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1 Posing the problem

A common exercise addressed in number theory courses is to show that there can be arbi-
trarily large differences between two consecutive primes. The typical argument is to observe
that for every positive integer n ≥ 2, the sequence

n! + 2, n! + 3, . . . , n! + n

is a sequence of n− 1 consecutive composite numbers. Thus, the largest prime < n! + 2 and
the smallest prime > n! + n are consecutive primes differing by at least n. Since n can be
arbitrarily large, so can this gap between consecutive primes.

Imagine for the moment that you were pondering the problem of showing that there
are arbitrarily large gaps between the primes but, for some reason, didn’t think of using
the argument involving factorials above. How else might you show that the gaps between
primes can be arbitrarily large? I ask this question because it will be relevant to another
question we will be looking at shortly. My guess is that most of us would turn to the Chinese
Remainder Theorem. For example, setting n to be a positive integer and letting pj denote
the jth prime, then any solution m of the system of congruences

x ≡ −j (mod p2
j), for 1 ≤ j ≤ n− 1,
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has the property that m + 1,m + 2, . . . ,m + n − 1 are all composite. Thus, as before, the
prime just prior to these n − 1 numbers and the prime just after these n − 1 numbers are
consecutive primes that differ by at least n. Another approach to showing that there are
natural numbers that are not close to primes is to use that the asymptotic density of primes
in the set of natural numbers is 0. This latter approach has interesting connections to the
classical sieve of Eratosthenes and the Prime Number Theorem, but we don’t elaborate on
these here as they lead us too far from the main focus of the paper.

By considering natural numbers in the middle of large gaps between primes we see that
there are natural numbers that are arbitrarily far from primes. In other words, given any
real number C, there are natural numbers n such that any prime p satisfies |n− p| > C.

Now, we replace the natural numbers with polynomials having integer coefficients. We
view the analog of primes here as the irreducible polynomials over Q, that is those non-
constant polynomials in Z[x] which cannot be written as a product of two non-constant
polynomials in Z[x]. Then is it true that there are polynomials that are arbitrarily far from
irreducible polynomials? To make this more precise, we flip the question around and state
the following.

Turán’s Problem: Is there an absolute constant C such that if f(x) ∈ Z[x] of degree n ≥ 1,
then there is a w(x) =

∑n
j=0 bjx

j ∈ Z[x] with
∑n

j=0 |bj| ≤ C such that f(x) + w(x) is
irreducible?

Observe that f(x) = x3 has the property that f(x) ± xa is not irreducible for every
nonnegative integer a. Indeed, if a = 0, then f(x)± xa is either x3 + 1 = (x+ 1)(x2− x+ 1)
or x3− 1 = (x− 1)(x2 + x+ 1), which are both reducible. Also, f(x)− x3 is identically zero
and considered neither irreducible nor reducible. Otherwise, if a > 0, then x is a factor of
f(x)± xa, and f(x)± xa will be reducible. Since f(x) = x3 itself is reducible, we see that if
there is a C as in Turán’s problem, then necessarily C > 1.

2 An approach to showing C > 2

Next, we consider establishing that C > 2. In other words, we want an example of an
f(x) ∈ Z[x] of some degree n ≥ 1 such that each of f(x), f(x) ± xa and f(x) ± xa ± xb is
reducible for all integers a and b with 0 ≤ a ≤ n and 0 ≤ b ≤ n. This seems simple enough.
We just have to produce one example of such an f(x) to see that C > 2. Surprisingly,
however, there seems to be no simple example of such an f(x).

Recall that we were able to show that there is no such C in the analogous problem
involving integers that are far away from primes. A natural approach then for trying to
show there is no such C for the polynomial problem is to consider what we did for the
problem with integers and primes and generalize one of those ideas to handle the polynomial
problem of Turán. We might be able to figure out some generalization of factorials for
polynomials, but a little effort in this direction should convince you that looking at our
above application of the Chinese Remainder Theorem is more reasonable, especially since
the Chinese Remainder Theorem can be applied to polynomials. As to an analog to using
that the primes have density 0 among the natural numbers, we note that B. L. van der
Waerden [13] showed that polynomials behave in a vastly different way - the density, at least
in some sense of this word, of irreducible polynomials in the set Z[x] is 1.
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So, let’s see if we can use the Chinese Remainder Theorem to find an example which
establishes that C > 2 in Turán’s problem. We want a system of congruences for f(x)
such that if f(x) satisfies all of the congruences in this system then f(x), f(x) ± xa and
f(x)±xa±xb are reducible for all integers a and b with 0 ≤ a, b ≤ n as above. To help with
our arguments, we consider f(x) with at least 4 terms. We start with the congruence

f(x) ≡ 0 (mod x).

