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1. Introduction

In 1950 and 1952, K. F. Roth and H. Halberstam, respectively, received their doc-
toral degrees under the direction of T. Estermann, who was to only supervise,
some years later, one other doctoral student, R. Vaughan. In 1951, in two consec-
utive articles in the Journal of the London Mathematical Society, early papers by
K. F. Roth [74] and by H. Halberstam and K. F. Roth [38], described an elementary
approach associated with gaps between k-free numbers, that is positive integers not
divisible by the kth power of a prime where k is a fixed integer ≥ 2. Specifically, in
[38], we find the following result, generalizing a result in [74] where the case k = 2
is considered.

Theorem 1.1 (H. Halberstam and K. F. Roth, 1951). Let k be an integer
≥ 2, and fix ε > 0. For x ≥ x0(k, ε) sufficiently large, there is a k-free number in
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the interval (x, x+ x(1/(2k))+ε].

In this paper, we begin by describing some elementary approaches to the gap
problem for k-free numbers and, in particular, the approach of H. Halberstam and
K. F. Roth in [38]. Then we discuss various developments and applications that have
come about due in large part to their initial insights. We demonstrate, therefore,
the tremendous impact of [74] and [38].

We turn here then to describing an approach for tackling the problem of finding
h = h(x) tending to infinity but as small as possible such that, for all x sufficiently
large, the interval (x, x + h] contains a k-free number, where k is fixed as in the
theorem. The very basic ideas can be described as follows.

• Find upper bounds for the number of integers m ∈ (x, x + h] for which
there exists a prime p such that pk|m.

• Base such bounds on the size of the prime p.
• Using the bounds, show that there are ≤ h−1 such m ∈ (x, x+h] divisible

by the kth power of a prime.

Then we can conclude that (x, x + h] contains a k-free number. The estimates we
obtain will govern how small we can take h. With some realistic expectations of
what we can prove, we will assume h = hk(x) grows as fast as some fixed power of
x that possibly depends on k (as in Theorem 1.1).

With the above in mind, we describe first how to handle small primes, say
p ≤ h

√
log x. We want then an upper bound for the number of m ∈ (x, x+ h] that

are divisible by pk for some p ≤ h
√

log x. Let ζ(k) =
∑∞
n=1 1/nk, and let π(t) denote

the number of primes ≤ t. Since k ≥ 2, we have ζ(k) ≤ ζ(2) = π2/6 < 5/3. A simple
application of the Prime Number Theorem now gives that, for x sufficiently large
and h tending to infinity faster than an arbitrarily fixed small power of x (possibly
depending on k), the number of m ∈ (x, x + h] that are divisible by pk for some
p ≤ h

√
log x is

≤
∑

p≤h
√

log x

(⌊
x+ h

pk

⌋
−
⌊
x

pk

⌋)
≤

∑
p≤h
√

log x

(
h

pk
+ 1
)

≤ h
(
ζ(k)− 1

)
+ π

(
h
√

log x
)
<

2h
3
.

Recalling that we want to show that there are ≤ h − 1 such m ∈ (x, x + h]
divisible by the kth power of a prime, it suffices now to show that, as x→∞, there
exist < h/4 values of m ∈ (x, x+ h] ∩ Z divisible by pk for some p > h

√
log x.

Before continuing, we note that we could have used the above argument to show
that there are o(h) integers m ∈ (x, x + h] divisible by pk for some p satisfying
log x < p ≤ h

√
log x. Then a sieve argument could have been used to show that the

number of m ∈ (x, x+h] divisible by pk for some p ≤ log x is asymptotic to h/ζ(k).
This would end up giving an asymptotic estimate for the number of k-free integers
in an interval (x, x+ h].
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We now consider primes p > h
√

log x. For each such p, there is at most one
m ∈ (x, x + h] such that pk|m. Therefore, the number of m ∈ (x, x + h] divisible
by the kth power of a prime > h

√
log x is bounded above by the number of primes

p > h
√

log x for which pk divides some integer m ∈ (x, x + h]. The idea now is to
show that the number of these large primes p with pk dividing some m ∈ (x, x+ h]
is < h/4 or perhaps better o(h). So the focus now is on bounding the number of
such primes.

Fix a prime p > h
√

log x. Suppose m ∈ (x, x+ h] is divisible by pk. Then there
is an integer m′ such that m = pkm′ implying that m/pk ∈ Z. Also,

x < m ≤ x+ h =⇒ x

pk
< m′ ≤ x

pk
+

h

pk
.

Using the notation

‖t‖ = min{|t− k| : k ∈ Z},

we deduce that ∥∥∥∥ xpk
∥∥∥∥ ≤ h

pk
.

We clarify for future reference that for p > h
√

log x and x large, we have h/pk < 1/2;
hence, the nearest integer to x/pk is m′.

Our arguments from here on out will not use the primality of p. In other words,
we can now replace the prime p above with an integer u and estimate the number
of u > h

√
log x for which ∥∥∥∥ xuk

∥∥∥∥ ≤ h

uk
. (1.1)

This then will be an estimate for the number of primes p as above as well, and we
will have achieved our goal if we can show the number of such u is o(h). We pause
for a moment to examine what one might expect here so as to see that this is a
reasonable tactic. Suppose we fix N ≥ h

√
log x, and take an integer u ∈ (N, 2N ] as

in (1.1). Treating ‖x/uk‖ as if it were a random value in [0, 1/2), one can expect
that (1.1) holds with probability O(h/Nk). Then the expected number of integers
u ∈ (N, 2N ] for which (1.1) holds is O(h/Nk−1). Now using the dyadic approach
of taking N = Nj = 2jh

√
log x above, we see that we can expect the number of

u > h
√

log x for which (1.1) holds to be

�
∞∑
j=0

h

Nk−1
j

�
∞∑
j=0

h

2(k−1)j(h
√

log x)k−1
� h

(h
√

log x)k−1
.

Given k ≥ 2, we see that one can expect the number of such u to be o(1), even
smaller than o(h). Setting as our goal then to show the number of such u is o(h) is
quite reasonable.

The emphasis in this paper is on the elementary approach given in [74] and [38].
At this point in the argument, however, it is very reasonable to use exponential
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sum techniques, used also in [74] and mentioned in [38]. For this general approach,
one can consult the book [35]. To clarify, the connection with (1.1), we note the
following type result is classical and a simple argument can be found in [28].

