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Abstract

Asymptotically, more than 2/3 of the polynomials from a se-
quence of polynomials in Z[x], arising from an example associated
with the Strong Factorial Conjecture, are shown to be irreducible in
Z[x].

1 Introduction

The Strong Factorial Conjecture of E. Edo and A. van den Essen [3] is

concerned with the linear functional L on the space of complex polynomials

defined by sending a monomial generator za11 · · · zann to (a1!) · · · (an!). The

conjecture asserts that for a non-zero multi-variable complex polynomial
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F , the maximum number of consecutive zeroes that may appear in the

sequence {L(F n) : n ≥ 1} is N(F ) − 1, where N(F ) is the number of

monomials appearing in F with nonzero coefficient.

In the second author’s dissertation [12], he considered the irreducibility

in Z[x] of the polynomials

fn,m(x) =
n∑

j=0

(
n

j

)
(mj)!xj

in connection with his studies on the Strong Factorial Conjecture, specifi-

cally in the case F = 1 + λzm where λ ∈ C. Among other results, fn,m(x)

was established in [12] to be irreducible when n = pr where p is a prime

> m and r is a positive integer.

In this paper, we prove the following.

Theorem 1.1. Fix a positive integer m. Then

lim inf
X→∞

|{n ≤ X : fn,m(x) is irreducible}|
X

≥ log 2.

As log 2 = 0.693147 . . . , we deduce that more than 2/3 of the polynomials

fn,m(x) are irreducible in Z[x] for a fixed positive integer m. We do not know

of an instance where fn,m(x) is reducible, so presumably a much stronger

result than Theorem 1.1 holds.

2 Preliminaries on Newton polygons

Let f(x) =
∑n

j=0 ajx
j ∈ Z[x] with a0an 6= 0. Let p be a prime. For an integer

m 6= 0, we denote by νp(m) the exponent in the largest power of p dividing

m. We define νp(0) = +∞. Let S be the set of lattice points
(
j, νp(an−j)

)
,

for 0 ≤ j ≤ n, in the extended plane. We consider the lower edges along the

convex hull of these points. The left-most edge has an endpoint
(
0, νp(an)

)
and the right-most edge has

(
n, νp(a0)

)
as an endpoint. The polygonal path

along the lower edges of the convex hull from
(
0, νp(an)

)
to
(
n, νp(a0)

)
is called the Newton polygon of f(x) with respect to the prime p. The

endpoints of every edge belong to the set S, and each edge has a distinct

slope that increases as we move along the Newton polygon from left to right.

The following important theorem due to G. Dumas [2] connects the New-

ton polygon of f(x) with respect to a prime p with the Newton polygon of

its factors with respect to the same prime.
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Theorem 2.1. Let g(x) and h(x) be in Z[x] with g(0)h(0) 6= 0, and let p

be a prime. Let k be a non-negative integer such that pk divides the lead-

ing coefficient of g(x)h(x) but pk+1 does not. Then the edges of the Newton

polygon for g(x)h(x) with respect to p can be formed by constructing a polyg-

onal path beginning at (0, k) and using translates of the edges in the Newton

polygons for g(x) and h(x) with respect to the prime p, using exactly one

translate for each edge of the Newton polygons for g(x) and h(x). Necessar-

ily, the translated edges are translated in such a way as to form a polygonal

path with the slopes of the edges increasing.

As a particular consequence of Theorem 2.1, we have the following. Let

f(x) ∈ Z[x] with f(0) 6= 0. Let

(x0, y0), (x1, y1), . . . , (xr, yr), with 0 = x0 < x1 < · · · < xr = deg f,

denote the lattice points along the edges of the Newton polygon of an f(x)

with respect to a prime p. Set dj = xj − xj−1 for 1 ≤ j ≤ r. Then the set

{1, 2, . . . , r} can be written as a disjoint union of sets S1, S2, . . . , St where

t is the number of irreducible factors of f(x) (counted with multiplicities)

and the t numbers
∑

u∈Sj
du, for 1 ≤ j ≤ t, are the degrees of the irreducible

factors of f(x). Note that it is important here to consider all lattice points

along the edges of the Newton polygon of f(x) with respect to p and not

just lattice points of the form
(
j, νp(an−j)

)
used in the construction of the

Newton polygon.