It’s simple enough, and it takes care of a lot. We deduce f(x) is reducible and f(x)± xa is
reducible for all a ≥ 1. Similarly, f(x)± xa ± xb is reducible for a and b both ≥ 1. Here, in
fact, is where we use that f(x) has at least 4 terms; otherwise, the example f(x) = x3+x2+x
would satisfy the congruence condition on f(x) above and would be such that f(x)−x3−x2

is irreducible. With f(x) as above, we are left with finding other conditions on f(x) that
cause f(x)± 1 and f(x)± xa ± 1 to be reducible for all integers a ∈ [0, n].

Next, we observe that if we want a congruence f(x) ≡ u(x) (mod m(x)) to imply there
are several polynomials of the form f(x) ± xa ± 1 divisible by m(x), then there are not a
lot of choices for what m(x) can be. We note first that we may suppose m(x) is irreducible,
since an irreducible factor of m(x) will divide any polynomial that is divisible by m(x). Now,
for example, if f(x) + xa + 1 is divisible by m(x) for two different positive integers a, then
the difference of two such polynomials, say f(x) + xa1 + 1 and f(x) + xa2 + 1 with a1 > a2,
is divisible by m(x). Thus, m(x) divides xa1 − xa2 . Since f(x) + xa + 1 is divisible by m(x)
and not x for a = a1 and a = a2, we deduce m(x) divides xa1−a2 − 1. In other words, m(x)
is cyclotomic; that is, m(x) is an irreducible divisor of xn − 1 for some positive integer n.
A similar argument shows that if m(x) is an irreducible factor of two polynomials of any
one of the forms f(x) + xa − 1, f(x) − xa + 1 and f(x) − xa − 1, then m(x) is either x or
is cyclotomic. The importance of considering cyclotomic polynomials is driven home by the
following easily established proposition, the proof of which we leave to the reader.

Proposition 1. If g(x) ∈ Z[x] and m(x) is a divisor of xn − 1 for some positive integer n
with m(x) dividing g(x) + xa for some integer a ≥ 0, then m(x) divides g(x) + xb for every
nonnegative integer b ≡ a (mod n).

The same result holds with g(x) + xa and g(x) + xb replaced by g(x)− xa and g(x)− xb.
Taking g(x) to be one of f(x)±1, we see that we can show a congruence class of exponents a
are such that, say, f(x) +xa + 1 are reducible by restricting f(x) to be in a congruence class
modulo a cyclotomic polynomial. For example, if f(x) ≡ 0 (mod x− 1), then f(x) + xa − 1
is divisible by the first cyclotomic polynomial Φ1(x) = x− 1 for all integers a (for all a ≡ 0
(mod 1)); in fact, the condition f(x) ≡ 0 (mod x − 1) implies also that f(x) − xa + 1 is
divisible by x − 1 for all a. This is a good point to remember. We have just seen that the
two congruences f(x) ≡ 0 (mod x) and f(x) ≡ 0 (mod x− 1), still considering f(x) with at
least 4 terms, are enough to guarantee that f(x) and f(x)± xa are reducible for a > 0, that
the polynomials f(x) + xa + xb and f(x)− xa− xb are reducible for all positive a and b, and
that f(x) + xa − 1 and f(x) − xa + 1 are reducible for all a ≥ 0. We are left with finding
conditions on f(x) that ensure the polynomials f(x) ± 1, f(x) + xa + 1 and f(x) − xa − 1
are reducible for all nonnegative integers a. We will see momentarily that such conditions
on f(x) are already available in the existing literature. For now, we can nevertheless try to
set up congruences that f(x) might satisfy modulo cyclotomic polynomials to find an f(x)
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which shows that C > 2 in Turán’s conjecture. With a bit of careful thought, one might be
led to something like the following system of congruences.