Theorem 1.2. Let δ ∈ (0, 1/2), and let f : R 7→ R be any function. Let S ⊆ Z+

with |S| finite. Then for any positive integer J ≤ 1/(4δ), we get that

|{u ∈ S : ||f(u)|| < δ}| ≤ π2

2(J + 1)

∑
1≤j≤J

∣∣∣∣∑
u∈S

e (jf(u))
∣∣∣∣+

π2

4(J + 1)
|S|.

Taking S = (N, 2N ] with N as in the previous paragraph, f(u) = x/uk and δ =
h/Nk, one is then left with choosing J , estimating an exponential sum to bound
the number of u ∈ (N, 2N ] satisfying (1.1) and summing over the appropriate N .

We turn to elementary approaches for estimating the number of primes p ≥
h
√

log x satisfying (1.1) with u = p. Simply showing that there cannot be many
such p can be accomplished without a lot of effort or ingenuity, at least for h small
but relatively large compared to the result in Theorem 1.1. For example, knowing
that we are aiming for h < x, we have

pk|m and m ∈ (x, x+ h] =⇒ p <
k
√

2x.

Then p > h
√

log x implies we can take h = k
√

2x/
√

log x since then each prime
p > h

√
log x satisfying (1.1) with u = p also satisfies

p > h
√

log x ≥ k
√

2x > p.

In other words, with h = k
√

2x/
√

log x, the number of primes p > h
√

log x satisfying
(1.1) with u = p is 0.

Simple ideas can be used to further improve on this choice of h. To clarify, here is
an easy approach for establishing that one can take h = x2/(2k+1) for x sufficiently
large. Set T = x1/(2k+1)/(2k). Assume that there exist primes p1 and p2 satisfying

h
√

log x < p2 < p1 <
k
√

2x, p1 − p2 < T,

and ∥∥∥∥ xpkj
∥∥∥∥ ≤ h

pkj
for j ∈ {1, 2}. (1.2)

Since

pk1 − pk2 = (p1 − p2)(pk−1
1 + pk−2

1 p2 + · · ·+ pk−1
2 ) < (p1 − p2)kpk−1

1

and each pj > h = x2/(2k+1), we deduce that

x

pk2
− x

pk1
<

(p1 − p2)kpk−1
1 x

pk1p
k
2

=
(p1 − p2)kx

p1pk2
<

(p1 − p2)kx
x2(k+1)/(2k+1)

=
(p1 − p2)k
x1/(2k+1)

.

Since p1 − p2 < T = x1/(2k+1)/(2k), we obtain now that

x

pk2
− x

pk1
<

1
2
.
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On the other hand, with x large, (1.2) implies that each x/pkj is at most a distance of
1/4 from an integer. Since the difference between these numbers is < 1/2, we deduce
that they are a distance of 1/4 from the same integer. Recalling the comments before
(1.1), if mj ∈ Z is such that x < pkjmj ≤ x+ h, then the nearest integer to x/pkj is
mj . Thus, we have m1 = m2. However, since p1 > p2 > h

√
log x, we deduce

m1 = m2 =⇒ h > |pk1m1 − pk2m2| = (pk1 − pk2)m1

≥
(
(p2 + 1)k − pk2

)
> kpk−1

2 > h,
(1.3)

a contradiction. Hence, the primes p > h
√

log x, satisfying (1.1) with u = p and
satisfying that pk divides some m ∈ (x, x + h], are separated by a distance of at
least T = x1/(2k+1)/(2k). Therefore, the number of primes p ∈

(
h
√

log x, k
√

2x
)

for
which a multiple of pk lies in (x, x+ h] is

�k

k
√

2x
x1/(2k+1)

�k x
(k+1)/(k(2k+1)).

Observe now that, with our choice of h = x2/(2k+1), this last estimate is o(h),
implying that we can obtain a gap result with this value of h as claimed.

The above idea was based on using a difference of two values of the function
f(u) = x/uk. A single difference at values of u that are near one another approxi-
mates f ′(u). Further differencing, approximating higher derivatives, can be used to
expand on this simple idea, improving the exponent on x appearing in the value of
h further.

The idea of K. F. Roth [74] and H. Halberstam and K. F. Roth [38] is to bypass
the iterative procedure of applying more and more differences to approximate higher
and higher derivatives by using a Padé approximate for a high order derivative.
Taking

P (z) = 1−
(

2k − 1
1

)
z + · · ·+ (−1)k−1

(
2k − 1
k − 1

)
zk−1 ∈ Z[z],

one sees that there is a Q(z) in Z[z] satisfying

(1− z)2k−1 = P (z)− zkQ(z). (1.4)

With p1 and p2 primes > h
√

log x, we set z = p2/p1. The polynomials P (z) and
Q(z) are of degree k − 1 so that

P0 = P0(p1, p2) = pk−1
1 P (p2/p1) and Q0 = Q0(p1, p2) = pk−1

1 Q(p2/p1)

are in Z. The substitution z = p2/p1 in (1.4) gives

(p1 − p2)2k−1 = pk1
(
pk−1
1 P (p2/p1)

)
− pk2

(
pk−1
1 Q(p2/p1)

)
= pk1 P0(p1, p2)− pk2 Q0(p1, p2).

Thus,

x

pk2
P0(p1, p2)− x

pk1
Q0(p1, p2) =

(p1 − p2)2k−1x

pk1p
k
2

. (1.5)
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This replaces the direct difference (x/pk2) − (x/pk1) with a modified difference that
involves the integer multipliers P0 and Q0.

Considering p1 and p2 in an interval (N, 2N ] with p1 > p2 and N ≥ h
√

log x,
we suppose now that

p1 − p2 ≤ T =
(
N2k

2x

)1/(2k−1)

.

Since P0 and Q0 are in Z, (1.2) implies∥∥∥∥ xpk2 P0

∥∥∥∥ ≤ hP0

pk2
and

∥∥∥∥ xpk1Q0

∥∥∥∥ ≤ hQ0

pk1
. (1.6)

Recalling the polynomials P (z) and Q(z) have degree k − 1, we see that the right-
hand sides of the inequalities in (1.6) are each

�k
hNk−1

Nk
�k

h

N
�k

1√
log x

.

Thus, with x sufficiently large, the left-hand sides of (1.6) are each < 1/4. On
the other hand, p1 − p2 ≤ T implies from (1.5) that the expressions (x/pk2)P0 and
(x/pk1)Q0 differ by ≤ 1/2. Hence, these expressions are within 1/4 of the same
integer.

