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1 Introduction

The generalized Laguerre polynomials are defined by

L) :i (m + a)(m — 1+oz)-j-(.j+1~|—a)(—x)j'
= (m —J4)lj!

wherem denotes a positive integer (the degree) and real number. In two papers, I. Schur

[10, 11] investigated the irreducibility dbﬁ,?)(x) and Lﬁ,ll)(x) as well as their associated Galois

groups. He established that these polynomials are irreducible for all positive integerd that

the Galois group o,y (x) is the symmetric group,, for all m and the Galois group dbﬁ)(x)

is the alternating groud,,, if m > 1is odd or ifm + 1 is an odd square and, otherwise, the Galois

group isS,,. That the Galois group atly (x)is A,, whenever is odd (and sometimes when is

a multiple of4) is of particular interest as a classical result of Van der Waerden [12] is that almost

all polynomials in a certain asymptotic sense have Galois g&upMore recently, R. Gow [7]

showed that the Laguerre ponnomid]%T)(x) provide a possible complimentary list of polyno-

mials to L{) (x) in the sense that for ea@venm the ponnomiaIL,(Q”(x) may well have Galois

groupA,,. More specifically, he established thatifis even, then the Galois group of™ (x)is

A,, provided that the polynomidbﬁT)(x) is irreducible over the rationals. A computation shows

that for2 < m < 100, L%T)(x) is irreducible. In addition, Gow established the irreducibility of

L (x) whenm is of the form2p* wherep is a prime greater than 3 or whenis of the form4p*

wherep is a prime greater thah The purpose of this paper is to give some further insight into the

irreducibility of the polynomiald.{" (). We establish

Theorem 1. For almost all positive integers: the ponnomiaIL,(;”)(x) is irreducible over the
rationals (and, hence, has Galois grouyp, for almost all evenn). More precisely, the number of
m < t such thatZ("” (x) is reducible is

< 9log(2t)
P\ loglog(2t) )

Furthermore, for all but finitely many., L' (x) is either irreducible orL{ (x) is the product of
a linear polynomial times an irreducible polynomial of degree- 1.

Our approach will be based on recent work of the first author [3, 4] and of his joint works
with T.-Y. Lam [5] and O. Trifonov [6]. There several irreducibility results were established by
combining the use of Newton polygons with information on the distribution of primes. Similar
to the general form of these results and to the original work of Schur, we establish the following
result from which Theorem 1 is an easy consequence.

Theorem 2. For all but O ( exp(91og(2t)/ log log(2t))) positive integersn < t, the polynomial

flo) = Zm:“j (mZT)%

j=0



is irreducible over the rationals for every choice of integegsa, . . ., a,, with |ag| = |a,,| = 1.
Furthermore, there is an absolute constamf such that the exceptionat for which some choice
of integersay, a1, . . ., a,, as above produces a reducible polynomfak) are either< m, or are
of the formm = 2! x 3’ x n where

8 log(2m) )

<
s e <log log(2m)

In the case thatn > m,, either f(z) is irreducible or f(z) is the product of a linear polynomial
times an irreducible polynomial of degree — 1.

We let A denote the set of exceptional in Theorem 2, and le#\(¢) denote the number of
elements ofd that are< ¢. Thus, Theorem 2 gives

9log(2t)
) < exv (oieetan )

We note that the set is nonempty. Indeed, is an element ofl since
ALY (z) = (2® — 8z +12) = (z — 6)(x — 2).

The ponnomialLé” (x) may well be the only example of a reducitﬂ&”)(:ﬁ). However, we show
in the final section of this paper that the séts infinite. Our next theorem follows from the
methods given there.

Theorem 3. A(t) > logt.

Because of our approach for determining whethr) has a quadratic factor, the valueraf
in Theorem 2 is ineffective (see the discussion around Lemma 2). We note here, however, that our
approach can be modified to give an explicit constarguch that ifm > z, then eitherf(z) is
irreducible or it has a factor of degree2.

Considerf(z) as in the statement of Theorem 2. Defihe= a,,, and

cj:aj(T)(Qm)(Qm—1)---(m+j—|—1) for 0<j<m-—1

Thus, we have

Cmet = Gt (”f) (2m), s = Qs @) 2m)(2m —1),...,

1= (T) 2m)(2m —1)---(m+2), and cop = ap(2m)(2m —1)---(m + 1).
Thus, ifG(x) = m!f(x), thenG(z) = 37" ¢;27. Hence, it suffices to prove the analogous result
in Theorem 2 for the polynomialS(z) = > 7" ¢;27 € Z[x].

We organize the remainder of this paper as follows. We begin by stating some general analytic
results. Next, we provide a few technical lemmas crucial to the proof of Theorem 2. We prove
Theorem 2 using a proof by contradiction. We assume hat) has a factor of degrek €
[1,m/2]. We partition the interva]l, m /2] into seven subintervals. In each such subinterval, we
show that form sufficiently largeG(x) cannot have a factor of degréeexcept in the case that
k = 1 whereG(x) might have a linear factor ifn takes on a specific form. We end the paper by
giving a constructive proof that the sétis infinite.