f(x) ≡ 0 (mod x)

f(x) ≡ 0 (mod x− 1)

f(x) ≡ 0 (mod x+ 1)

f(x) ≡ 0 (mod x2 + 1)

f(x) ≡ 0 (mod x4 + 1)

f(x) ≡ 0 (mod x8 + 1)

f(x) ≡ 0 (mod x16 + 1)

f(x) ≡ −2 (mod x2 + x+ 1)

f(x) ≡ 2 (mod x2 − x+ 1)

f(x) ≡ −x4 − 1 (mod x4 − x2 + 1)

f(x) ≡ x16 + 1 (mod x8 − x4 + 1)

f(x) ≡ −x32 − 1 (mod x16 − x8 + 1)

f(x) ≡ x32 + 1 (mod x32 − x16 + 1)

f(x) ≡ −1 (mod x32 + 1)

f(x) ≡ 1 (mod x64 − x32 + 1)

The moduli, besides x, are all cyclotomic polynomials. Proposition 1, one can check that any
f(x) satisfying all of the above congruences will have the property that f(x), f(x)± xa and
f(x)±xa±xb are reducible for all nonnegative integers a and b. Since there is no restriction
here on a and b being ≤ n, these congruences are more than sufficient for ensuring that
C > 2 in Turán’s conjecture ... or are they? We still need to check that we can apply the
Chinese Remainder Theorem with the above congruences. In fact, the moduli are relatively
prime so that the Chinese Remainder Theorem guarantees the existence of an f(x) satisfying
the above system of congruences.

The solutions in f(x) to the above congruences are not easily written down, and there is
no reason for the purposes of this paper to display such an f(x). There is a unique solution
if we restrict the degree of f(x) to be less than the degree of the product of the moduli, and
this solution is (in part)

f(x) =
7x192

32
+
x191

48
+
x190

96
+ · · · − x4

32
− x3

24
− x2

48
+

x

48
.

Yikes! This isn’t what we wanted at all. Turán’s conjecture is about polynomials f(x) with
integer coefficients, so this example that we constructed has not provided us with a proof
that C > 2 after all. Lesson learned. Don’t forget that the Chinese Remainder Theorem for
polynomials provides a solution in F [x] where F is the field of coefficients for the polynomial.
We have to work harder if we want an example in Z[x] proving C > 2.

3 A connection to covering systems

It is a little late to cut to the chase, but the author is ready to confess that he knows of no
example which shows that C > 2. Furthermore, there is a result of Andrzej Schinzel [11]
from 1967 that suggests that such an example might be hard to come by. To describe this
result, we give a little background.

A covering system of the integers is a finite collection of congruences

x ≡ a1 (mod m1), x ≡ a2 (mod m2), . . . , x ≡ ar (mod mr),

with the property that every integer satisfies at least one congruence in the system. Two
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examples of a covering system, one somewhat trivial and the other with more substance, are
given in the columns below.

x ≡ 0 (mod 2)
x ≡ 1 (mod 2)

x ≡ 0 (mod 2)
x ≡ 0 (mod 3)
x ≡ 1 (mod 4)
x ≡ 1 (mod 6)
x ≡ 11 (mod 12)

There are a variety of interesting results and open problems concerning covering systems.
A classical use of complex variables to say something about the non-complex world arises in
a short argument that if every integer satisfies exactly one congruence in a covering system
with r > 1 congruences, then the largest modulus in the covering system must appear at
least twice as a modulus for the system. To see this, order the moduli in the system so that
m1 ≤ m2 ≤ · · · ≤ mr. The condition r > 1 implies each mj > 1. Observe that we can
restrict to aj ∈ {0, 1, . . . ,mj − 1} in our system and that the exponents appearing on the
right of

zaj

1− zmj
= zaj + zaj+mj + zaj+2mj + · · ·

are then simply the nonnegative integers satisfying the congruence x ≡ aj (mod mj). Hence,
if every integer satisfies exactly one of the congruences in our system, we have

1

1− z
=

r∑
j=1

zaj

1− zmj
.

This equation holds for all z ∈ C with |z| < 1. Now, we see that if mr 6= mr−1, then as z
approaches the complex number ζ = e2πi/mr from inside the unit disc D = {z ∈ C : |z| < 1},
the right side has a single term which has absolute value tending to infinity whereas the left
side approaches 1/(1− ζ). Thus, for z ∈ D close enough to ζ, the absolute value of the right
side exceeds the absolute value of the left side, showing the above equation cannot hold.

It is possible to avoid the use of a complex variable here. For example, one can argue
first that if mr 6= mr−1, then necessarily mr > 6. Then one can take z = 2 in the equation
above and use that 2mr − 1 is divisible by a prime p that does not divide 2mj − 1 for any
j < r. Then the right side has p dividing the denominator when simplified but the left side
is simply −1. Nevertheless, the above elegant and simple use of a complex variable has made
a permanent mark in this subject.