We could proceed to try to use (1.5) and (1.6) in a manner similar to our previous
argument, but the approach does not give us what we want. Here, another clever
idea in [74] and [38] is used. With p1 and p2 as above, (1.5) led to us showing that
the closest integer to (x/pk2)P0 and (x/pk1)Q0 is the same. Let mj denote the integer
nearest to x/pkj for j ∈ {1, 2}. Note that, for each j ∈ {1, 2}, we have

x

pkj
>

x

( k
√

2x )k
=

1
2

=⇒ mj ≥ 1. (1.7)

Given ‖x/pk2‖ ≤ h/pk2 , we deduce that

x

pk2
P0 = m2P0 +O

(
hP0

pk2

)
= m2P0 +O

(
1√

log x

)
.

Thus, the nearest integer to (x/pk2)P0 is m2P0. Similarly, the nearest integer to
(x/pk1)Q0 is m1Q0, and we deduce

m2P0(p1, p2)−m1Q0(p1, p2) = 0,

where we have emphasized here that P0 and Q0 depend on p1 and p2. Note, however,
that each mj only depends on the corresponding pj . Now, we suppose that there is
a third prime p3 ∈ (N, 2N ] with p1 > p2 > p3 and with all 3 primes within T of
each other. Here, we also suppose (1.1) holds with u = p3. The above analysis then
leads to the additional equations

m3P0(p1, p3)−m1Q0(p1, p3) = 0
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and

m3P0(p2, p3)−m2Q0(p2, p3) = 0.

Multiplying the first of these last two equations by P0(p2, p3), the second by
P0(p1, p3), and subtracting gives

m2P0(p1, p3)Q0(p2, p3)−m1P0(p2, p3)Q0(p1, p3) = 0. (1.8)

We view p1 and p2 as fixed, and hence m1 and m2 as fixed, and p3 as a variable. The
polynomials P0(p1, p3), Q0(p2, p3), P0(p2, p3) and Q0(p1, p3) all have degree k − 1
in p3 and their leading coefficients are respectively

(−1)k−1

(
2k − 1
k − 1

)
, 1, (−1)k−1

(
2k − 1
k − 1

)
and 1.

Recalling (1.3), we see that m2 6= m1, so the left-hand side of (1.8) has degree 2k−2
and leading non-zero coefficient

(−1)k−1

(
2k − 1
k − 1

)
(m2 −m1).

We deduce now that (1.8) has at most 2k − 2 solutions in p3. Therefore, there are
at most 2k primes p ∈ (N, 2N ] all within a distance T from one another.

We deduce then that the number of primes p ∈ (N, 2N ] for which some multiple
of pk is in the interval (x, x+ h] is

�k
N

T
�k

N (2x)1/(2k−1)

N2k/(2k−1)
�k x

1/(2k−1)N−1/(2k−1).

We use the dyadic approach mentioned earlier considering N = 2jh
√

log x where
j ∈ {0, 1, . . . , r} with

2rh < (2x)1/k ≤ 2r+1h.

Then the number of primes p > h
√

log x for which there is a multiple of pk in
(x, x+ h] is then

�k

r∑
j=0

x1/(2k−1)(2jh
√

log x )−1/(2k−1) �k x
1/(2k−1)(h

√
log x )−1/(2k−1).

Observe that with h = x1/(2k), this last expression is o(h) as x → ∞. Hence, the
above shows that we can find k-free numbers in the interval (x, x + x1/(2k)] for x
sufficiently large, a result slightly stronger than Theorem 1.1. The improvement
over [74] and [38] is in our use, taken from [68], of (1.8) to bound the number of
possible values of p3.

Of some significance here is that if we replace z with 1− z in (1.4), then we are
led to

z2k−1 = P (1− z)− (1− z)kQ(1− z)

=⇒ (1− z)k =
P (1− z)
Q(1− z)

− z2k−1

Q(1− z)
=
P (1− z)
Q(1− z)

+O(z2k−1),
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as z → 0. Thus, P (1 − z)/Q(1 − z) is a Padé approximate for (1 − z)k, so that
the use of (1.4) to obtain Theorem 1.1 is one of many examples of the tremendous
impact of the hypergeometric method in analytic and transcendental number theory,
a method having origins in the earlier work of A. Thue [85] and C. L. Siegel [82]
(cf. [3], [4], [5], [6]-[11], [12]-[13], [14]-[16], [20], [65], [86], [89]-[90]).

2. Powerfree values of polynomials

Having introduced the motivating ideas behind the work of K. F. Roth [74] and
H. Halberstam and K. F. Roth [38], we devote most of the remainder of this paper
to known applications without proofs. The earliest of these applications that we
discuss is due to M. Nair [68,69] (see also [50]). The work of M. Nair [68], already
addressed above, allowed a simple alteration in the arguments in [74] and [38] that
enables one to remove the ε appearing in the exponent in Theorem 1.1. But much
more importantly, M. Nair was able to extend the ideas in [74] and [38] to algebraic
number fields and produce some very nice results on powerfree values of polynomials
that we discuss next.

Let k be an integer ≥ 2. Let f(x) be an irreducible polynomial in Z[x] of degree
n. Necessarily, we require that gcd(f(m) : m ∈ Z) is k-free. For computational
purposes, we note that as a consequence of Lagrange’s interpolation formula we
have

gcd(f(m) : m ∈ Z) = gcd
(
f(m) : m ∈ {0, 1, . . . , n}

)
.

Extending the ideas of K. F. Roth [74] H. Halberstam and K. F. Roth [38] to
algebraic number fields and making a slight improvement on the approach as noted
with (1.8) above, M. Nair [69,68] established the following

Theorem 2.1 (M. Nair, 1976/79). Let k, f(x) and n be as above. If k ≥ n+ 1,
then there is a constant c = c(k, f) such that the interval

(x, x+ h], where h = c xn/(2k−n+1),

contains an integer m for which f(m) is k-free.

Observe that Theorem 2.1 implies Theorem 1.1 by taking f(x) = x. A number
of related results and improvements ensued. With k, f(x) and n still as above,
M. N. Huxley and M. Nair [50] showed that if k ≥ n + 1 ≥ 3, one can take
h = c xn/(2k−n+2). Some time later, the first author [26] showed that if k ≥ n+1 ≥ 2,
one can take h = c xn/(2k−n+

√
2n−(1/2)). As before, c = c(k, f) is a constant in these

results.
Theorem 2.1 gives a natural generalization of Theorem 1.1. However, M. Nair

presented another twist in his papers. What if instead of looking for short intervals
(x, x + h] for the m satisfying f(m) is k-free, we consider large intervals of this
form with h around the size of x? For short intervals, the above gives a result for
k-free values of polynomials provided k ≥ n + 1; but M. Nair [69] showed that by
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considering larger intervals, one can obtain results for k-free values of polynomials
for smaller k. The larger h is with h ≤ x, the smaller his method allowed one to
take k. To understand the impact of this approach, we mention briefly the history
here.