2 Preliminaries

We begin with some analytic results which will aid in the proof of Theorem 2. The distribution of
primes will be important in our approach. In particular, we will make use of the following result
of Rosser and Schoenfeld [9].

Lemma 1. Letn(z) denote the number of primes not exceedin@hen

r(z) < — <1+

log

forall z > 1.
210gx> ’

To take advantage of the use of Newton polygons (defined below), we will consider the case
thata,, = a,,—1 = --- = ap = 1 and examine primes that divide. Wtih this in mind, we define
c; by settinga; = 1 in the definition ofc;. We get the following equivalent formulations gt

2m

¢ = (”f‘)(zm)(zm—1>..-(m+j+1> and c;.:(

j )m(m—1)~~~(j+1). (1)

m-—7
Here,0 < 7 < m—1, and note that/, = 1. In the case of dealing with the possibility of quadratic
factors, we will use the latter formulation with< ;7 < m — 2. We will be interested in showing
that form large, the product:(m — 1) appearing it} (and, henceg;) has a factorl > /m with

d relatively prime to30. For this purpose, we will make use of the next result which can be found
in [4].

Lemma 2. Leta be a fixed non-zero integer, and I&tbe a fixed positive integer. Let> 0. If
m is sufficiently large (depending an N, ande), then the largest divisor ofi(m + a) which is
relatively prime tolV is > m!~.

Lemma 2 is ineffective. For a giveN ande > 0, we do not know how large: must be in
order to guarantee the conclusion of Lemma 2 holds.
We define the Newton polygon of a polynomial as follows. Let

m

fl@) =) a’ € L]

j=0

with aqa,, # 0. Let p be a prime, and lej be an integer. We use theadic notation

v(y) = v,(y) =r if p'lly (thatisifp’|y andp™ ty).

If y = 0, then we understand this to meafy) = +occ. Forj € {0,1,2,...,m}, we define the set
of points
S = {(07 V(am)), (1’ V(am—l»’ SRR <m7 V(ao))}

in the extended plane. We refer to the elementS a& the spots of (). We consider the lower
edges along the convex hull of these spots. The left-most edge has one endpoiri0 heiag))

and the right-most edge hés:, v(a¢)) as an endpoint. The endpoints of every edge belong to the
setS. When referring to the “edges” of a Newton polygon we shall not allow 2 different edges to
have the same slope. The polygonal path formed by these edges is called the Newton polygon of



f(z) with respect to the primg. Observe that the slopes of the edges are always increasing when
calculated from the left-most edge to the right-most edge.

We will make use of the following result from [3] (which itself is based on work of M. G. Du-
mas [2]).

Lemma 3. Let k and ¢ be integers withk > ¢ > 0. Suppose/(x) = Z;’”‘:O bjx? € Z[z] andp is

a prime such thap 1 b,,, p|b; forall j € {0,1,...,m — ¢ — 1}, and the right-most edge of the
Newton polygon foy(z) with respect tg has slope< 1/k. Then for any integers,, a4, ..., a,,
with |ag| = |an,| = 1, the polynomiali(x) = > a;b;27 cannot have a factor with degree in the
interval [¢ + 1, k].

3 Further Preliminaries

We now considerf(r) as in Theorem 2. Note that#f = ¢ in Lemma 3, themn!f(x) is of the
form G(x) given there. Hence, we defité(z) = m!f(x) = 37 cja? = 377 a;cja’. Also, we
let g(x) be the polynomial resulting from setting, = a,, 1 = --- = ap = 1. Thus,g(x) is the

polynomial Zj:0 bz’ given in Lemma 3. We establish some technical lemmas associated with
factors of the polynomial?(z). Lemma 3 will allow us to work withy(z) instead ofG ().

Lemma 4. Letm be a positive integer. Suppose thas a prime, that: andr are positive integers,
and that/ is an integer in0, k) satisfying:

() p"l[(m — ) or p"[|(2m — £)

(i) p>3k+1

log(2m) 1 1 1
< = — —
(i) A(rp)- 5=+ = < 1 whereA(r,p) 2/@ Sﬂl)

ThenG(x) cannot have a factor with degree i6+ 1, k.

Proof. The conclusion of the lemma hold</i> m, so we supposé < m — 1. The proof consists
of verifying the hypotheses of Lemma 3. Sin¢e= 1, p 1 ¢,,. Also, from the first formulation of
i in (1), if p"|[(2m — £), thenp dividesc) for j € {0,1,...,m — £ — 1}. If p"[|(m — {), then the
second formulation of; in (1) implies tha dividesc; for j € {0,1,...,m — ¢ —1}.