Among the various open problems in the subject is the problem of determining whether
the minimum modulus m1 in a covering system with distinct moduli m1 < m2 < · · · < mr

can be arbitrarily large. Pál Erdős [4] wrote, “This is perhaps my favourite problem,” and
offered as much as $1000 for a solution to this problem (cf. [7], §F13). The current record on
the largest size of m1 was given by Pace P. Nielsen [10] who obtained a covering system with
distinct moduli ≥ 40. In addition, his covering consisted of over 1050 congruences with each
modulus only divisible by primes ≤ 103. Recall earlier that we were interested in showing
that there are conditions that we could impose on f(x) in addition to f(x) ≡ 0 (mod x) and
f(x) ≡ 0 (mod x− 1) that would imply C > 2. Although, this idea did not pan out the way
we intended, leading us instead to an f(x) with rational but not integral coefficients, it is
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worth noting that we could have used this result of Nielsen’s to readily establish conditions
on f(x), but again with the same drawback of producing a polynomial in Q[x] that is not
in Z[x]. Recall that we wanted to ensure that the polynomials f(x)± 1, f(x) + xa + 1 and
f(x)− xa − 1 are reducible for all nonnegative integers a. By Proposition 1, if we take

f(x) ≡ xaj + 1 (mod Φmj
(x)),

where Φmj
(x) is themjth cyclotomic polynomial, then f(x)−xa−1 will be divisible by Φmj

(x)
for every nonnegative integer a ≡ aj (mod mj). Recalling that earlier we saw a covering
system x ≡ aj (mod mj) consisting of distinct moduli mj from the set {2, 3, 4, 6, 12}, we
obtain a list of 5 congruences for f(x) as above modulo Φmj

(x) where mj ∈ {2, 3, 4, 6, 12}.
If f(x) satisfies these congruences, then f(x) − xa − 1 will be divisible by a cyclotomic
polynomial Φmj

(x), with mj ∈ {2, 3, 4, 6, 12}, for every nonnegative integer a. Now, we
take advantage of the covering system found by Nielsen, noting though that a somewhat
simpler covering system would suffice in the end here. Suppose x ≡ a′j (mod m′j), with
j ∈ {1, 2, . . . , r}, form Nielsen’s covering system with minimum modulus 40. Then if we
choose f(x) so that

f(x) ≡ −xa′
j − 1 (mod Φm′

j
(x)),

we see that as above f(x) + xa + 1 will be divisible by one of the cyclotomic polynomials
Φm′

j
(x), where j ∈ {1, 2, . . . , r}, for every nonnegative integer a. Since each m′j ≥ 40,

the r + 5 polynomials Φmj
(x) and Φm′

j
(x) appearing above are pairwise relatively prime

polynomials. To ensure that the two polynomials f(x)± 1 are reducible, we simply add two
more congruences involving unrelated moduli, like

f(x) ≡ 1 (mod x2 + 2) and f(x) ≡ −1 (mod x2 − 2).

Combining these with the congruences f(x) ≡ 0 (mod x) and f(x) ≡ 0 (mod x − 1) men-
tioned earlier, we deduce from the Chinese Remainder Theorem that there must be an f(x)
(albeit in Q[x]) such that f(x), f(x)±xa and f(x)±xa±xb are reducible for all nonnegative
integers a and b. So this gives us an alternative way to see that such an f(x) exists in Q[x].

Another open problem in the subject is to determine whether there is a covering system in
which the moduli are all distinct odd integers > 1. Erdős offered $25 for a proof that no such
odd covering system exists, and John Selfridge has offered up to $2000 for an explicit example
of an odd covering system (cf. [5]). As the story goes, the two of them had disagreeing
opinions as to whether an odd covering system exists, so they expressed their confidence in
their contrary points of view by offering prizes to anyone who could prove the opposite point
of view is correct. In particular, this means that, at the time, Erdős thought an odd covering
system does exist and Selfridge believed that there are no odd covering systems. We note
that no financial gain has been promised for a non-constructive proof that an odd covering
system exists. Needless to say, neither Erdős nor Selfridge ever had to pay the prize money
they offered to resolve this problem.

