom, is obtained for which (3) holds, then we output tifat) does not have a
cyclotomic factor. As there ar@,.(1) differentm, each of size),(n), the running time estimate
is not affected by going through the varioug and outputting the result. Hence, the proof of the
theorem, but with running time onlynH((log n)z), has been explained.

We improve the running time as follows. For the algorithm above, we made use of a few differ-
ent greatest common divisor computations. These were done to constioict € {1,2,. .., s},
to calculateey = ged(ey, ..., es) andmgy = ged(myey, ..., mges)/D, and to determine the value
of the right-hand side of (3). As noted earlier, we can apply known algorithms for gcd computa-
tions [3, p. 428] that would allow us to reduce the running time to that required by the theorem.
However, it is also worth noting that these gcd computations can be circumvented and the required
running time obtained in a different manner. We explain this approach now.

6

Let Ji, Jo, ..., Js be a partition of{0,1,...,r} as in the argument above. Write = e’
where every prime divisor af, is < r 4+ 1 and every prime divisor of; is > r 4+ 1. Recall that
u = u(i) € J; is chosen so that, is minimal. One can computg without computing:; from the

formula
e; — H pmiDUGJi{VP(d’U_du)}‘
p<t;

In other words, for each < ¢;, we can calculate the minimum of(d, — d,,) asv runs through
the elements of/; and then form the product above to gét As we shall see momentarily, the
numbers; can be calculated in tim@, (log n (log log n)? log log log n).

We note now that
gi(2) = Y _aya ™R
vEJ;

SO we can compute (xeé’) without computingy;(z), e; or /. Define
M, = {0 e Z": ®y(x) | gi(2*), (is squarefree, angl(¢) < t;}.

The setM/ can be computed in the same manner that we computdulit with g;(x) replaced by
g:(z*"). Thus, computing/;, given the polynomialg; (z*'), takes timeD,. ; ((log n)(log log n)?).
Recall that the prime divisors ef are all> r + 1 > t,. We deduce that the numbefsn the
definition of M; and M/ are relatively prime te!. It follows thatM; = M. Thus, the above
analysis allows us to compuf¥; without explicitly computing the numbees and with running
time O, y (logn (loglog n)? log log log n) :

Next, we address how to determine whether (3) holds. RecatPlsthe set of prime divisors
of myms - - - m,, and note that these primes afer + 1. The prime divisors ofn, are precisely

the primes irfP. We deduce that (3) holds if and only if

4) Vp(mo) = vp(m;) + min{v,(mo), vp(ei) }

for eachi € {1,2,...,s} and for eactp € P. For each prime € P, we compute the values of
vp(e;), fori e {1,2,..., s}, by using that,(e;) = v,(e}). Next, we compute

vp(mo) = fgigs{yp(mi) + vp(ei) }-

Then we check if (4) holds. Observe that eaghn;) is either0 or 1, sov,(m;) can be computed
by a simple division. We want also a method to compyfe;) = v,(e}), fori € {1,2,...,s}.

We further need to explain the computation:gfd, — d,,) to obtaine; above. ForU a positive
integer and a prime< r + 1, the value of,(U) can be computed as follows. We compute the
values ofp? successively foj > 0 by squaring until we arrive at a positive integefior which

p* > U. Observe that = O(loglogU). We setky = 0. Forj € {1,2,...,t}, we successively
check if p* ' |U and, if so, sek; = k;_; + 2!~/ and replacd/ with U/p* . If p* U, then
we setk; = k;_;. Thenk, = v,(U). Using this procedure, we can computgU) in time
O,(log U (loglog U)?log loglog U). The theorem follows. O

Although it does not affect our main results, it is of some value to note that the running time
of the algorithm can be shown to b’_ér(logn(log logn)?logloglogn + log H) Indeed, the

7

coefficients off (z) only take part in the algorithm when we form the polynomials:) and when

we check their divisibility by®,(z). Forming the polynomials involve®,.(1) additions of these
coefficients and checking the divisibility of dn(x) by ®,(z) takes timeO, (log(H + 1)). Note

that these divisions do not dependosince the degrees and the coefficients of the polynomials
areO,(1) andO, (H), respectively.

As it may be of interest in other contexts, we explain briefly how we can get a bit more out of
the algorithm. More precisely, we explain how to obtain the largest monic fattoof f(x) with
each irreducible factor of(xz) cyclotomic and in timeD,. ;; (log n (log log n)* log log log n). We
begin with determining the product of the distinct cyclotomic divisorg (@f). We note, however,
that the representations ¢fx) and the product of the distinct cyclotomic divisors ffr) as
polynomials cannot be the obvious ones as it is not difficult to show that foe, the cyclotomic
factors ofz(¢~D* 4 2% — z — 1 are distinct and their product contains exaciy- 2 terms. In other
words, explicitly writing outg(z), for example, can take time considerably more than any power
of logn.