Now, we need only show that the right-most edge of the Newton polyggfudfwith respect
to p has slope< 1/k. The right-most edge has slope

i {M} @)

1<j<m j

Let j be such that the quantity in (2) is maximal. In particuldk;,) — v(c;) > 0 sincev(c;) —
v(c,) = v(c)) > 0. By (iii) it suffices to show that

m

/

v(cy) —v(c)) NG p)log(2m) N 1 |
J "pilogp  p—1




Observe that by (1)

@ _ _ @m)Cm-1)---(m+1)  jlm+5)m—Jj)
c (?)(2m)(2m —1)--(m+j+1) m!?
Since . o
v =3 | <Xk -
we deduce B B
vieh) —vie) = vt v () <o () @
J

whereN = [log(2m)/ log p]. Note that

2] [ <2t
P’ P’ P’ p’ P’ P’

] = @

If j > p"/A(r,p), then using (3) and (4) we obtain

v(cy) —v(c)) 1 1 1 N 1 log(2m)
—i——E l=—+—<—+A

and our result follows.

Suppose thaj < p"/A(r,p) and choose so thatp®||(m + i) for somel < i < j with e
maximal. We assume as we may that 1; otherwise,

0 < ey -t =) () = (7)) <o

which implies the quantity in (2) is equal to 0 and our result is trivial.

Claim.e < r.

To see that the claim is true, suppase> r. If p"||(2m — {), then ap®||(m + i) we have
p"[(2i + ). Thus,

s

P<2i+l<2j+k<2j+l 04 L
3 3pr71




Likewise, if p"||(m — (), then ag°||(m + i) we deduce”|(: + (). Hence,

3pr—1 ’

p’"gi+€§2i+€<2j+k§2j+§§2j+

Both situations imply that

N 1
>—=(1- =p" /A
iz (1= g ) =/,

which is a contradiction. The claim follows.

Using the claim, the fact that ||(2m — ¢) or p”||(m — ¢), and the fact that®||(m + i), we can
replacer with e in the proof of the claim to obtain > p¢/A(e, p). From the definition ok, we
deduce fors > e that

- Bl

> (5B D s (5] 2B ) < 5

s=1 s=1

We now consider three possibilities: @)> 2, (2)e =1 andj < p, and (3)e = 1 andj > p.
Suppose first that > 2. Usingj > p¢/A(e, p), together with (3), we see that

v(ch) — V(c;-) _ 1 N e _ 1 N eA(e,p)

J p—1 Jj p—-1 p°

: ()

Observe that\ (e, p) decreases asincreases so that fer> 2 we haveA(e,p) < A(2,p). Also,
e/p® < 2/p*. Hence, using (5) we have

v(c)) —v(d; 1 2A(2, 1 4
(o)‘(])< N (2p): N _
j p—1 p p—1 »plp—3)

Sincep > 3k+1 we deduce > 5; and so3p > p+ 10. Further, we note that—1/3 > p—1 > 0.
From the inequality above we have

y(cg)fu(c;) _l 4 ptd Sp+4 Sl(p+4) _1
j p=1 plp-1) pp-1) " pBk) ~ k\p+10
Applying Lemma 3 our result follows when> 2.
Suppose that = 1 andj < p. Sincej < p we deduce that(j!) = 0. Note that previously in
the argument we used the fact thdj!) < j/(p — 1) leading to the expressiary(p — 1) in (5).
Thus, we now obtain

_k'

W) —vle) e

J J



Also, ase = 1 andj > p°/A(e,p) = p/A(1,p) = p/3 we have

AN !
Me)-r() 1 3 _ 3 1
7 — 3 - p 3k k

Applying Lemma 3 our result follows when= 1 andj < p.
Finally, suppose that= 1 and; > p. We have

v(cy) — v(c)) 1 e 1 1 1 11
: < t+-<—+-< -+t 7=7
J p=1 77 p=-1 p 2k

Applying Lemma 3 our result follows when= 1 andj > p. O

Lemma 5. Letm be a positive integer. Suppose thas a prime, that: andr are positive integers
with » > 2, and that/ is an integer in0, k) satisfying:

() p{l(m —10)
(i) p > max{k+ 2,2k — 1}
log(2m) 1 1

i < —.
(i) pr/Qlogp+p—1 ~— k

ThenG(x) cannot have a factor with degree i6+ 1, k.

Proof. For the proof of Lemma 5, we begin in a similar fashion as in the proof of Lemma 4. The
proof consists of verifying the hypotheses of Lemma 3. We seepthaf, and, from the second
formulation ofc’; in (1), if p"||(m — £) thenp dividesc] for everyj € {0,1,...,m — £ — 1}.