That covering systems might have something to do with Turán’s conjecture should not
be surprising given Proposition 1. This is certainly the case for the constructions of f(x)
given above, but those constructions involving covering systems led to f(x) ∈ Q[x]. What
happens if we require, as we want, that f(x) in Z[x]? The following helps in understanding
the difficulty in finding such an f(x) that will imply C > 2 in Turán’s problem.
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Theorem 1 (Schinzel [11], 1967). In the following, (i) implies (ii).

(i) There is a polynomial g(x) ∈ Z[x] satisfying g(0) 6= 0, g(1) 6= −1 and G(x) = g(x)+xa

is reducible for every integer a ≥ 0.

(ii) There is a covering system of the integers with distinct odd moduli > 1.

The implication is explained also in [5]. To better appreciate the connection with Turán’s
problem, we view g(x) here as f(x) + 1, say, with f(x) having at least 4 terms as before. As
we did earlier, we take f(x) ≡ 0 (mod x), so the condition g(0) 6= 0 will be satisfied. We do
what we can with the cyclotomic factor x− 1 by requiring also that f(x) ≡ 0 (mod x− 1).
This ensures f(x)+xa−1 and f(x)−xa+1 are reducible for all integers a ≥ 0. The condition
f(x) ≡ 0 (mod x− 1) also implies g(1) 6= −1. To establish that C > 2 in Turán’s problem,
we want to find an f(x) ∈ Z[x] that, in particular, ensures g(x) satisfies (i) above. According
to Schinzel’s theorem, we can only find such an f(x) if there is a covering system as in (ii).
Thus, the existence of such an f(x) implies the existence of an odd covering system, that is
a covering system which, if made explicit, would have been eligible for a $2000 prize.

As a consequence, it would seem that establishing C > 2 in Turán’s problem is difficult,
in contrast to how easy it is to demonstrate there are composite numbers that are not near
primes. There is still some hope, though, of finding an example since (i) in Schinzel’s theorem
concerns all integers a ≥ 0, whereas an example showing C > 2 in Turán’s problem only
requires that we consider 0 ≤ a ≤ deg g.

4 The plausibility that C ≤ 3

If we allow for degw(x) > deg f(x) in Turán’s problem, the following result shows that the
problem can be resolved with C = 3.

Theorem 2 (Schinzel [12], 1970). For every f(x) =
∑n

j=0 ajx
j ∈ Z[x], there exist infinitely

many polynomials w(x) =
∑s

j=0 bjx
j ∈ Z[x] with

∑s
j=0 |bj| ≤ 3 and f(x) + w(x) irreducible.

At least one of these satisfies s < exp
(
(5n+ 7)

(
‖f‖+ 3

))
, where ‖f‖ =

√∑r
j=0 a

2
j .

Since it is of some interest to obtain s in this result as close to n as possible, we note
that Pradipto Banerjee and the author [1] established that the bound on s can be made to
depend linearly on n instead of exponentially on n. However, the dependence on the sum of
the squares of the coefficients, as in the bound for s above, remains exponential.

5 More convincing evidence that C ≤ 5

Perhaps the above discussion has already persuaded the reader that there exists some C as
in Turán’s problem. But there is also compelling evidence of a different sort. In 1996 and
1997, Attila Bérczes and Lajos Hajdu [2, 3] viewed this problem from another point of view.
Consider the analog in the field F2 of arithmetic modulo 2. There are only a finite number of
polynomials of each degree, so for a certain degree n, we can determine the minimal distance
of each polynomial in F2[x] from an irreducible polynomial of degree ≤ n in F2[x]. The
tables below show the polynomials of degrees 1, 2 and 3 in F2[x] (in the left column) and
their minimal distance from an irreducible polynomial in F2[x] (in the right column).
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x 0

x+ 1 0

x2 2

x2 + 1 1

x2 + x 1

x2 + x+ 1 0

x3 2

x3 + 1 1

x3 + x 1

x3 + x+ 1 0

x3 + x2 1

x3 + x2 + 1 0

x3 + x2 + x 2

x3 + x2 + x+ 1 1

Thus, in F2[x], every polynomial of degree ≤ 3 is a distance of at most 2 from an irreducible
polynomial in F2[x]. And, as they noted, this has a direct implication on the problem of
Turán. Given any polynomial f(x) of degree n ∈ {1, 2, 3} in Z[x], we now know that there
is a w(x) =

∑n
j=0 bjx

j ∈ Z[x] with
∑n

j=0 |bj| ≤ 3 such that f(x) +w(x) is irreducible modulo
2 and, hence, irreducible over Q. The bound 3 on

∑n
j=0 |bj| comes from allowing for the

possibility that f(x) might have an even leading coefficient, so we may need to add the
term xn to ensure that we are obtaining an irreducible polynomial of the appropriate degree.
As an example, we note that if every coefficient of a cubic f(x) is even, then we can take
w(x) = x3 +x+ 1 to deduce f(x) +w(x) is irreducible modulo 2 and, hence, irreducible over
Q. Considering a w(x) with fewer terms may or may not work here.