For given positive integers, v, define the se€'(u,v) = {ud : dJv}. In the algorithm above,
we determined values,, and D such thatb,, (=) divides f(z) whenevem € C(myg, D). LetS
be the set of all such paifsn,, D} that can arise as a solution to (2) in Algorithm C. We proved
that®,, (z) divides f(z) if and only if m is in the set

Cs= |J C(mo, D).

{mo,D}GS

We want to determine

Os(x) = [[Pml2).

meCyg

The obvious way to do this is by determining eachm,, D) explicitly, but that would involve
factoring D which, for complexity issues, should be avoided. However, we can get around deter-
mining C'(mg, D) explicitly by taking advantage of the fact that

H P () = Pu(z")
meC(u,v)
as follows.
We make a few observations about the gets. v):

e Onehags’(U,V) C C(u,v)ifand only if UV dividesuv, u dividesU and, as a consequence,
V dividesuw.

e Given positive integers, v, v/, v’ with ged(u, v) = ged(v',v") = 1, defineU = lem(u, u’),
and letV = ged(v,v’). Note thatged(U, V') = 1. Then

Clu,v) A Ol o)) = cu,v) ifuv d.ivideS gcduv, u'v')
0 otherwise.
e There is a natural ordering on the pafrs v} whereu,v € N, taking{U,V} < {u,v} if
UV < v, orif UV = uv andV < v. We see that itC'(U,V) C C(u,v) then{U,V} <

{u,v}.

Now |S| = O,(1). GivenS we create a new sé@t. We start with7;, = S, and then recursively
construct

T ={{U,V}: C(U,V) = C(u,v) NnC(u,v") for some{u, v}, {u',v'} € T}.} UT.

One can show théty,, = T} for somek = O,.(1). WhenT,,, = T}, we setl’ = T}. Note
that|7'| = O,(1) andged(u,v) = 1 for all {u,v} € T. For each{u,v} € T, beginning withuv
minimal andv minimal givenuwv, we define the polynomials

(@) =2u@)/ I ®wn@) ezhl
{U,V}eT
{U,V}<{u,v}
C(U,V)CC(u,v)

We do not compute these polynomials explicitly but can give their values as the quotient above
where{u, v} and eacH U, V'} in the product are given explicitly. Then we have

bs(r)= [Ppunla).

{u,v}eT

Obtaining this description obs(z) takesO, (log n (loglogn)? loglog log n) bit operations.

The polynomialbs () is the product of all the distinct cyclotomic factorsfif). To deal with
cyclotomic factors to higher multiplicities, we make use of the following lemma due to GsHEjj
(also, see [11, p. 187)).

Lemma 1. If (z — «)* dividesf(x), thenk < r.

Recall thatS was defined as the set ¢ing, D} that gave rise to solutions of (2) corre-
sponding to cyclotomic factors of(x). We construct similar setS; corresponding to cyclo-
tomic factors off?)(z) for everyj € {0,1,...,r — 1}. Observe that the coefficients ¢f) (z)
are bounded by’ H, the degree off)(z) is n — j (assuming as we can that > r) and
the number of terms iff¥)(z) is < r + 1. Recalling that the running time of Algorithm C is
O, (logn (loglogn)?logloglogn +log H), it is not difficult to see that the running time for com-
puting the various setS; is O, (log n (log log n)? log log log n). The exact multiplicity of a cy-
clotomic factor off (z) is k provided it dividesf) (x) for 0 < j < k—1 and notf*)(x). Lemma 1
further implies that if a cyclotomic polynomial dividg$’) () for everyj € {0,1,...,7—1}, then
the multiplicity of the factor is- (i.e., there is no need to check if the cyclotomic factor divides
f™(x)). However, we need to be able to determine the common cyclotomic factors determined by
various setsS;. To do this, we sef; = Sy, and then construct recursively

Sii ={{U,V}: C(U, V) =C(u,v) N C(u,v") for some{u,v} € S, {v',v'} € Sy}

foreachk € {1,2,...,r—1}. One can then proceed by determinifjgfrom S; as we constructed
T from S above, and then computes: (), the product of the distinct cyclotomic polynomials
dividing f(x) with multiplicity at leastk + 1. The product of the polynomials: (=) for k €
{0,1,...,r — 1} is therefore the largest degree factor fdf:) that is a product of cyclotomic
polynomials. The total running time 8, x (logn (loglogn)?logloglogn) for describing this
factor of f(z).