Now, we need only show that the right-most edge of the Newton polyggfuofwith respect
to p has slope< 1/k. The right-most edge has slope given by (2). j.&e such that the quantity
in (2) is maximal. We consider the following three possibilitigs< ¢, ¢ + 1 < j < p™/?, and
j > pr/2_

Supposeg < /. If p|(m + ¢) for somei € {1,2,...,j}, then sincep|(m — ¢) we deduce that
dividesi + ¢ = (m +1i) — (m — ¢) and

0<i+l<j+0<20<2(k—1)<p.

This is impossible, so((m + 1)(m +2)--- (m + j)) = 0. We obtain from (3)

V(CB)—V(c;):u(j!)+y((m+j)!)_V< m! )

m! (m — j)!

: m! : J J
=v(jl) — V((m——j)‘> <v(j!) < p— <

Dividing through by; and applying Lemma 3 our result follows whgrc /.
Suppose that + 1 < j < p'/2. Letu = [r/2] + 1. By considering the parity of we see that
u > (r +1)/2. Using thatr > 2, we deduce

pi=p? = pP(p—1) > p(yp—1).



Forp >3, /p — 1 > 1/2 so that clearlyp(,/p — 1) > (p — 1)/2. This same inequality, by direct
computation, can be seen to hold alsojicr 2. Observe that condition (ii) in the lemma implies
p—1>2k—2sothat(p —1)/2 > k — 1. We deduce that

1
pt — p? >T>k_l

SO
P4k —1<p" (6)

If p*|(m + i) forsomei € {1,2,...,}, then as in the case< ¢ we obtainp"|(i + ¢). Using
(+1<j<p/?and (6) we obtain

0<it+l<j+l<p4+k—1<p"
which is a contradiction. Therefore,

(- B) -2 (5D

since the summand counts the number of multipleg’ af (m, m + j]. Thus, from (3),

<3 (175D -S (6 -[5))

SﬁﬂfW?%%%ﬁﬂ%i(ﬁﬂﬁw-

s=1 s=[r/2]+1

By (4), the first summand on the right abovessl. On the other hand, there is a multiplep6ffor
everys € ([r/2],r] in the interval(m — j, m] (namely, the number. — ¢). Hence, the term

o) []

for at least — [r/2] > r — (r/2) = r/2 differents. Therefore, we obtain

J J
v(cy) —v(c)) < p— +[r/2]—r/2< p—
Thus, in this caseév(c) — v(c}))/j < 1/k as well. Applying Lemma 3 we deduce that in the case
¢+ 1< j < p/?our result follows.
Finally, suppose that > p’/2. SetN = [log(2m)/log p]. Along the lines of the proof given
for Lemma 4, we combine (3) and (4) to deduce

v(co) —vl) _

. —l—
J

N
N 1 log(2
le_+_ +0g(m)§
j p—1 p/?logp

(S

s=1

Applying Lemma 3 our result follows when> p'/2. O]



We do not supply proofs for the next two results. The first is a consequence of gap results
between primes (cf. M. N. Huxley [8]) and the second can be found in G. Bachman [1].

Lemma 6. For m sufficiently large, there is a prime in the interv@m — m?/3, 2m].

Lemma 7. Suppose is a prime number and let be a positive integer with
n=ay+ ap~+ ap’ + -+ agp’,

as the base representation of (so that0 < a; < p for eachi). Then

n— s,
p—1

vp(n!) =

wheres,, = ag +a; + - - - + as.

4 A Proof of Theorem 2

We considenn to be sufficiently large and assume thatf(z) has a factor inZ[z| of degree
k € [1,m/2]. We divide the argument into cases depending on the size 8K in the previous
section, we sef/(x) = m!f(x) and letg(x) be the polynomial resulting from setting, = a,,_1 =
-+ =ap = 1in G(z). Lemma 3 will allow us to obtain a contradiction&z) having a factor of
degreek by working instead withy(x).

CASE 1.m?*3 <k <m/2.

Lemma 6 implies that fok in the interval above there exists a prime (2m — k, 2m]. Thus,
there exists a primg of the form2m — j wherej € [0, k). In particular, we have > m. We use
the second formulation ef; in (1). Sincej € {0,1,2,...,k — 1}, the numbegm — j appears as
a factor ofc, wheneve) < ¢ < m — k. Therefore, we have

vp(c)) >1  for 0<l<m-—k. (7)

Also, ¢, = 1 impliesv,(c,,) = 0. To obtain a contradiction for the case under consideration, we
show that,(¢}) = 1; the contradiction will be achieved since then it will follow that the right-most
edge of the Newton polygon @f ) with respect tg has horizontal length- m — k& and vertical
length1 so that the slope of the right-most edge of the Newton polygay{.of with respect tg
is< 1/(m — k) <1/kand Lemma 3 applies with= £k — 1.