Bérczes and Hajdu extended this idea to show that every polynomial in F2[x] of degree
≤ 24 is within a distance 4 from an irreducible polynomial in F2[x] and, hence, one may take
C = 5 for every polynomial of degree ≤ 24 in Turán’s problem. These computations have
been extended further using different approaches by Gilbert Lee, Frank Ruskey and Aaron
Williams [8], Michael J. Mossinghoff [9], and Mossinghoff and the author [6]. At this point,
we know that one may take C = 5 for polynomials up to degree 40.

Independent heuristic arguments done by Lee, Ruskey and Williams and by Mossinghoff
suggest how the minimal distances to irreducibles are distributed in F2[x]. If δk = δk(n)
denotes the density of polynomials in F2[x] of degree n which have minimal distance k to an
irreducible polynomial in F2[x], then the heuristics give

δ0 =
1

n
, δ1 =

1− e−4

4
+

1 + e−4

n
, δ2 =

2− e−4

4
− 1− e−4

n
,

δ3 =
1 + e−4

4

(
1− 4

n

)
, and δ4 =

e−4

4

(
1− 4

n

)
.

These lead to approximate asymptotic densities of 24.54%, 49.54%, 25.46% and 0.46% for
polynomials in F2[x] which have minimal distance to an irreducible polynomial 1, 2, 3 and 4,
respectively, with the asymptotic densities for any other distance being 0. These asymptotics
agree with the actual computations amazingly accurately. Mossinghoff [9] produced Figure 1
based on his computations up to degree 34. The lined curves show the heuristic densities
δk(n), and the points displayed with different styles for each k ∈ {0, 1, 2, 3, 4} show the actual
density of polynomials in F2[x] of degree n which have minimal distance to an irreducible
polynomial k. The second lowest curve shows the density of irreducible polynomials of degree
n modulo 2 closely matches the asymptotics given by δ0 = 1/n. The number of irreducible
polynomials of degree n modulo 2 is known to be approximately 2n/n. What we don’t
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know, but can conjecture, is that the remaining points, concerning densities of polynomials
a distance ≤ 4 from an irreducible poly-
nomial, continue to match up well with
the asymptotics δj. In fact, we do not
even know for any fixed positive integer
k ≥ 5 that the density δk(n) approaches
0 as n goes to infinity. Presumably, this
is the case for all k ≥ 5.

Mossinghoff and the author [6] have
shown that a positive proportion of poly-
nomials f(x) in F2[x] have distance ≥ 4
to an irreducible polynomial. To clarify,
for such f(x) in F2[x], if g(x) is any irre-
ducible polynomial in F2[x] of any degree,
then the polynomial f(x) − g(x) (equiv-
alently, f(x) + g(x)) in F2[x] has at least
4 terms. The argument involves a cover-
ing system which produces as a particular
example of such an f(x) the polynomial

Figure 1

f(x) = x243 + x238 + x233 + x232 + x231 + x227 + x225 + x223 + x222 + x221

+ x217 + x216 + x214 + x208 + x206 + x203 + x202 + x201 + x199

+ x197 + x196 + x192 + x186 + x184 + x180 + x175 + x174 + x171

+ x169 + x167 + x164 + x163 + x162 + x160 + x157 + x155 + x149

+ x147 + x146 + x145 + x143 + x141 + x136 + x133 + x130 + x129

+ x125 + x124 + x116 + x115 + x114 + x108 + x103 + x100 + x99

+ x98 + x95 + x94 + x92 + x88 + x83 + x81 + x72 + x68 + x63

+ x61 + x55 + x52 + x50 + x49 + x47 + x46 + x43 + x36 + x35

+ x29 + x26 + x23 + x22 + x20 + x18 + x14 + x10 + x7 + x6.