We are now ready to return to our description of Algorithm A. Algorithm A begins by taking
the input polynomialf (=) and applying Algorithm C. Iff (x) has a cyclotomic factor, we obtain
asin (i). Asf(x) is not reciprocalf(z) cannot be a constant multiple of a cyclotomic polynomial.
Hence,f () is reducible and (i) holds.

This part of the algorithm does not actually dependf¢n) being nonreciprocal. The proof
of Algorithm C shows in fact that if (x) has a cyclotomic factor, then one can determinas in
() with every prime divisor ofm being< r + 1. Thus, it would not be difficult to factom and
computep(m) in the running time required for Theorem A. Ongen) is computed, then one can
determine iff (z) is a constant multiple of the cyclotomic polynomig),(z) by comparings(m)
with n.

We suppose now that(x) does not have a cyclotomic factor. The next step in Algorithm A is
to determine whethef(z) has a reciprocal factor. We shall do this by making use of Theorem B,
which we establish in the next section.

We compute

fla) =g (1) = 3" aam .

Since f(x) does not have a cyclotomic factor, we can apply Algorithm B to compite =
ged, (f(z), f(x)). Observe thak(z) is reciprocal and each reciprocal factorfdf:) dividesh(z).
As f(z) is not reciprocal, we must haveegh < deg f. If h(x) is not constant, therf(z) is
reducible,i(z) is a non-constant reciprocal factor ffz) and (ii) holds as:(z) is a reciprocal
polynomial of largest possible degree dividifige). Otherwise f(x) does not have a non-constant
reciprocal factor. Theorem B implies that this part of Algorithm A has running ﬁmg(log n)

We are now left with considering the case tlfét) does not have any non-constant reciprocal
factor. The basic idea here is to make use of the third author’s work in [9] (see also Theorem 74 in

[11]). For a polynomialF (zy, ..., z,, 27", ...,z '), in the variableg, . .., z, and their recipro-
calsz;?',...,z !, we define
r -1 —1
JF =ai"---a) F(:cl,...,xr,xl ey X),
where eachy; is an integer chosen as small as possible so.ttfais a polynomial inzy, . .., z,.

In the way of examples, if
F=z*+42'y+y* and G =2xyw — 2?2 3w — 12w,

then

JF =23 4+4y+ay® and JG =2zy2® —2? — 1227
In particular, note that although is a variable inGG, the polynomial/ G does not involvev. We
call a multi-variable polynomiak'(z1, ..., z,) € Q[z,...,z,] reciprocalif

JF(z', a7t = £F (2,).

»<r

For exampleg,z, — x1 — x5 + 1 andzix5 — z3x4 are reciprocal. Note that this is consistent with
our definition of a reciprocal polynomidl(z) € Z][x].
To motivate the next result and begin our approach, we set

F(zy,...,2.) = ax, + -+ a121 + a9 € Zlxy, ..., ;]

10

The plan is to associate the factorizationf¢f) = F(x%,z% ... z%) with the factorization of a
multi-variable polynomial of the form

JF<yT11"'y:nlt;~-,ylmrl"'yln”),

where the number of variableéds < r andm,; € Zfor1 < i < randl < j < t. The above
multi-variable polynomial can be expressed as

mit¢ mr1

yit eyt E ™ eyt

Mrt)
Y

DY yt
where
(5) U; = —min{mlj,mgj,...,mrj} for 1 <7<t

To make the connection with the factorizationfdf:), we want the matrix}/ = (m;;) to be such
that

(6) | =m

for some integers,, vs, ..., v. In this way, the substitutiop;, = z% for 1 < j < ¢ takes any
factorization

(7 Yty T ey) = Py) By, 9t
inZ[yi, ...,y into the form
(8) gurvrtetue ppd pde oty = Fy(at Lt - Fy(ath L at).

We restrict our attention to factorizations in (7) where i@y, . . . , y;) are non-constant. We will
be interested in the case thais maximal; in other words, we will want the right-hand side of (7)
to be a complete factorization of the left-hand side of (7) into irreducibles@véfor achieving
the results in this paper, we want some algorithm for obtaining such a complete factorization of
multi-variable polynomials; among the various sources for this, we note that A. K. Lenstra’s work
in [6] provides such an algorithm. For the moment, though, we need not taleximal.
Sincef(z) = F(x%, 2%, ... 2%), the above describes a factorizationféf), except that we
need to take some caution as somenay be negative so the expressidng:*, . .., z) may not
be polynomials ine. Forl < i < s, definew; as the integer satisfying

(9) JEy(z%, .. x%) = oV E(a™, ..z,

We obtain from (8) that

S
xU1v1+---+uzvt+w1+---+wsf<x> _ H xwiFi(xm xvt)
ey .
=1

The definition ofw; implies that this product is over polynomialsZijz] that are not divisible by
x. The conditionsyy # 0 andd, = 0 imposed onf(z) in the introduction imply thatf (x) is

11

not divisible byx. Hence, the exponent of appearing on the left must lie and we obtain the
factorization

(10) flo)=]Jaz"Fia™,a") =[] F@,....2").
=1 =1

The factorization given in (10) is crucial to our algorithm. As we are interested in the case that
f(z) has no non-constant reciprocal factor, we restrict our attention to this case. From (10), we see
that the polynomials™: F;(z", ..., xz") cannot have a non-constant reciprocal factor. There are,
however, still two possibilities that we need to consider for eael{1,2, ..., s}:

(i) Fi(y1,-..,y;) is reciprocal.
(i) J Fj(z™, ..., x") € Z.