Improving on work of T. Nagel [67] and G. Ricci [72], P. Erdős [22] established
the following.

Theorem 2.2 (P. Erdős, 1953). Let k, f(x) and n be as above. If k ≥ n − 1,
then there exist infinitely many integers m for which f(m) is k-free.

An important achievement of C. Hooley [45] in 1967 was to improve on Theorem
2.2 by showing that the asymptotic density of integers m for which f(m) is k-free in
Theorem 2.2 is positive and can be given explicitly. Using the methods of K. F. Roth
[74] H. Halberstam and K. F. Roth [38] in algebraic number fields, M. Nair [69]
established

Theorem 2.3 (M. Nair, 1976). Under the conditions above but with instead
k ≥ (

√
2 − (1/2))n, the asymptotic density of integers m for which f(m) is k-free

is positive and can be given explicitly.

C. Hooley’s work [45] gives the best known estimates for n small, and for 30
years M. Nair’s Theorem 2.3 remained the best known result for large n.

Using a different approach, some recent nice improvements have been made by
D. R. Heath-Brown [39,40], who obtained an analogous result for k ≥ (3n + 2)/4,
and then slightly further by T. D. Browning [18] (both arguments based on counting
integer points on the affine surface f(x) = ykz by showing that they lie on a small
number of curves). In particular, we have the following.

Theorem 2.4 (T. D. Browning, 2011). Under the conditions above but with
k ≥ (3n+ 1)/4, there are infinitely many integers m for which f(m) is k-free.

All the methods in these results extend to obtain information about k-free values
of binary forms (cf. [25], [37], [18]). In particular, T. D. Browning has obtained the
analogous result for irreducible binary forms of degree n and k > 7n/16. We also
note that C. Hooley [42,43] has obtained, with yet another approach, similar results
for polynomials f(x, y) ∈ Z[x, y] that are not necessarily forms.

3. Further progress on gaps between k-free numbers

The first author, as a graduate student, working under the direction of H. Halber-
stam, studied [74] and [38] and began working on further elementary approaches
to gap results for k-free numbers. As part of his dissertation [30], he gave an el-
ementary argument giving an exponentially small improvement on Theorem 1.1.
Specifically, he showed that for every ε > 0 and for x sufficiently large, there is a
k-free number in the interval

(x, x+ x(1/(2k+w(k)))+ε], where w(k) = 1/((k + 1)2k − 2k).
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This improvement was so small that he decided to put the result aside for a couple
years before returning to work on the subject further. Indeed, the use of exponential
sum techniques already gave a small improvement of a similar nature. For k = 2,
the above only leads to an improvement from 1/4 in the exponent in Theorem 1.1
to 8/33 = 0.2424 . . . . K. F. Roth [74] in his original paper on the subject already
showed that exponential sums could replace 1/4 with 3/13 = 0.2307 . . . .

Early results in the literature for values of h such that the interval (x, x + h]
contains a squarefree number for every sufficiently large x include the following:

h = x(2/5)+ε E. Fogels [34], 1941 (elementary argument)

h = x(1/4)+ε K. F. Roth [74], 1951 (elementary argument)

h = x3/13(log x)4/13 K. F. Roth [74], 1951

h = c x1/4 M. Nair [68], 1979 (elementary argument)

h = c x2/9 H. E. Richert [73], 1954

h = x0.221982... R. A. Rankin [71], 1955

h = x0.221585... P. G. Schmidt [77], 1964

h = x0.2208986... S. W. Graham and G. Kolesnik [35], 1987.

In 1988, the first author [29] obtained the first elementary argument that pro-
duced an improvement on Theorm 1.1 that was not exponentially small. He showed
that there is a constant c such that for x sufficiently large, there is a k-free number
in the interval (x, x+ cx5/(10k+1)]. Around this time, V. Popov (for whom there is
named a prize in the area of Approximation Theory) attended seminars that the
first author gave on this result and returned home to the Bulgarian Academy of
Sciences where he passed on material of the first author to the third author, a stu-
dent of V. Popov. Thus began the collaboration of these two authors. This led to
the following result [33] on gaps between squarefree numbers, based on elementary
extensions of [74] and [38].

Theorem 3.1 (M. Filaseta and O. Trifonov, 1991). There is a constant c
such that for every x sufficiently large, there is a squarefree number in the interval
(x, x+ c x1/5 log x].

Shortly after this, O. Trifonov [88] gave a complete extension of Theorem 1.1.

Theorem 3.2 (O. Trifonov, 1995). Let k be an integer ≥ 2. There is a constant
c = c(k) such that for every x sufficiently large, there is a k-free number in the
interval (x, x+ c x1/(2k+1) log x].

Asymptotics for the number of k-free numbers in an interval (x, x + h] also fol-
low from these techniques if h = cx1/(2k+1)(log x)w(x) where w(x) is an arbitrary
function of x that tends to infinity with x (see also [31]).
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4. Integer points close to a curve

The above led to a general approach of using finite differences to aid in obtaining
results that can be translated into a problem of bounding from above the number of
integer points not necessarily on but close to a curve. The connection to Theorem 1.1
is transparent in the early discussions in this paper where we saw how differences and
then modified differences, corresponding to the use of Padé approximants, were used
to bound the number of integers u ∈ (N, 2N ] satisfying (1.1). Taking f(u) = x/uk,
we see that (1.1) only occurs for u ∈ Z for which there is a lattice point (u,m)
that is ≤ h/uk from the curve y = f(u). Thus, the approach in [38] can be viewed
as introducing the use of differences to bound the number of lattice points close
to a curve. Notably, another early paper that used differences, specifically divided
differences, for the related problem of bounding the number of lattice points on a
curve is the work of H. P. F. Swinnerton-Dyer [84]. This combination of using Padé
approximants and using divided differences has continued to play an important role
on advances in this area.

Among the numerous results that have ensued in this topic as a consequence of
[38] are [31], [46,49], [51] and [87] (see also [47]). We give only a couple examples of
results of this general nature. A result of this type that leads to Theorem 3.2 and
can be found in [31] is the following.