To see that,(c¢;) = 1, letj € {0,1,2,...,m — 1}. Then

2p>2m >2m — 7 > 0.
Hence,p itself is the only multiple op among the numberzn — j with 0 < j < m — 1. Since
¢y ==£(2m)(2m —1)---(m+ 1) we obtainy,(c;) = 1.
CASE 2.10% < k < m?/3,

Let z = (k/4)log k. We will show that there is a prime > z that divides2m — j for some
j€{0,1,2,... .k — 1}. Then (7) follows as before. We will obtain a contradiction to Lemma



3 by showing that the right-most edge of the Newton polygon(af with respect tg has slope
< 1/k.
Let
T={2m—j:0<j<k—1}.

Clearly, the elements df are each> m. For each prime < z, we consider an elemehf =
2m — j € T with v,(b,) as large as possible. We let

S=T\{b, : p<=z}.
Note that fork > 100 we havelog(1/4) + log k + loglog k > log k from which it follows that

1.03 < 1.03
log(1/4) 4 log k + loglogk — logk

so that

1.03(k/4) log k _ (0.26k) log
log(1/4) + log k + loglog k — log k

Sincek > 10% andz = (k/4)logk, we deduce from Lemma 1 tha{z) < 1.03z/logz. It
follows for & > 10%° that

= 0.26k.

1.03z
log 2z

k
m(z) < < 0.26k < 3. (8)
We combine this estimate momentarily wit{ > k—(z). Sincek < m??, we deducen > k%2
Consider a prime < z and letr = v,(b,). By the definition oft,, if j > r, then there are no
multiples ofp’ in T' (and, hence, ii$). For1 < j < r, there are< [k/p’] + 1 multiples ofp? in T
and, hence, at mo§t/p’| multiples ofp’ in S. Therefore,

(1L s [£] v

ses j=1

and

ITI»> <k <k~ (9)

seS p<z

On the other hand,
HS > mlSl > (k3/2)k=7(E) = L5k-m(),
seS
From (8), we see that
1.5(k —m(z)) > 1.5(2k/3) = k.

The above estimates now give
HS = HHPVP(S)7
sesS seS p<lz

from which it follows that there is a prime > z that divides some element §fand, hence, divides
some element of . Fix a primep > = that divides an elemein — ¢ in 7" with 0 < ¢ < k, and
let v = v,. Sincek > 10*", we obtainp > z > 5k. The right-most edge of the Newton polygon
of g(x) with respect ta has slope as in (2). Fix € {1,2,...,m} so that the quotient in (2) is

10



maximal. To complete the case under consideration, we want to show that this quotiehtis
Let L be an integer such that™! > m + j > p~. Then

() =) =t o () ()

I
ngl
N
<3

<

|
ESE
N~~~

AN
VR
’B{Jm

+

—_
N———

Thus, foreachy € {1,2,...,m},

] log(2
J_ log(2m) (10)
p—1 log p

If p does not dividgm + 1)(m + 2)--- (m + j), thenv((m + 1)(m + 2)---(m + j)) = 0 and
our result follows. Thus, we suppose as we may phdivides(m + i) for some: € {1,2,...,j}.
Further, sincep divides2m — /, it follows thatp divides2i + ¢ = 2(m + i) — (2m — ¢). This
implies thatp < 2i + ¢ < 2j + k — 1. In other words, ifp > 25 + k£ — 1, then

v(cp) —v(c)) Sv((m+1)(m+2)---(m+j)) <

v((m+1)(m+2)---(m+j))=0

and our result follows. Thus, we assume that 25 + k£ — 1.
Initially, suppose thaj < 2k. Then we deduce that

Sk<p<2tk-—1<d4k+k—1=5k—1

which is impossible.

2k log(2 . : .
Next, suppose thagt > %km). Combining (10) with the fact that— 1 > 5k we obtain
(0]
AN !
v(cp) . v(c}) < 1 N lolg(Qm) < 1 N 1 _ 17
J p—1 jlogp 5k 2k k
which is what we desire. ok low(2
Finally, it suffices for us to considek + 1 < j < %. Note that ifp > z > 5k, then

p divides at most one element 8f Therefore,

IIT II »Y< ] @+k-1)<@i+k—1 &0

sesS P>z 2<p<2j+k—1
p'P ) <2jtk—1

11



Combining this estimate with (9) and taking logarithms it follows that

log (H 7 11 p”"“)) <log(k!) + m(2j + k—1)log(2j + k—1).  (11)

seS p<lz p>z
PP <2j+k—1

Further, note that

log(k!) < (k+1)log(k+1) —k (12)
E+1 1
< (k—i—l)logk—l—T—k:k:logk:—i—logk:—i—l—i—%—k.
. 2k log(2 .
Using Lemma 1, (11), (12),atk +1 < j < le(km), we obtain
og
IOg ( H HPVP(S) H pr(S)> (13)
s€S p<lz p>z
pP () <2j4+k—1
1 ‘ 3(2j +k—1)
k+1logk+1+—-—-k+2j+k—1)+ ———=
<(—|—)0g—|—+k + (25 + ) + Slogk
. 37 3k
< klogk+ 25 + log + Jlog k + log k
4klog(2m)  6klog(2m) 3k
< klogk log k
o8k + log k log? k 2log k Tog
4klogm  6klogm ok )
< klogk log k.
gk + log k + log? k i log k * log? k +log
On the other hand, we have
Hs > m\S\ > mk—ﬂ'(z).
sesS
Thus, taking logarithms and using (8) we obtain
log (H s) > (k—7(z))logm > (k — 0.26k) logm = 0.74k log m. (14)

seS

We claim that the estimate on the right-hand side of (14) is larger than the right-hand side of (13);
that is, we claim that