Although we will not need to know a connection betweéhdnd (if), we show here that if (i
holds for some, then (ii) does as well. We consider then the possibility that

(11) JE(r -y t) = Ry, me)-

In other words, suppose that

(12) yit oy Filyr s u) = £E 0w,

wheree; = e;(i) is the degree of(yy, ..., y:) as a polynomial iry;. Substitutingy; = z* into
(12), we obtain

(13) gitervrt et (x_vl, . ,x_”t) = j:xw’iFZ-(a:”l, . ,x”t).

By the definition ofw;, the polynomial on the right does not vanishOatAssume (i) does not

hold. Leta be a zero of this polynomial. Then substituting= 1/« into (13) shows that /« is

also a zero. On the other hand, we have already demonstrated in (10) that the right-hand side of
(13) is a factor off (x). This contradicts thaf(z) has no non-constant reciprocal factor. Hence,

(ii") holds.

We make use of a special case of a result due to the third author in [9]. In particular, the more
general result implies that the above idea can in fact always be used to faciof f(x) has two
nonreciprocal irreducible factors. In other words, there exist a mafrandv; satisfying (6) and
a factorization of the form (7) that leads to a non-trivial factorizatiorf @f), if it exists, through
the substitutiony; = z*/. We are interested in the case tifat) has no non-constant reciprocal
factor. In this case, we can obtain a complete factorizatiof(of into irreducibles.

Theorem 1. Fix
F=F(xy,...,2,) = apx, + -+ + ayx1 + a,

where theu; are nonzero integers. There exists a finite computable set of maftfiagth integer

entries, depending only an, with the following property: Suppose the vectbr= (dy,da,...,d,)
isinZ" withd, > d,_; > --- > d; > 0 and such thatf (z) = F(z%, 2%, ... 2%) has no non-
constant reciprocal factor. Then there isaix t matrix A/ = (m;;) € S of rankt < r and a vector
U = (v, vy, ..., in Z! such that (6) holds and the factorization given by (7%{m, . ..,y of
a polynomial int variablesy, v, . . ., y; as a product ot irreducible polynomials ove) implies
the factorization off (x) given by (10) as a product of polynomialsZiiz] each of which is either
irreducible overQ or a constant.

12

We are ready now to apply the above to assist us in Algorithm A. As suggested by the statement
of Theorem 1, we take the coefficients of f(z) and consider the multi-variable polynomial
F = F(xy,...,z,). We compute the sef. SinceF is a linear polynomial with- + 1 terms
and heightH, the time required to computg s O, ;(1). Sincef(z) = F(z",...,z%) has no
non-constant reciprocal factors, there is a mattix= (m;;) € S of rank¢ < r and a vectorv’ in
Z' as in Theorem 1. We go through each of &éhey (1) matricesM in S and solve for the vectors

U = (v, v,...,0) INZ! satisfyingg> = M7, wheret is the number of columns i/ and we
_)

interpret d and v as column vectors. From the definition f we have that the rank af/ ist

and¢ < r. Hence, there can be at most one such vectdor each)M € S. However, for eacm

there may be many/ € S and @ for which d=M7 v’, and we will consider all of them.
We make use of the following simple result in this section and the next.

Theorem D. There is an algorithm with the following property. Givermaxt integral matrix\/ =
(m;;) of rankt < r andmax{|m;;|} = O, (1) and given an integral vectorl = (dy,...,d,)
with max{|d;|} = O, x(n), the algorithm determines whether there is an integral veafor=
(v1,...,v,) for which (6) holds, and if such @ exists, the algorithm outputs the solution vector
v . Furthermoremax{|v;|} = O, z(n) and the algorithm runs in timé,. ; (log n).