If we can show that polynomials f(x) in F2[x] are always a distance ≤ 4 from an irre-
ducible polynomial in F2[x] of degree ≤ deg f , then we can take C = 5 in the problem of
Turán. One can try to do better by working with irreducibility over different fields. This
idea, originally from Bérczes and Hajdu [2, 3], was used by Mossinghoff [9] to show that every
polynomial of degree ≤ 18 in F3[x] is within 3 of an irreducible polynomial. This allows one
to take C = 4 in Turán’s problem for polynomials over Q of degree up to 18. These authors
considered working over other finite fields as well but found there was no further gain in
Turán’s problem from doing so.

6 Working modulo odd primes

We are ready to go full circle and return to our attempt to prove one needs C > 2 in Turán’s
problem. Recall that we gave a construction that failed to do what we wanted because it
produced an f(x) in Q[x] and not in Z[x]. A similar construction can be used to give some
new information about polynomials in Fp[x].
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Let p be an odd prime. There exists an f(x) in Fp[x] of degree ≤ 18 that is a distance ≥ 3
from every irreducible polynomial. Furthermore, a positive proportion of the polynomials
f(x) in Fp[x] are a distance ≥ 3 from every irreducible polynomial.

In other words, for such f(x), if g(x) is any irreducible polynomial in Fp[x] (of any degree),
then the polynomial f(x)− g(x) in Fp[x] either (i) has at least 3 terms, (ii) has a coefficient
in the set {±2} and another coefficient in the set {±1,±2}, or (iii) has a coefficient that is
not in the set {0,±1,±2}.

We illustrate the argument for this result by considering p = 3. For convenience, we
represent the elements of F3 as −1, 0 and 1. For our earlier construction, we considered,
among other congruences, f(x) satisfying f(x) ≡ 0 modulo each of the polynomials x, x− 1
and x2j

+ 1 where 0 ≤ j ≤ 3. In F3[x], the latter two polynomials on this list factor as

x4 + 1 = (x2 + x− 1)(x2 − x− 1) and x8 + 1 = (x4 + x2 − 1)(x4 − x2 − 1).

To obtain one f(x) as in the result above, one can use the Chinese Remainder Theorem over
F3[x] with the congruences

f(x) ≡ 0 (mod x)

f(x) ≡ 0 (mod x− 1)

f(x) ≡ 0 (mod x+ 1)

f(x) ≡ 0 (mod x2 + 1)

f(x) ≡ 0 (mod x2 + x− 1)

f(x) ≡ 1 (mod x2 − x− 1)

f(x) ≡ 0 (mod x4 + x2 − 1)

f(x) ≡ −1 (mod x4 − x2 − 1).

The f(x) ∈ F3[x] having smallest possible degree satisfying these congruences is

x16 + x15 + x14 + x13 + x12 − x11 + x10 − x9 + x7 − x6 + x5 + x4 − x3 − x2 − x.

We clarify how to show every f(x) satisfying the above congruences is a distance > 2 from
an irreducible polynomial in F3[x]. Note first that deg f ≥ 11 since the congruences imply
that f(x) is non-zero and divisible by

x(x− 1)(x+ 1)(x2 + 1)(x2 + x− 1)(x4 + x2 − 1).

The congruence f(x) ≡ 0 (mod x) implies f(x) itself is reducible as well as any polynomial of
the form f(x)±xa where a > 0. The congruences f(x) ≡ 1 (mod x2−x−1) and f(x) ≡ −1
(mod x4−x2−1) imply f(x)±1 are reducible. Let a and b be arbitrary nonnegative integers.
We want to show that the various polynomials f(x)± xa ± xb are reducible in F3[x]. Since
f(x) ≡ 0 (mod x), we may restrict our consideration to polynomials of the form f(x)±xa±1.
To finish the argument, we now make use of the notation f(x) ± xa ± 1 to represent the
polynomials of the forms f(x) + xa + 1 and f(x) − xa − 1 and the notation f(x) ± xa ∓ 1
to represent the polynomials of the forms f(x) + xa − 1 and f(x) − xa + 1. Then we have
the following implications:

f(x) ≡ 0 (mod x− 1) =⇒ f(x) ± xa ∓ 1 are reducible

f(x) ≡ 0 (mod x+ 1) =⇒ f(x) ± xa ± 1 are reducible for a ≡ 1 (mod 2)

f(x) ≡ 0 (mod x2 + 1) =⇒ f(x) ± xa ± 1 are reducible for a ≡ 2 (mod 4)

f(x) ≡ 0 (mod x2 + x− 1) =⇒ f(x) ± xa ± 1 are reducible for a ≡ 4 (mod 8)

10



f(x) ≡ 1 (mod x2 − x− 1) =⇒ f(x) + xa + 1 is reducible for a ≡ 0 (mod 8)

f(x) ≡ 0 (mod x4 + x2 − 1) =⇒ f(x)− xa − 1 is reducible for a ≡ 8 (mod 16)

f(x) ≡ −1 (mod x4 − x2 − 1) =⇒ f(x)− xa − 1 is reducible for a ≡ 0 (mod 16).