4klogm  6klogm 5k bk
+ ——+ +—
log k log” k logk  log”k
Dividing by k£ and rearranging, we see that the above inequality holds provided

0.74 klogm > klogk +

+ log k.

4logm 6 logm 5 5t log k
—logk — .
gk "7 Tog?k ~logk | log’k |k

Using thatk > 10%°, one easily deduces that the right-hand side abowe(sl. Thus, it suffices
to show that

0.74logm —

41 1
O8M gy — CIOBT (15)

0.741 —
e log k ©8 log2 k

12



To see this, note that das< m?/3 then
0.74logm — logk > 0.74logm — (2/3) logm > 0.07 logm.

Further, as: > 10%°, we have

4logm 6logm< 4logm 6logm
log k logk — 30log10  9001log® 10

< 0.06 logm.

Sincem > k3/2 > 10%, we deduce

41 61
o _ log k — O%m > (0.01logm > 0.1.
log k log” k

0.741logm —

Hence,

H s > H Hpr(S) H pr(5)7

seS seS p<lz p>z
prp()<2j+k—1
from which we deduce that there exists a prime z which divides some € S with p*»(5) >
2j + k — 1. Fix such ans, and let/ now be such that = 2m — /. Letr be an integer defined
so thatp” > 2j + k — 1 > p"~! and such thap” divides2m — ¢. Recall thatpp < 2j + k — 1 so
thatr > 2. Note thatr — 1 < log(2j + k — 1)/log p. Also, p" does not dividgm + ¢) for any
i€{1,2,...,7} (for otherwise we deduce thgt < 2j + k — 1). Hence, we have

y((m+1)(m—|—2)--~(m+j))Si(p%—kl)Sp%.l%—r—l. (16)

u=1

We show next that
j > (5/H)k(r—1). a7

Sincer > 2, we deduce
2(5k)" 1 > 2(5" Yk > (5r — 3)k

so that
45+ 2k —2>2p" ' > 2(5k)" > 5kr — 3k — 2.

Hence, (17) easily follows. From (10), (16), and (17), we obtain

y(cg)—u(c;)< 1 r—1_ 1 4 1
; =017 75 S5k Tk %

which is what we desire.
CASE 3.12 < k < 10%° = k.

We will use Lemma 4 to prove the case under consideration. From Lemma 1,

3k 3
m(3k) < log(3k) (1 * 210g(3]{:)) <k

13



for £ > 21. Upon computation we see that3k) < k for 12 < k& < 20. Using an argument as in
Case 2, we briefly indicate why one of the numkigrs 2m — 1,...,2m — k+ 1, say2m — /, can
be written as a produet s, satisfyings; < k! < ko! andged(sa, Hp<3k p) = 1. TakeT as defined
in Case 2 and> as well but withz = 3k. Thenn(3k) < k implies|S| > 0. Let ¢ be such that
2m — ¢ € S and note that

5, = H pup(meé) < H H pyp(s) < k!

p<3k seS p<3k

the last inequality following as in Case 2. Thus, we obtaim — ¢ € T as above. Note that
sy > ~12m for some constant; (e.9.,71 = 1/(2 x kq!)).

SinceG(x) has a factor of degrek, we obtain from Lemma 4 that for every prime power
divisor p” of ss,

log(2m) 1 1
A —.
(r.p) plogp +p— 17 %

Since each suchis > 3k + 1, it follows that

A > >
(r,p) prlogp ~ 3k T 2k
Thus,
. 72log(2m)
logp
wherey, = 6ko. From this we deduce that
279 log(2m) and 2log log(2m)
loglog(2m) log p
These lead to a contradiction sineeis sufficiently large,
2loglog(2
log so = Zrlogpg Z Mlogp
log p
p7|s2 p<2v2 log(2m)/ loglog(2m)
572 log(2m)
< ——= < log(2 <1 .
~ loglog(2m) < log(2mm) < log s,

Thus,G(z) cannot have a factor of degrée= [12, ko).
CASE4.4 <k <11.