Proof. There are a variety of ways we can determind it= M7 has a solution and to determine
the solution if there is one within the required tirdg ; (logn). We use Gaussian elimination.
Performing elementary row operations &h and multiplying by entries from the matrix as one
proceeds to use only integer arithmetic allows us to rewriten the form of anr x ¢ matrix

M" = (mj;) with eachm;; € Z and the first rows of /' forming at x ¢ diagonal matrix with
nonzero integers along the diagonal. These computations only depend on the entfiendf
hence, take timée), ;(1). We perform the analogous row operations and integer multiplications on

the vectorﬁ> = (dy,ds,...,d,) to soIveE) = M7 for 7. As the entries of\/ are integers that
areO, (1) and eachi; is an integer that i®), ;(n), these operations take tind&. ;(logn). We
—
are thus left with an equation of the fordh = M'7%" where the entries af/’ are integers that are
_>
O,.x(1) and the components af = (d;,d, ...,d.) are integers that a@, i (n).

For eachj € {1,2,...,t}, we check ifd; = 0 (mod m/;). If for somej € {1,2,...,t} we
haved; # 0 (mod m/,) then a solution to the original equatlczh M7, if it exists, must be
such thatp g 7. In thIS case, an mtegral vectar does not exist. Now, suppose instead that
d; =0 (mod m’;) foreveryj € {1,2,...,t}. Then we d|V|decl’ by m';; to determine the vector
7. This vector may or may not be a solution to the equa‘doa: M7, We check whether it is by

H
a direct computation. If it is not a solution to the equation= M 7', then there are no solutions to
ﬁ
the equation. Otherwis@; is an integral vector satisfying = M ©’. Checking whethed; = 0
(mod m/;) for 1 < j < t, solving for @ if it holds, and checking whethed = M7 all takes
time O, i (logn). We also have), ;(n) as a bound for the absolute value of the componenté

. We outputv’ if it exists which takes tim&),. ;(logn). Combining the running times above,
the theorem follows. O

Algorithm D is performed for each of th@, ; (1) matrices)M in S. The running time for each
application of Theorem D i§), ;(logn), so the total running time spent applying Algorithm D
for the variousO, g (1) matrices inS is O, g (logn). This leads ta0, (1) factorizations of the

13

form given in (7) into irreducibles, each having a potentially different valuesfoFor each of
these, we compute the values Bf(z**, ..., z*) and determinev; as in (9). We produce then
O,.n (1) factorizations off (z) as in (10). As we obtain these factorizations, we keep track of the
number of non-constant polynomiazlrg’iﬂ(xvl, e ,x”f) appearing in (10). We choose a factor-

ization for which this number is maximal. Recalling that (10) follows fr&n: M7 and (7), we
deduce from Theorem 1 that the factorizationf¢f) we have chosen provides a factorization of
f(z) with each:cwiFi(:c”l, e ,:z:”f) either irreducible or constant. Recalling that the polynomials
Fi(y1,...,y,) in (7) are independent of and that the components af are bounded in absolute
value byO,. y(n), we see that producing the factorizationfdfr) into irreducibles and constants

as in (10) takes timé®, y(logn). For a factorization off (x) into irreducibles ovef), we mul-

tiply together the constants appearing on the right of (10) and one of the irreducible polynomials
J Fy(z*,...,2"). This does not affect the bound given for the running time of Algorithm A.

Thus, we have demonstrated an algorithm for Theorem A as stated in the introduction and justi-
fied that the algorithm satisfies the statement of Theorem A as well as (i), (ii) and (iii). Combining
the above running time estimates, we deduce that the algorithm also has the stated running time
bound given in Theorem A.

3 The Proof of Theorem B

As mentioned in the introduction, our proof of Theorem B relies heavily on the recent work of
Bombieri and Zannier outlined by Zannier in an appendix in [11]. In particular, as a direct conse-
guence of their more general work, we have

Theorem 2. Let
F('rla s 7xk)7G(:U17 s 7'7;16) € Q[xlv s ,l’k}

be coprime polynomials. There exists an effectively computable nuBilfers) with the follow-
ing property. Ifu’ = (uy,...,u) € Z*, ¢ # 0 is algebraic and

F(g", ... %) =G(&", ..., &%) =0,

then eithe is a root of unity or there exists a nonzero vectore Z* having components bounded
in absolute value by3(F, G) and orthogonal tou .

It is important for our algorithm that the quantitiéy F, G) are effectively computable. We
note that the facB(F, i) is effectively computable is not explicitly stated in the appendix of [11],
but U. Zannier (private communication) has pointed out that the approach given there does imply
that this is the case. The more recent paper [1] notes explicitly2h&t) can be calculated.

Our description of Algorithm B has similarities to the third author’s application of Theorem 2 in
[10] and [11]. In particular, we make use of the following lemma which is Corollary 6 in Appendix
E of [11]. A proof is given there.

Lemma 2. Let/ be a positive integer and’ ¢ Z‘ with v nonzero. The lattice of vectorg ¢

Z* orthogonal to@ has a basisv;’, v, ..., v,—; such that the maximum absolute value of a
component of any vectar’ is bounded by/2 times the maximum absolute value of a component
of 7.