Before applying Theorem 2.1 to obtain information about the factoriza-

tion of fn,m(x), we first obtain information on Newton polygons of fn,m(x).

We begin with a classical result on the largest power of a prime dividing a

binomial coefficient that we use to compute νp(aj) where aj =
(
n
j

)
(mj)! is

the coefficient of xj in fn,m(x).

Lemma 2.2. Let n and j be nonnegative integers with n > 0, and let p be

a prime. If b is the number of borrows needed when j is subtracted from n

in base p, then

νp

((
n

j

))
= b.

Lemma 2.2 is due to E. E. Kummer [8] but originally stated in the form

of carries when adding j and n−j in base p. Kummer uses another classical

result connecting the largest power of p dividing n! with the sum of the base

p digits of n due to A. M. Legendre [9].

The next lemma can be found in [12]. The proof given here is based on

a somewhat different analysis.
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Lemma 2.3. Let k, m and r be positive integers, and let q be a prime

> mk. Let n = kqr. Then the Newton polygon of fn,m(x) with respect to q

consists of a single edge which has slope −m(qr − 1)/
(
qr(q − 1)

)
.

Proof. For 0 ≤ j ≤ n, we set aj =
(
n
j

)
(mj)! so that fn,m(x) =

∑n
j=0 ajx

j.

In particular,

νq(a0) = νq(1) = 0.

Since q > mk, we have

νq(an) = νq
(
(mn)!

)
=
∞∑
u=1

⌊
mn

qu

⌋

=
r∑

u=1

⌊
mkqr

qu

⌋
=

r∑
u=1

mkqr

qu
=
mk(qr − 1)

q − 1
.

We deduce that the line through
(
0, νq(an)

)
and

(
n, νq(a0)

)
has slope equal

to −m(qr − 1)/
(
qr(q − 1)

)
and equation

y =
−m(qr − 1)

qr(q − 1)
· x+

mk(qr − 1)

q − 1
.

We want to prove that, for 0 < j < n, the point
(
n− j, νq(aj)

)
is above this

line, that is

νq(aj) ≥
−m(qr − 1)

qr(q − 1)
· (n− j) +

mk(qr − 1)

q − 1
=
mj(qr − 1)

qr(q − 1)
.

Note that n in base q consists of the single digit mk followed by r zeroes.

Fix j ∈ (0, n), and let t = νq(j). Then j < n implies t ∈ [0, r] and j in base q

ends with exactly t digits that are zero. It follows that when j is subtracted

from n in base q, exactly r − t borrows are required. Hence,

νq

((
n

j

))
= r − t.

Using that qt | j, we now deduce that

νq(aj) ≥ νq

((
n

j

)
(mj)!

)
= νq

((
n

j

))
+ νq

(
(mj)!

)
= r − t+

∞∑
u=1

⌊
mj

qu

⌋
= r − t+

t∑
u=1

⌊
mj

qu

⌋
+

r∑
u=t+1

⌊
mj

qu

⌋

= r − t+
t∑

u=1

mj

qu
+

r∑
u=t+1

⌊
mj

qu

⌋
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≥ r − t+
t∑

u=1

mj

qu
+

r∑
u=t+1

(
mj

qu
− 1

)

=
r∑

u=1

mj

qu
=
mj(qr − 1)

qr(q − 1)
.

The lemma follows.

Lemma 2.4. Let k and m be positive integers, and let q be a prime number

≥ (m + 1)2/(km). Let p be a prime in the interval (kqm/(m + 1), kq], and

let n = kq. Then the Newton polygon of fn,m(x) with respect to p has an

edge with slope −m/p.