Again we use Lemma 4 to settle the case under consideration. Observe that

Cm—k = am_k%m(m -1 (m—-k+1)(2m)2m—-1)---2m —k+1). (18)

Defined(k) to be the number of distinct irreducible linear factorsririn the coefficient,,, ;. of
G(z). For example, ifc = 4, then there are 6 distinct irreducible linear factors appearing in (18),

14



namelym, m — 1, m — 2, m — 3, 2m — 1, and2m — 3. In generald(k) = k + [k/2]. By a simple
computation we obtain the following table.

k  |3[4]5]6] 7|89 [10[11
d(k) |4]6|7]9]10]12]13]15|16
7(3k) |4]5]6|7| 8991011

(o]

Using the table above we deduce th@8k) < d(k) for 4 < k < 11. Using an argument as in
Case 3, we get that one of the numbersn — 1,.... m —k+1,2m,2m —1,....2m —k+1

in the coefficient ofc,,_, can be written as a produsts, satisfyings; < k! < 23 x 32 x 5 x
7Tx11 x 13 x 17 x 19 andgcd(sg,Hkap) = 1. We obtain that, > ~;2m for some constant
1. AssumingG(z) has a factor of degrele we obtain from Lemma 4 that for every prime power
divisor p” of s,,

log(2m) N 1 - l

prlogp p—1 &k

We are led to a contradiction by repeating the argument at the end of Case 3.GThusannot
have a factor of degreec [4, 11].

CASE 5.k = 3.

Consider primes dividingn, m — 1, andm — 2. Take away at most two of these numbers
which are divisible by the highest powers&nd3 (one of these numbers could be divisible by
the highest power df and the highest power @) so that there is at least one number of the form
s18o wheres; € {1,2} andged(6, s) = 1. Note that form > 6 we havesy > (m —2)/s; >
(m—2)/2 > m/3. Write sy = 5" x 7 x s3 whereged(35, s3) = 1. We claim that we may assume
that5* < m!/? and7’ < m!'/3 sincem is sufficiently large. To see this, suppose tfat> m'/3.
Thenu > 2. Further, takinge = 3 andp = 5 we havep > max{k + 2,2k — 1}. Finally, since
5¢ > m'/3 then5“/? > m!/% and we have

A(r,p)

log(2m) 1 < log(2m)

<
54/2logh 5 —1 — ml/6logh -

Wl =

L
4
Thus, usingg = 5, r = u, andk = 3 in Lemma 5 we deduce that(z) cannot have a factor of
degree 3. Hence, we may assume fitat. m'/3.

A similar argument allows us to assume that < m'/3. Hence, we haven/3 < s, =
5% X 7Y x s3 < m*/3s5 so thatsg > m!/3/3.

We argue again in a manner similar to that given in Case 3. Assuiing has a factor of
degreek = 3 we obtain from Lemma 4 that for every prime power divigbdof s;

log(2m) 1

1
A(r, > —.
(rp)prlogp—i_p—l 3

Since each suchis at leastl1 > 10 = 3k + 1, it follows that

log(2m) 1 1 1 1

2
A > ‘
() gy ©3 5173 0 9




Thus,

log(2 log(2
p" < 6A(r, p) og(2m) < 18 o8 m)
logp log p
From this we deduce that
log(2 2 log log(2
< Blog@m) oy 2loglog(2m)
log log(2m) logp

These lead to a contradiction since

Z 2log log(2m) log.p

1 = 1 <
0g 83 Zr ogp < Tog p

p7||s3 p<36log(2m)/ log log(2m)

- 80log(2m) <1 m/3 <log s
—_— O 3.
= loglog(2m) = %\ 3 &3

Thus,G(z) cannot have a factor of degrée= 3.
CASE 6.k = 2.

In this case we use Lemma 2 to deduce that sindse sufficiently largeGG(x) has no factor of
degree 2. Takingv = 30 ande = 1/2 in Lemma 2 we deduce that there exists an intégesuch
that form > M the largest divisor ofn(m — 1) which is relatively prime ta0 is > m!/2. Hence,
we can writem(m — 1) = s,5, whereged(30, s5) = 1 ands, > m!/2.

We argue again in a manner similar to that given in Case 3. Supptsehas a factor of
degree: = 2. Note that every prime divisqrof s, is atleast = 3 x 2+ 1 = 3k + 1. Also, every
prime divisorp of s, divides one ofn andm — 1. Thus, we obtain from Lemma 4 that for every
prime power divisop” of s,

log(2m) 1 1

A > -
(r,p) plogp +p—1 2

The argument proceeds as before, obtaining a contradiction by considering thelsize oThus,
G(z) cannot have a factor of degrée= 2.

CASE 7.k = 1.