14

For our algorithm, we can suppose tifét:) does not have a cyclotomic factor and do so. We
consider only the case th#t0)g(0) # 0 as computinged,(f(x), g(x)) can easily be reduced to
this case by initially removing an appropriate power:dfom each off(z) andg(x) (that is, by
subtracting the least degree of a term from each exponent). This would need to be followed up by
possibly multiplying by a power of after our gcd computation.

We furthermore only consider the case that the conterfi(of, that is the greatest common
divisor of its coefficients, and the content gfx) are 1. Otherwise, we simply divide by the
contents before proceeding and then multiply the final result by the greatest common divisor of the
two contents.

We express our two polynomials in the form

k
f(z) = Zaja:dj and g(z Zb x®

=0

.

where above we have possibly extended the lists of exponents and coefficients desfti)ing
and ¢g(z) so that the exponent lists are identical and the coefficient lists are allowed to include
coefficients which ar@. Also, we taked, > dy_; > --- > d; > 0. Thus,d, = 0, agby # 0 and
k < 2r. The time required to modify(z) andg(x) so that they are not divisible by and have
contentl and to adjust the exponent and coefficient lists as abotk iglogn).

Before continuing with the algorithm, we motivate it with some discussion.ul(e) denote
ged, (f(x), g(x)). We will apply Theorem 2 to construct two finite sequences of polynomials in
several variables;, andG,, with integer coefficients and a corresponding finite sequence of vectors
"d @ that will enable us to determine a polynomialifx] that has the common zeros, to the correct
multiplicity, of f(z) andg(x). This then will allow us to compute(z).

Let ¢ be a zero ofw(z), if it exists. Observe thag # 0, and since€ is a zero off(x) which
has no cyclotomic factors, we hagés not a root of unity. Sinc€ is a common zero of (z) and

g(x), we have
k

k
Zajfdj — ijgdj =

—0 j=0

.

We recursively construdt,, G, andj(“), for 0 < u < s, wheres is to be determined, beginning
with

k
(14) FO = F()(.I'l, R ,Q?k) = Za]’l‘j and Go Go .Z'l, ce Zb Zj,

Jj=0

and d© — (dy,dy, ... ,dg). Asu increases, the number of variables definiigand G, will
decrease. The value stthen will be< k. Observe that

Fy(z™, ... a%) = f(z) and Go(z™,...,2%) = g(x).
We deduce that|, andG), being linear, are coprime i@z, . . ., zx] and that

(15) FO(gdlu"wgdk) :G0(5d17"'7£dk) = 0.

15

Now, suppose for some > 0 that nonzero polynomialg;, andG,, in Z[xy,...,zx,] and a

vector d) —= (dﬁ“), . .,d,(j:)> € Z* have been determined, whetg < k,_1 < --- < ko = k.
Furthermore, suppose thag andG, are coprime irQ|xy, . .., zx,] and that we have at least one

zero¢ of w(x) such that

(u) (u) (u) (w)
(16) Fu (€0, .. g%0) = G (€7, %) = 0.
In particular,¢ # 0 and¢ is not a root of unity. Note that thié.“) may be negative. We will require

(u) (u) ()
17 JE®)| f@) and J G) | (o).

Observe that/ £, (x4, ..., 2%.) and f(z) are inZ[z]. We take (17) to mean that there is a
polynomialh(z) € Z[z] such that

f(@) = h(z) - JF(e, ... %)
with an analogous equation holdlng fg)(x) andJG (x w, o ,xdf(cz)). In particular, we want
JF,(x o u) andJ G,(zh", ...z u) to be nonzero. Note that these conditions which

are belng |mposed o, and Gu are satisfied fon = 0 providedw(z) is not constant. For
0 < u < s, we describe next how to recursively constré¢t ; and G, having analogous
properties. The specifics of the algorithm and its running time will be discussed later.

There is a computable bouri8l F,, G,,) as described in Theorem 2. We deduce that there is a
nonzero vectorw’ = (vy, vy, ..., v,) € ZF such that eachy;| < B(F,,G,) and v’ is orthogonal
to d . From Lemma 2, thereis/a, x (k, — 1) matrix M with each entry ofM having absolute
value< k,B(F,,G,)/2 and such thatd @ = MT ™ for some T ™ € Zk~ where we view
the vectors as column vectors. We define integerg(written alsom;, ;) andv](.“), depending on,
by the conditions

myy o0 Myg,—1
M = and ?(u) = <'U§u), (Ul(cz)—1>

mg,a1 0 Miy, k-1

The relations
z; =y ykm”““ Yofor1<i<k,

transform the polynomial$),(xy, ..., zx,) andG,(z1, . .., xy,) into polynomials in some, possi-
bly all, of the variablesy,, ..., y,,—1. These new polynomials we caH, andg,, respectively.
More precisely, we define