Theorem 4.1 (M. Filaseta and O. Trifonov, 1996). Let k be an integer ≥ 2,
and let s ∈ Q− {−(k − 1),−(k − 2), . . . , k − 2, k − 1}. Let δ and N be positive real
numbers. Let f(u) = X/us, where X is an arbitrary real number independent of u
and δ but possibly depending on k, N , and s. Suppose that

Ns ≤ X and δ ≤ ckN−(k−1)

where ck = ck(k, s) > 0 is sufficiently small. Set

S = {u ∈ Z ∩ (N, 2N ] : ||f(u)|| < δ}.

Then

|S| �k,s X
1/(2k+1)N (k−s)/(2k+1) + δ X1/(6k+3)N (6k2+2k−s−1)/(6k+3).

The following result, further illustrating applications of using differences and
which we will make use of in the next section, is from [51].

Theorem 4.2 (M. N. Huxley and P. Sargos, 2006). Let N ≥ 4, δ ≤ 1/4, and
m ≥ 3. Suppose f ∈ Cm with |f (m)(x)| � λm and |f (m−1)(x)| � λm−1 = Mλm for
N < x ≤ 2N . Suppose further δ � λm−1. Set

S = {u ∈ Z ∩ (N, 2N ] : ||f(u)|| < δ}.

Then

|S| � N λ2/(m2+m)
m + N

(
δ λ1/3

m

)2/(m2−m+2) + N δ4/(m
2−3m+6) + 1.
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5. An example related to gaps between squarefree numbers

In this section, we show how the theorems in the previous section can be used to
address a question posed by C. Spiro in the early 1990’s at the West Coast Number
Theory Conference in connection to her work [83] on the number of finite non-
isomorphic groups of a given order. For n a positive integer, let p be a prime as
small as possible with n + p squarefree. She asked what kind of upper bound can
be found for p. As an answer to this question has not appeared in the literature,
we demonstrate here how results from the previous section can be used to address
problems of this nature by establishing the following.

Theorem 5.1. Let k be an integer ≥ 2. Then

(i) There exist effectively computable positive constants Ck and Nk such that for
each n ≥ Nk and each h > Ckn

1/(2k+1) log2 n, at least one-fifth of the primes
p ≤ Ckn1/(2k+1) log2 n are such that n+ p is k-free.

(ii) Let h(n) be such that

h(n)
n1/(2k+1) log2 n

→∞ as n→∞.

Then the number of primes p ≤ h(n) such that n+ p is k-free is∏
q-n

q prime

(
1− 1

qk−1(q − 1)

)
π
(
h(n)

)
(1 + o(1)).

We will be using repeatedly the following lemma which is standard in the liter-
ature.

Lemma 5.2. Let P be a sequence of positive integers. Denote by S(C,D) the num-
ber of elements of P which are in the interval (C,D]. Let 1 ≤ A < B, α, β, s, t,
and u be positive real numbers such that

S(M, 2M)� sMα + t+ uM−β (5.1)

for every M ∈ (A,B/2] where the constant in � depends only on α and β. Then
S(A,B)� sBα+t(log(B/A)+1)+uA−β, where again the implied constant depends
only on α and β.

Before beginning the proof, we set some notation. For I = (C,D], we will some-
times use S(I) to denote S(C,D).

Proof. Let k = [log2(B/A)]. Hence, 2kA ≤ B < 2k+1A. Consider the intervals
Ij = (A2j , A2j+1] for j ∈ {0, 1, . . . , k − 1}, and Ik = (B/2, B] ⊆ (A2k, B]. Using
(5.1) for each of these intervals, we get S(Ij)� s(A2j)α + t+ u(A2j)−β . Summing
with respect to j we obtain

S(A,B)� sAα
k∑
j=0

2αj + t(k + 1) + uA−β
k∑
j=0

2−βj � sAα2kα + t(k + 1) + uA−β .
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Since 2k ≤ B/A, this concludes the proof of the lemma.

Let k ≥ 2 be a fixed integer. In particular, implied constants below may depend
on k. Let h > n1/(2k+1) be as in the theorem. Our strategy will be to estimate
N = N(n, h) which we define as the number of primes p ≤ h such that n + p is
not k-free. For such primes, qk|(n + p) for some prime q. In other words, p ≡ −n
(mod qk) for some prime q. The number of primes p ≤ h which are ≡ −n (mod qk)
is π(h; qk,−n). Observe that π(h; qk,−n) = 0 if qk > n+ h. Hence,

N ≤
∑

q prime

π(h; qk,−n).

For part (i) of Theorem 5.1, we will use the above bound on N . For part (ii), we will
make use of a modified bound on N that makes more explicit use of its definition
to handle the contribution from small primes q. Specifically, we use

N ≤
∑
p≤h

χp +
∑

q|n or q>log log h
q prime

π(h; qk,−n).

where

χp =

{
1 if ∃ a prime q ≤ log log h with q - n such that p ≡ −n (mod qk)

0 otherwise.

Note that π(h; qk,−n) = 0 or 1 if q|n, so the contribution to N from primes q|n
is at most ω(n), the number of distinct prime divisors of n. We easily have that
ω(n) = o(π(h)) since h > n1/(2k+1).

Next, we consider contribution of primes q not dividing n. For these, we note
that π(h; qk,−n) ≤ 1 whenever qk > h.

Case 1. q > h log6 n.
Denote the contribution to N from primes q > h log6 n by N1. As noted above,

π(h; qk,−n) ≤ 1 in this case. Without loss of generality, we can assume h < n since
otherwise qk > n+h. As before (see the derivation of (1.1)), we get that if qk|(n+p)
for some p ≤ h, then

∥∥n/qk∥∥ < h/qk. There will be no advantage here in restricting
ourselves to primes q, so we will estimate the number of integers u in the interval
(h log6 h, (n+ h)1/k] such that

∥∥n/uk∥∥ < h/uk.

We consider (M, 2M ] ⊆ (h log6 n, (n + h)1/k] with an eye toward using
Lemma 5.2. To estimate the number of integers u ∈ (M, 2M ] such that

∥∥n/uk∥∥ <
h/uk, we use Theorem 4.1. Denote this number by S1(M). We take X = n, s = k,
and δ = h/Mk in Theorem 4.1 to obtain

S1(M)� n1/(2k+1) + hM−1/3n1/(6k+3).