We know now that there is am, such that ifm > m(, and f(x) is as defined in Theorem
2, thenf(z) cannot have a factor of degréec [2,m/2]. We suppose in this section thag, is
sufficiently large and, in particular, that, > m{. Write m = 2¢ x 3/ x n whereged(6,n) = 1
with m > mgy. Suppose that satisfies

8log(2m)

> — 7 |. 19

=P (log log(2m)) (19)

SinceG(z) has a factor of degrele = 1 we obtain from Lemma 4 that, for every prime power
divisor p” of n,

log(2m) n 1

A(r,p
( )p’“logp p—1

> 1.
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Since each suchis at leasb > 4 = 3k + 1, it follows that

log(2 1 1 2_1
p"logp p—1 3 37 2
Thus,
3 log(2m)  9log(2m)
<A < .
=3 (r.) logp 2logp
From this we deduce that
5log(2m) and 3loglog(2m)
log log(2m) 2logp
These lead to a contradiction sineesufficiently large implies
3loglog(2m)
logn: ZTIngS Z Wlogp
pT||n p<5log(2m)/ loglog(2m)
8log(2
8log(2m) _ o
log log(2m)

Thus,G(x) cannot have a factor of degrée= 1.

On the other hand, ifn is written as above withn > mg andn does not satisfy (19) and
G(x) has a linear factor, then we claim th@tz) has an irreducible factor of degree— 1. Write
G(z) = u(z)v(x) whereu(z) € Zz], v(z) € Z[z], deg(u(z)) = 1, anddeg(v(x)) = m — 1.
Suppose that(z) is reducible. Ther(z) has a factor(z) € Z[x] with 1 < deg(r(z)) <
(m — 1)/2. This implies that-(z)u(z) is a factor ofG(z) with degree in2, (m + 1)/2]. Since
m > mgy > my, we know that(z) cannot have a factor of degréec [2,m/2]. Thus,r(x)u(x)
must have degreen+1)/2 andv(z)/r(x) is a factor ofG(z) of degregm —1)/2. We are through
unless(m — 1)/2 = 1 (otherwiseG(z) has a factor of degrele € [2,m/2]). In this casen = 3
andG(x) has three linear factors. Singe > m, andmy, is sufficiently large, this case need not be
considered. Hence, the claim follows.

Finally, we estimateA(t), the number of elements of which are< ¢. Suppose that: € A
andmy < m < t. Thenm = 2! x 3/ x n wheren satisfies the inequality in Theorem 2. Thus,
2t <m < tsothati < (logt)/(log2). Similarly, we havej < (logt)/(log3). Hence,

8log(2t) 9log(2t)
A 1 2 — —— .
(t) <mo + (log )" exp (log log(2t)) < exp (log log(2t)

This completes the proof of Theorem 2.

5 An Infinite Set of Reducible Examples

In this section, we establish that the getf exceptionah: in Theorem 2 is infinite. Our argument
is easily modified to givel(t) > logt, that is a proof of Theorem 3.
In addition to the formulations faf; in (1), we note

- (m)( 2m ,)(m—j)! for0 < j < m.
i) \m—j
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Let & be a positive integer. We set = 2¥ and show that there exist integers with a,,, = 1 and
ag = +1, such thatG(x) = 7" a;cja’ is reducible. In fact, we show that for appropriatethe
polynomialG(x) is divisible byx — 2 or, in other words(=(2) = 0. This holds if and only if

aoch + 2™ = —(2a1¢] + 4dasch + - + 2" a1, ). (20)
Let
d = ged (2¢),4d,,...,.2" 7 e, ).
There exist integers,, as, . . ., a,,—1 such that (20) holds if and only if|(aocf, + 2™) (sinced is
a linear combination otc}, 4c), ..., 2™ ¢, ;). Thus, our goal is to show that for oneaf = 1

andag = —1, one hagl|(agc;+2™). In other words, we will show eithel{ (2™ +¢{) ord|(2" —c}).
Observe that!, , = 2m? = 2%**1. Sinced|(2™ ¢/, _,), we deduce thad is a power of2.
Also, d divides

3 2k 2k+1
m/2 2k-1 k—1
22y =2 (Qk_1> (2H> 2k,

By applying Lemma 7 we obtainz(Qm/Qc;n/Q) = 2% 4+ 2. Hence, it follows that! = 2* whereu is
a non-negative integet 2~ + 2.

We complete the argument by showing that one"ef- ¢, and2™ — ¢, is divisible by22'+2 —
2m+2 (and, hence, by). Applying Lemma 7 again, we obtain

va(ch) = 1 <@> =2 ok — .

m!
It follows thatc;, = 2™t wheret is odd. Hence2™ + ¢ = 2™(1 + ¢). Sincel + ¢t andl — t are
even with one of them divisible by, we deduce that one af" + ¢, and2™ — ¢ is divisible by
2m+2 as desired.
We have just shown that fon = 2%, there exist integers;, with a,,, = 1 and|ag| = 1, such
thatG(x) is reducible. The fact that is infinite follows from the fact that there are infinitely many
values form leading to suclt7(z).

Acknowledgment: The authors express their gratitude to the referee. In particular, the current
argument given in Section 5 was provided by the referee and simplified an approach of the authors.
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