(18) fu<y17 s 7yku71) JF (T y;;ll_klu_17 s ay;nku ijtk_ulku_l)
and
(19) gu(yla s 7ykufl) ']G (SRR yli:il;kft_la s 7yinku y;:k_ulku—l)'

16

The polynomialsF, andg, will depend on the matrix\M so that there may be many choices for
F, andg, for eachF, andG,. We need only consider one sugfy andg, and do so. Note

that this still may require considering variond until we find one for whichd ™ = M7 ® is
H

satisfied for some&y’ ™ € Z*~1. The equationd) = M7’ ™ implies that for some integers

es(u) ande,(u) we have

(u) (u) (u) (u)
(20) fu (gj”l b 7‘Ivku71) — (L’ef(u)Fu (Idl Yo 7xdku)
and

(u) (u) (u) (u)
(21) Gu(a", .. ak) = 2@, (z%, . %),

In particular,F,, andg, are nonzero. Also,

(22) JF(a) | f@) and TG, (e, et | ga).

Furthermore, witlt as in (16), we have

(u) (u) (w) u
Fu(€ . %) = Gy (€1, .., k1) = 0.
The idea is to suppress the variables, if they exist, which do not occé, iand G, and the
_>
corresponding components of“ to obtain the polynomials),., ; andG,,,, and the vectord (1
for our recursive construction. However, there is one other matter to consider. The polynomials
F. andG, may not be coprime, and we requif¢,,; andG, ., to be coprime. Hence, we adjust

this idea slightly.
Let

(23) D, = Du(yl» e 7y]€u_1> = ngZ(Fm QU) € Z[yh e ayku—l]-

Recall thatf(0)g(0) # 0. Hence, (20), (21) and (22) imply thatD, (z*" ..., ") divides
ged, (f, g) in Z]z]. We define

fu(yh”'ayk —1) gu(yla"'7yk —1)
24 Fup = . and Gy = ust)
() i Du<y1,---,yku—1> ! Du(ylv"'aykufl)

and sett,.; < k, — 1 to be the total number of variables, ...y, 1 appearing inF,,; and
G..1. Note thatF, ., andG,,,; are coprime and that (17) holds wittreplaced by + 1 and the
appropriate change of variables.

We describe next how the recursive construction will end. Suppose we have just constructed

F,, G, and 4™ and proceed as above to the next step of construdfing, G, and D),
At this point, D,_; will have been defined but nd?,. We want to findM and av) such that

4w — MT® whereM is ak, x (k, — 1) matrix with entries bounded in absolute value by
k,B(F,,G,)/2. Sowe computd3(F,, G,) and the bound, B(F,, G,)/2 on the absolute values
of the entries ofM. We consider suctM and apply Algorithm D to see if there is an integral

vector 7™ for which d ® = M7 ®. Once such auV and & are found, we can proceed
with the construction of, ,; andG,, 1 given above. On the other hand, it is possible that no such

17

M and 7™ will be found. Given Theorem 2, this will be the case only if the supposition that
(16) holds for some zer9of w(z) is incorrect. In particular, (16) does not hold for some zeod
w(z) if F, andG,, are coprime polynomials ir: 2 variables (i.e.k, < 1), but it is also possible
that (16) does not hold for somewith £, andG, polynomials in> 2 variables (i.e.k, > 2).
Given thatM is ak, x (k, — 1) matrix, we consider it to be vacuously true thatmatand v
exist satisfyingd) = M7 ® in the case that, < 1. If no suchM and '™ exist, we consider
the recursive construction of the polynomialsandG, complete and set= u. We will want the
values ofD,, for everyl < u < s — 1, SO we save these as we proceed.

The motivation discussed above can be summarized into a procedure to be used for Algorithm B
as follows. Beginning withFy and G, as in (14) andd © = (dy,...,dy), we construct the
multi-variable polynomials,, and G, and vectorsd) — d", ... ,d,ﬂ% € ZF« recursively.
GivenF,, G, and d @, we computeB(F,, G,,) and search for &, x (k, — 1) matrix M with
integer entries having absolute valge k, B(F,, G,,)/2 for which d® — MT® s solvable
with 7@ = (™, .. ,v,(j:)_l) € Z*k=1. We check for solvability and determine the solutioii)
if it exists by using Algorithm D. If no sucb\ and v’ exist, then we set = v and stop our
construction. Otherwise, once such.&h = (m;;) and v’ are determined, we defir, ; and
G,41 USINg (18), (19), (23) and (24). After using (24) to constrigt; andG, 1, we determine
the variablesy,, . . ., yx,_; which occur inF,,; andG,; and defined +1 as the vector with
corresponding components frowﬁ”), . ,v,(j:)_l; in other words, ify; is the:th variable occurring