Applying Lemma 5.2, we get

N1 � n1/(2k+1) log n+ h2/3(log n)−2n1/(6k+3) � n1/(2k+1) log n+ h/(log2 n)

where we have used h ≥ n1/(2k+1) log2 n for the last estimate.
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Case 2. q ∈ I2 = (h/ log2 n,M1], where M1 = min{h log6 n, (n+ h)1/k}.
Denote the contribution to N from primes q ∈ I2 by N2. As in Case 1, we

have π(h; qk,−n) ≤ 1. Also, as before, we don’t restrict ourselves to primes q and
consider all integers u ∈ I2, such that uk|(n + p) for some p ≤ h. Also, as be-
fore, we suppose as we may that h < n since otherwise qk > n + h. We consider
(M, 2M ] ⊆ [h/ log2 h, h log6 h] and denote the number of integers u ∈ (M, 2M ]
satisfying uk|(n+ p) for some p ≤ h by N2(M). Again, for such u we have∥∥∥ n

uk

∥∥∥ < h

uk
. (5.2)

Let t be the positive integer such that

(h log6 n)t−1 ≤ n

h
< (h log6 n)t. (5.3)

First, assume that t ≥ 3. We take f(u) = n/uk, m = t, N = M , δ = h/Mk, λt−1 =
n/Mk+t−1 and λt = n/Mk+t in Theorem 4.2. Note that (5.3) and M ≤ h log6 n

imply that δ ≤ λt−1. Applying Theorem 4.2, we obtain

N2(M)�Mλ
2/(t2+t)
t +M

(
δ(λt)1/3

)2/(t2−t+2) +Mδ4/(t
2−3t+6) + 1.

From (5.3) and M ≥ h/ log2 n, we have λt/δ = n/(hM t) ≤ log8t n. Thus,

N2(M)�M
(
δ2/(t

2+t)(log n)16/(t+1)

+ δ8/(3(t
2−t+2))(log n)16t/(3(t

2−t+2)) + δ4/(t
2−3t+6

)
+ 1.

Since t ≥ 3, we have 16/(t+ 1) ≤ 4, 16t/(3(t2 − t+ 2)) ≤ 2, and 2/(t2 + t) <

8/(3(t2 − t+ 2)) < 4/(t2 − 3t+ 6). Therefore,

N2(M)�M
(
log4 n

)
δ2/(t

2+t).

Since h > n1/(2k+1), we have t ≤ 2k. Hence,

N2(M)�M
(
log4 n

)
δ1/(2k

2+k) = M2k/(2k+1)
(
log4 n

)
h1/(2k2+k).

Applying Lemma 5.2, we deduce

N2 � h(2k2+1)/(2k2+k) log10 n = h
log10 n

h(k−1)/(2k2+k)
� h

log10 n

n(k−1)/((2k2+k)(2k+1))
,

since h > n1/(2k+1). Therefore, if n is sufficiently large, then

N2 �
h

log2 n
.

We are left with considering t ≤ 2. Note that t ≤ 2 implies h > n1/3/ log4 n.
We make use of an upper bound for the number of u ∈ (M, 2M ] ⊆ I2 for which uk

divides some integer in (n, n+h]. We apply Theorem 4.1 after making an adjustment
on the interval (n, n + h]. We subdivide this interval into ≤ (log n)3 subintervals
(n′, n′ + h′] with h′ = h/(log n)3. We are interested now in an upper bound for the
number of u ∈ (M, 2M ] for which uk divides some integer in (n′, n′+h′]. We obtain
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here that such u satisfy ‖n′/uk‖ < h′/Mk. We set X = n′, s = k, and δ = h′/Mk

in Theorem 4.1. Observe that M ≥ h/(log n)2 = h′ log n; hence, the condition
δ < ck/M

k−1 holds for n large. Since (M, 2M ] ⊆ I2, we have M ≤ (n + h)1/k/2
so that Mk ≤ (n+ h)/2k < n < n′. Thus, the conditions of Theorem 4.1 hold. We
obtain that∣∣{u ∈ (M, 2M ] : ‖n′/uk‖ < h′/Mk}

∣∣� (n′)1/(2k+1) + h′M−1/3(n′)1/(6k+3).

Using n′ ≤ n + h ≤ 2n and h′ = h/(log n)3, and taking into account that we have
(log n)3 intervals (n′, n′ + h′], we deduce

N2(M)� n1/(2k+1)(log n)3 + hM−1/3n1/(6k+3).

Since k ≥ 2 and M ≥ h/ log2 n, Lemma 5.2 implies

N2(M)� n1/5(log n)4 + h2/3(log n)2/3n1/15.

Recalling that t ≤ 2 gave us h > n1/3/ log4 n, we easily deduce

N2 �
h

log2 n
.

Case 3. q ∈ I3 = (log2 n, h/ log2 n].
Let N3 be the contribution to N from primes q ∈ I3. Since π(h; qk,−n) ≤

(h/qk) + 1, we have

N3 ≤
∑

log2 n≤q≤h/ log2 n

(
h

qk
+ 1
)
� h

log2 n
,

where we have used that ∑
q≥log2 n

1
qk
≤

∑
q≥log2 n

1
q2
� 1

log2 n
.

What remains is to deal with multiples of qk when q is a prime ≤ log2 n. First,
we give estimates for proving part (i) of the theorem.

Case 4. q ∈ I4 = [11, log2 n].
Let N4 be the contribution to N from q ∈ I4. We use a version of Brun-

Titchmarsh’s inequality due to H. L. Montgomery and R. C. Vaughan [66].

Theorem 5.3 (H. L. Montgomery and R. C. Vaughan, 1973). Let m > 0
and ` be integers with (m, `) = 1, and let x > m be a real number. Then

π(x;m, `) ≤ 2x
ϕ(m) log(x/m)

.

Recall that h > n1/(2k+1) and q ≤ log2 n. We apply the above theorem with
x = h, m = qk, and ` = −n to get

π(h; qk,−n) ≤ 2h
qk−1(q − 1) log(h/(log2k n))

≤ 2h
q(q − 1) log h

(1 + o(1)).
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Thus, N4 ≤ C1π(h)(1 + o(1)), where

C1 =
∑
q≥11
q prime

1
q(q − 1)

.

We estimate this sum directly for primes q ≤ 5000, and for q > 5000 we replace
the sum with the corresponding sum over all integers > 5000 and rewrite it as
a telescoping series to deduce that C1 < 0.0329. Thus, for n is sufficiently large,
N4 ≤ 0.033π(h).

Case 5. q ∈ {2, 3, 5, 7}.
Let N5 be the contribution to N from q ∈ {2, 3, 5, 7}. In this case, we use a

result of O. Ramaré and R. Rumely [70].