Comment: Though not needed for this paper, the statement of Lemma 2.4

seemingly holds for a larger range of primes p.

Proof. Again, we set fn,m(x) =
∑n

j=0 ajx
j where aj =

(
n
j

)
(mj)! for 0 ≤ j ≤

n. Observe that

2p >
2kqm

m+ 1
≥ kq ≥ n,

so νp(n!) = 1. One checks that

(2.1) νp

((
n

j

))
=

{
1 if n− p < j < p

0 otherwise.

If the expression (mj)! is divisible by p, then j ≥ p/m. On the other hand,

the condition p > kqm/(m+ 1) is equivalent to p/m > n− p. Thus,

νp

((
n

j

)
(mj)!

)
= 0 for 0 ≤ j ≤ n− p.

The inequality q ≥ (m+ 1)2/(km) implies

p2 >

(
mn

m+ 1

)2

≥ mn.

From p ∈
(
kqm/(m+ 1), kq

]
, we have

m ≤ mn

p
< m+ 1.

Hence,

νp
(
an
)

= νp
(
(mn)!

)
=

⌊
mn

p

⌋
+

⌊
mn

p2

⌋
+ · · · =

⌊
mn

p

⌋
= m.
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We justify that the Newton polygon of fn,m(x) with respect to p consists

of the segment s from (0,m) to (p, 0) together with the segment from (p, 0)

to (n, 0). What is left to establish is that the points
(
n − j, νp(aj)

)
, for

n− p < j < n, lie on or above the segment s. Since the line through (0,m)

and (p, 0) has equation y = (−m/p)x+m, we want to prove

(2.2) νp
(
aj
)
≥ −m(n− j)

p
+m

for n− p < j < n. As p ≤ n, we have

−m(n− j)
p

+m =
−mn
p

+
mj

p
+m ≤ −m+

mj

p
+m =

mj

p
.

Thus, for j ∈ (n− p, n), it suffices to show that either (2.2) holds or

(2.3) νp
(
aj
)
≥ mj

p
.

For n− p < j < p, using (2.1), we see that

νp
(
aj
)

= νp

((
n

j

)
(mj)!

)
= 1 + νp

(
(mj)!

)
≥ 1 +

⌊
mj

p

⌋
>
mj

p
,

so that (2.3) holds for such j. For p ≤ j < n, we have

νp
(
aj
)

= νp
(
(mj)!

)
≥
⌊
mj

p

⌋
≥
⌊
mp

p

⌋
= m,

implying (2.2) for these j. The lemma follows.

3 Proof of Theorem 1.1

H. Cramér [1] showed that if the Riemann Hypothesis holds and pn is the nth

prime number, then pn+1−pn = O
(√

pn log pn
)
. According to C. J. Moreno

[10], P. Erdős posed the related problem of establishing that, for every

ε > 0, almost all numbers n are a distance ≤ n(1/2)+ε from a prime. More

specifically, Erdős asked whether there is a constant c < 1 such that∑
pn+1−pn>x(1/2)+ε

pn+1≤x

(
pn+1 − pn

)
� xc.

Moreno establishes this asymptotic in a weaker form with xc replaced nev-

ertheless by a function which tends to 0 as x tends to infinity. D. Wolke

[13] resolved the problem of Erdős in the affirmative, and a number of other
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authors (cf., [5, 6, 7, 11]) have since improved on the value of c in the

asymptotic. In particular, K. Matomäki’s work [7] implies that

(3.1)
∑

pn+1−pn>
√
pn

pn≤x

(
pn+1 − pn

)
� x2/3.

For our purposes, the weaker result of Moreno would suffice, but we use

(3.1).