in F,.1 andG1, thenv§“) is theith component ofd (w+1),

For the running time for this recursive construction, we use Bt,, G.,,) is O, y(1) asu
varies and, furthermore, the numbé?$F,, G,,) can be computed in tim@, z(1). In particular,
this implies that for a fixed:, there areO, (1) choices forM and, hence, a total ad, ;(1)

possible values foF, . ; andG,; independent of the value at7><“). In other words, without even
knowing the values of, . . ., dj, we can use Theorem 2 to deduce that there are at@gst1)
possibilities for F; and GG;. For each of these possibilities, another application of Theorem 2
implies that there are at moék, (1) possibilities forF, andG,. And so on. Ass < k < 2r,

we deduce that the total number of matrices that we need to consider during the recursive
construction is bounded [y, x(1). The recursive construction dependsroanly when applying

-
Theorem D to see il @ = M7 ™ holds for somev ™ and to determiné’ ™ if it exists. For

a fixed M, Theorem D implies that these computations can be done in@mglogn). As the

total number ofM to consider is bounded by, ; (1), we deduce that the recursive construction
of the F,, G, and d takes timeD, (logn).

As we proceed in our recursive construction of theand G,,, an important aspect of the
construction is that then;; are bounded in absolute value By ;;(1) and, hence, the coefficients
and exponents appearing i) andG, are bounded by, ;(1). In other words,F,, andG,, can
be written in timeO,. ;(1). Another important aspect of the construction is to note that as we are

dividing by D, to constructF,; andG,;, we obtain not simply that D, (x“@, o akat)
dividesged,(f, g) in Z[x] but also

J v<j) .. .
(25) H J D, (x”5 S 571) divides gedy(f, g) in Z[x].

18

This can be seen inductively by observing that

@9 R
[170;@", . %)
7=0

and

(27) J Gu (xvgu)y e axv'(:)_l) a1 o ()
HJD]'($U§>, 7$Uk'j71)
7=0

Algorithm B ends by making use of the identity

(28) gedy, (f(:L“), g(x)) = H JD, (xv§“>’ o ’kauq).
u=0

We justify (28). Recall that we have denoted the left sideiy). Observe that (25) implies that
the expression on the right of (28) divide$z). By the definition ofs, when we arrive at = s in
our recursive construction, (16) fails to hold for every zexf w(z). Therefore, takinge = s — 1

in (24), (26) and (27) implies that the right-hand side of (28) vanishes at all the zerds pand
to the same multiplicity. As noted earlier, we are considering the case that the contgiitg of
andg(xz) arel. We deduce that (28) holds. Observe that the computatiendf (f(z), g(z))
by expanding the right side of (28) involves (1) additions of exponents of siz@, ;;(n). This
computation can be done in tind&. 5 (logn). Theorem B follows.

References

[1] E. Bombieri, D. Masser and U. Zannieknomalous subvarieties - structure theorems and
applications preprint.

[2] J. H. Conway and A. J. Jone§tigonometric Diophantine equations (On vanishing sums of
roots of unity) Acta Arith. 30 (1976), 229-240.

[3] R. Crandall and C. Pomerance, Prime Numbers, A Computational Perspective, Springer-
Verlag, New York, 2001.

[4] M. Filaseta and A. SchinzeQn testing the divisibility of lacunary polynomials by cyclotomic
polynomials Math. Comp.73(2004), 957-965.

[5] G. Hajbs, Solution of Problem 41 (Hungarian), Mat. Lapok 4 (1953), 40-41.

[6] A. K. Lenstra, Factoring multivariate polynomials over algebraic number fiel@88AM
J. Computl6(1987), 591-598.

[7] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lasz,Factoring polynomials with rational coeffi-
cients Math. Ann.261(1982), 515-534.

19

[8] D. A. Plaisted,Sparse complex polynomials and polynomial reducihiltyComput. System
Sci.14(1977), 210-221.

[9] A. Schinzel,Reducibility of lacunary polynomials, Acta Arith. 16 (1969/1970), 123—-159.
[10] A. Schinzel Reducibility of lacunary polynomials, XIActa Arith. 90 (1999), 273—-289.

[11] A. Schinzel, Polynomials with Special Regard to Reducibility, Encyclopedia of Mathematics
and its Applications, 77, Cambridge University Press, 2000.

[12] A. Schinzel,On the greatest common divisor of two univariate polynomial8, panorama
of number theory or the view from Baker’s garderufich, 1999), Cambridge Univ. Press,
Cambridge, 2002, 337-352.

20