Theorem 5.4 (O. Ramaré and R. Rumely, 1996). Let m ≤ 72 and ` be
positive integers with (m, `) = 1, and let x ≥ 1010 be a real number. Then∣∣∣∣θ(x;m, `)− x

ϕ(m)

∣∣∣∣ < .023269
x

ϕ(m)

and

|θ(x)− x| ≤ 0.000213x.

Note that, for every ε ∈ (0, 1),

θ(x;m, `) ≥ θ(x;m, `)− θ(x1−ε;m, `) ≥ (1− ε)(log x)
(
π(x;m, `)− π(x1−ε;m, `)

)
.

Thus,

π(x;m, `) ≤ θ(x;m, `)
(1− ε) log x

+ x1−ε.

In particular, for x sufficiently large, π(x;m, `) < 1.01 θ(x;m, `)/ log x. We get
π(h;m, `) < 1.034h/(ϕ(m) log h) for h sufficiently large and m and ` satisfying
the conditions of Theorem 5.4. So, for n sufficiently large, N5 ≤ C2h/ log h where

C2 = 1.034
(

1
ϕ(4)

+
1

ϕ(9)
+

1
ϕ(25)

+
1

ϕ(49)

)
= 1.034

(
1
2

+
1
6

+
1
20

+
1
42

)
= 0.7656 . . . .

We are ready to prove part (i) of the theorem. We have

N ≤ N1 +N2 +N3 +N4 +N5.

Now, N1 + N2 + N3 � n1/(2k+1) log n + h/(log2 n). Since h > Ck n
1/(2k+1) log2 n,

we have N1 +N2 +N3 < 0.001π(h) if Ck is sufficiently large. Also, N4 + N5 ≤
0.033π(h) + 0.7657h/ log h.

From the definition of θ(x), we obtain θ(x) ≤ π(x) log x for every x ≥ 1. Using
Theorem 5.4, for n and, hence, h sufficiently large, we obtain

h

log h
≤ θ(h)

0.999787 log h
< 1.00022π(h).
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So, N4 + N5 ≤ 0.799π(h). We deduce that N ≤ 0.8π(h) for n and Ck sufficiently
large, which proves part (i) of the theorem.

To prove part (ii) of the theorem, we estimate differently the contribution from
q ≤ log2 n.

Case 6. q ∈ I6 = [log log h, log2 n].
Let N6 be the contribution to N from q ∈ I6. As in Case 4, we use Brun-

Titchmarsh’s inequality [66] to deduce

N6 ≤
∑

q≥log log h

2h
q(q − 1) log

(
h/(log2k n)

)
≤ 2h

(log h)(log log h)
(1 + o(1))� π(h)

log log h
.

Case 7. q ∈ I7 = [2, log log h].
LetN7 be the contribution toN from q in the above range. Thus,N7 ≤

∑
p≤h χp,

where χp is as defined before Case 1. For this case, we use the Siegel-Walfisz theorem
(see [57]).

Theorem 5.5 (Siegel-Walfisz, 1936). Let A > 0 be any fixed constant. Then
there exists a positive constant B = B(A) depending on A such that

π(x; b, a) =
π(x)
ϕ(b)

+O

(
x

exp
(
B
√

log x
))

holds for sufficiently large values of x uniformly for 1 ≤ a < b with gcd(a, b) = 1
and b < (log x)A.

Let the primes up to log log h which do not divide n be q1, q2, . . . , qt, and let
P = q1q2 · · · qt. We will apply the Siegel-Walfisz theorem with A = 2k, a = −n and
b = dk where d|P . Observe that

P ≤
∏

q≤log log h
q prime

q ≤ exp((1 + o(1)) log log h) < (log h)2.

Thus, d|P implies dk < (log h)A. Therefore, from Theorem 5.5, we have

π(h; dk,−n) =
π(h)
ϕ(dk)

+O

(
π(h)
log2 h

)
,

where we emphasize that the implied constant depends only on k (with h sufficiently
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large). We apply the sieve of Eratosthenes now to obtain

π(h)−N7 =
∑
d|P

(
µ(d)π(h)
ϕ(dk)

+O

(
π(h)
log2 h

))

= π(h)
∏

q prime, q-n
q≤log log h

(
1− 1

qk−1(q − 1)

)
+O

(
2tπ(h)
log2 h

)

= C π(h)(1 + o(1)),

where

C =
∏
q-n

q prime

(
1− 1

qk−1(q − 1)

)
.

Recall that N1 + N2 + N3 � n1/(2k+1) log n + h/(log2 n). Since n1/(2k+1) log n =
o(π(h)), and N6 = o(π(h)), part (ii) of the theorem follows.

6. A variety of applications

We have already illustrated a number of ways that Theorem 1.1 and the arguments
given by H. Halberstam and K. F. Roth [38] have extended to produce other results
of interest. Following the material of Section 4, a variety of applications into other
somewhat different problems have arisen. In this section, we describe such applica-
tions. We do not give details of what goes into the proofs of these results, but rather
rely on the previous section as an example for the general common theme in their
arguments. In some cases, as with the earlier work mentioned on k-free values of
polynomials, the role of the methods introduced by H. Halberstam and K. F. Roth
play a historical boost into what was known on the topic and not necessarily the
best or final word on the topic. In such cases, we also give the relevant references
where improvements have been obtained.

6.1. Squarefull numbers in short intervals

A squarefull number is a positive integer n with the property that if p|n, then p2|n.
Let Q(x) denote the number of squarefull numbers ≤ x. Then P. Bateman and
E. Grosswald [2] showed that

Q(x) =
ζ(3/2)
ζ(3)

x1/2 +
ζ(2/3)
ζ(2)

x1/3 +O
(
x1/6 exp(−c (log x)4/7(log log x)−3/7)

)
for some constant c > 0. This asymptotic estimate implies that

Q
(
x+ x(1/2)+θ

)
−Q(x) ∼ ζ(3/2)

2ζ(3)
xθ for 1/6 < θ < 1/2.
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A number of results have been obtained improving on this lower bound for θ. This
includes showing that one can obtain the following:

θ > 0.1526 . . . P. Shiu [80], 1984

θ > 0.1507 . . . P. G. Schmidt [76], 1986

θ > 0.1490 . . . C.-H. Jia [54], 1987

θ > 0.1425 . . . H. Liu [63], 1990

θ > 0.1318 . . . D. R. Heath-Brown [41], 1991

θ > 0.1308 . . . H. Liu [62], 1993

θ > 0.1282 . . . M. Filaseta and O. Trifonov [32], 1994

θ > 0.1250 . . . M. N. Huxley and O. Trifonov [52], 1996

θ > 0.1233 . . . O. Trifonov [87], 2002

The results since D. R. Heath-Brown’s work [41] have all made use of an important
idea of his. The last three papers [32], [52] and [87] all made use of further ideas
similar to those given in Section 4. We also note that the use of divided differences
similar to the work in H. P. F. Swinnerton-Dyer [84] played a crucial role in this
topic. The best result to date on the topic [87], more explicitly, is given by θ >

19/154.