Combining the above information, we deduce every polynomial a distance ≤ 2 from f(x) in
F3[x] is reducible, giving us what we wanted.

To show that a positive density of the polynomials in F3[x] are a distance ≥ 3 from an
irreducible polynomial, it suffices to show that a positive density of the polynomials satisfy
the above congruences. This will be clear to some of our readers, and we appeal to [6] for
details, where a similar argument is done over F2[x].

The more general result for an arbitrary odd prime p can be done using a very sim-
ilar argument. Of particular importance to our argument in F3[x] is that the cyclotomic
polynomials x4 + 1 and x8 + 1 were reducible in F3[x]. In fact, the polynomial x4 + 1 is a
classic example of a polynomial that factors nontrivially modulo every prime, and the reader
unfamiliar with this fact will likely enjoy thinking of a proof. The fact that x8 + 1 factors
nontrivially modulo evey prime p follows by simply replacing x with x2 in the factorization
of x4 + 1. More precisely, we can write

x4 + 1 ≡ h1(x)h2(x) (mod p) and x8 + 1 ≡ h3(x)h4(x) (mod p),

where the hj(x) are distinct, pairwise relatively prime polynomials in Fp[x] since p is odd.
In terms of the covering argument above, one can replace the last four congruences on f(x)
with

f(x) ≡ 0 (mod h1(x))

f(x) ≡ p− 2 (mod h2(x))

f(x) ≡ 0 (mod h3(x))

f(x) ≡ 2 (mod h4(x)).

An additional argument is then needed to establish the reducibility of polynomials of the
form f(x)±1 in Fp[x]. One can check that the congruences above provide an f(x) satisfying
f(x)± 1 is reducible in F5[x]. Alternatively, one can take advantage of the fact that x2 + 1
factors modulo 5 to give a simpler set of congruences. For p > 5, we add to the congruences
above the two additional congruences in Fp[x] given by

f(x) ≡ 1 (mod x− 3) and f(x) ≡ −1 (mod x+ 3).

The sum of the degrees of the moduli used in the construction of f(x) in Fp[x] is in general
≤ 19, and this is enough to show the existence of an f(x) as stated earlier of degree ≤ 18.
The density argument for the result in Fp[x] as before follows along the lines of [6], and one
can in fact deduce that asymptotically at least 1/p19 of the f(x) ∈ Fp[x] are a distance ≥ 3
from an irreducible polynomial.

Before ending, we note that the simple looking polynomial

f(x) = 5x5 + 8x4 + 2x3 + 9x2 + 10x

has the property that f(x) has distance ≥ 3 from every irreducible polynomial in F17[x].
Thus, the existence result for polynomials of degree ≤ 18 in Fp[x] that are a distance ≥ 3
from every irreducible polynomial in Fp[x] is not sharp, at least for all primes p. In fact, one
can show that the bound 18 can be replaced by ≤ 8 for every prime p ≡ 1 (mod 8).
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7 Wrapping up what we know and don’t know

In conclusion, we have made various connections between Turán’s problem and covering
systems. Although Turán’s problem remains a fascinating open problem, we have given
some fairly strong evidence that every polynomial is within a distance 5 of an irreducible
polynomial and likely within a distance 4. We have also seen that allowing more flexibility
on the degree of w(x) in this problem allows for a solution with C = 3. On the other hand,
with or without this flexibility, we do not even know if one can take C = 2. Unlike the
arbitrarily large sizes of gaps between primes in the set of natural numbers, the sizes of
the gaps between irreducible polynomials in the set of polynomials with integer coefficients
remain a mystery and are seemingly bounded.

Acknowledgments: The author expresses his gratitude to Mike Mossinghoff for allowing
him to use a figure from [9] and for insightful comments on an early version of this paper.
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