Fix a positive integer m. Let M = (m+ 1)2/m. Note that M ≥ 4. Let A
be the set of positive integers n that have a prime factor q >

√
Mn. Let B

be the set of positive integers n for which there exists a prime p satisfying

n −
√
n < p ≤ n. Set C = A ∩ B. We obtain next the asymptotic densities

of the sets A and B in the set of integers, that is the values of

lim
x→∞

∣∣{n ≤ x : n ∈ A}
∣∣

x
and lim

x→∞

∣∣{n ≤ x : n ∈ B}
∣∣

x
.

The asymptotic density of A is connected to the distribution of smooth

numbers (numbers with only small prime factors) and is easily explained.

Using the notation π(x) for the number of primes ≤ x and p to represent a

prime, observe that∣∣{x < n ≤ 2x : n ∈ A}
∣∣

=
∑

√
Mx<p≤2x

(⌊
2x

p

⌋
−
⌊
x

p

⌋)
+O

( ∑
√
Mx<p≤

√
2Mx

(⌊
2x

p

⌋
−
⌊
x

p

⌋))

=

( ∑
√
Mx<p≤2x

x

p

)
+O

(
π(2x)

)
+O

( ∑
√
Mx<p≤

√
2Mx

x

p

)
.

Using Merten’s estimate for the sum of the reciprocals of the primes (cf.

Theorem 427 in [4]) and a Chebyshev estimate (cf. Theorem 7 in [4]), we

can deduce from the above that

(3.2) lim
x→∞

∣∣{n ≤ x : n ∈ A}
∣∣

x
= log 2.

For the asymptotic density of B, we consider first the asymptotic density

of the complement of B in the set of positive integers. Fix a positive integer

n in the complement of B. Let p′ and p′′ be the consecutive primes for which

p′ ≤ n < p′′. Since n 6∈ B, we have p′ ≤ n−
√
n. Thus,

p′′ − p′ > n−
(
n−
√
n
)

=
√
n ≥

√
p′.
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Therefore, such n lie in an interval [p′, p′′) where p′ and p′′ are consecutive

primes for which p′′−p′ >
√
p′. By (3.1), the n in the complement of B have

asymptotic density 0. Therefore,

(3.3) lim
x→∞

∣∣{n ≤ x : n ∈ B}
∣∣

x
= 1.

Combining (3.2) and (3.3), we deduce that

lim
x→∞

∣∣{n ≤ x : n ∈ C}
∣∣

x
= log 2.

Thus, to establish Theorem 1.1, it suffices to show that if n is a sufficiently

large element of C, then fn,m(x) is irreducible.

Consider such an n. Then n ∈ A implies that we can write n = kq where

k is a positive integer and q is a prime satisfying

q >
√
Mn =

√
Mkq =⇒ q > Mk > mk.

By Lemma 2.3, we deduce that the Newton polygon of fn,m(x) with respect

to the prime q consists of a single edge with slope −m/q. Since q is a prime

> m, the fraction −m/q is reduced. As a consequence of Theorem 2.1, we

can deduce that each irreducible factor of fn,m(x) has degree divisible by q

(as noted in [12]).

Next, we apply Lemma 2.4. Since q > Mk where M = (m + 1)2/m, we

see that

q >
(m+ 1)2k

m
≥ (m+ 1)2

km
.

We set p to be the largest prime ≤ n. To apply Lemma 2.4, we want to

show that

p >
nm

m+ 1
.

Since n is sufficiently large and m is fixed, this inequality is an easy conse-

quence of the Prime Number Theorem (i.e., that there is a prime number

in the interval
(
(1− ε)n, n

]
, where ε = 1/(m+ 1)). Lemma 2.4 implies that

the Newton polygon of fn,m(x) with respect to the prime p has an edge

with slope −m/p. Theorem 2.1 now implies that fn,m(x) has an irreducible

factor of degree ≥ p.

To establish that fn,m(x) is irreducible, it is sufficient now to show that

the smallest multiple of q that is ≥ p is n = kq. This is equivalent to

establishing that n− q < p. Since q >
√
Mn >

√
n, we need only show that

n−
√
n < p. The latter inequality follows from n ∈ B, completing the proof

of Theorem 1.1.
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