6.2. Moments of gaps between squarefree numbers

Let s1, s2, . . . denote the squarefree numbers in ascending order. The problem here,
introduced by P. Erdős [23], is to determine for which γ ≥ 0 does there exist a
constant C(γ) such that ∑

sn+1≤x

(sn+1 − sn)γ ∼ C(γ)x. (6.1)

Published results on this topic establish (6.1) holds for γ as follows:

0 ≤ γ ≤ 2 P. Erdős [23], 1951

0 ≤ γ ≤ 3 C. Hooley [44], 1973

0 ≤ γ ≤ 3.22 . . . M. Filaseta [27], 1993

0 ≤ γ ≤ 3.66 . . . M. N. Huxley [48], 1995

In 1984, C. Hooley announced (unpublished) an intermediate result in the list above,
with his approach giving 0 ≤ γ ≤ 3.16 . . . is admissible in (6.1). The methods in
[27] used a difference approach similar to the arguments leading to the results in
Section 4. However, the argument of M. N. Huxley [48], giving (6.1) more precisely
for 0 ≤ γ ≤ 11/3, was instead based on an elegant use of the geometry of numbers.
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6.3. Gap result for the number of non-isomorphic abelian groups

of a given order

Let a(n) be the number of non-isomorphic abelian groups of order n. For k ∈ Z+, let
Ak = {n ∈ Z+ : a(n) = k}. The application here involves determining h as small as
possible for which there exists a constant Pk such that the interval (x, x+h] contains
Pkh+o(h) elements of Ak. The history here is shorter and can be summarized with
the following admissible values for h:

h = x0.33314... E. Krätzel [60], 1980/A. Ivić [53], 1981

h = x(1/5)+ε H. Li [61], 1995

h = x1/5(log x)g(x) M. Filaseta and O. Trifonov [31], 1996

In this last result, g(x) is an arbitrary real valued function that satisfies g(x)→∞
as x → ∞. E. Krätzel’s [60,59] gave slightly stronger results than his listed above
for certain residue classes of k modulo 30, the best of which was h = x0.222... when
k ≡ ±1 (mod 6). H. Li [61] made some use of exponential sums but also made use
of [33] and, hence, the idea of using a difference approach as discussed previously
in this paper. The first and third author in [31] noted that one could bypass the
use of exponential sums in H. Li’s argument and obtain a result that is analogous
to what can be obtained for gaps between squarefree numbers.

6.4. Binomial coefficients with all large prime divisors

In 1974, E. F. Ecklund, Jr., P. Erdős and J. L. Selfridge considered the problem
of determining, for a fixed k ∈ Z with k ≥ 2, a lower bound for the least integer

g(k) > k+1 for which all prime divisors of
(
g(k)
k

)
are > k. The following estimates

have been obtained.

g(k) > k1+c E. F. Ecklund, Jr., P. Erdős

and J. L. Selfridge [21], 1974

g(k) > ck2/ log k P. Erdős, C. B. Lacampagne

and J. L. Selfridge [24], 1993

g(k) > exp
(
c (log k)3/2

(log log k)1/2

)
A. Granville and O. Ramaré [36], 1996

g(k) > exp
(
c log2 k

)
S. Konyagin [58], 1999

In each case c is a positive constant, which if sufficiently small can be taken to be
the same. S. Konyagin [58] introduced some new ideas using differences and the
geometry of numbers to obtain estimates of the type mentioned in Section 4 and
then applied them to obtain his result.
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6.5. Prime powers with a special property

In connection to work of J. P. Serre [78,79] on Fq-rational points on curves of small
genus over the finite field Fq, F. Luca and I. E. Shparlinski [64] in 2009 considered
the problem of bounding N(Q), where Q ≥ 8 and N(Q) is the number of prime
powers q ≤ Q of the form q = p2k+1 with p a prime and k ≥ 1 an integer and with
p dividing b2√qc. They showed that there exist positive constants c1 and c2 such
that

c1(logQ)1/2 ≤ N(Q) ≤ c2Q17/140 = c2Q
0.1214....

D. Baczkowski and O. Trifonov (in unpublished work, see [1]) have shown one can
take the exponent in the upper bound to be 5/42 = 0.1190 . . . . For these upper
bounds on N(Q), estimates of the type given in Section 4 were used.

6.6. An estimate involving Stirling numbers of the second kind

The Stirling number of the second kind, S(n, k), is the number of ways of writing the
set {1, 2, . . . , n} as a union of k non-empty pairwise disjoint subsets of {1, 2, . . . , n}.
It can be shown that either

(i) ∃Kn such that S(n,Kn) > S(n, k) for all k 6= Kn, or

(ii) ∃Kn such that S(n,Kn) = S(n,Kn + 1) > S(n, k) for all k 6∈ {Kn,Kn + 1}.

The n for which the latter hold appear to be exceptional (cf. [19]). Denote the set
of them by E. E. R. Canfield and C. Pomerance [19] showed showed that

|{n ≤ x : n ∈ E}| � x(3/5)+ε,

and G. Kemkes, D. Merlini and B. Richmond [56] improved this to

|{n ≤ x : n ∈ E}| � x(1/2)+ε.

E. R. Canfield and C. Pomerance [19] used estimates for integer points close to
a curve similar to the results in Section 4, whereas G. Kemkes, D. Merlini and
B. Richmond [56] used work of E. Bombieri and J. Pila [17] on estimates for integer
points on a curve.

7. Conclusion

The work of K. F. Roth [74] and by H. Halberstam and K. F. Roth [38] which gave us
Theorem 1.1 has made an impact on a number of related and not-so-related number
theoretic problems. In addition, their work has led to the development of approaches
using finite differences, to estimate in particular the number of integer points that
are close to a curve, that have been fruitful in a number of these applications. As
these implications of their papers have continued to progress with time, we can look
forward to seeing the influence of their work in research for years to come.
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