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Abstract: We examine the problem of determining the solutions to the
Diophantine equation

n(n+ d) · · ·
(
n+ (k − 1)d

)
= by2,

where d is fixed and the largest prime divisor of b is no more than Ck.
Here, C is fixed but arbitrary. Under some rather minor conditions, it
is shown that there are finitely many solutions that can be effectively
computed. Some new, largely combinatorial, ideas are introduced into
the general theory to handle the case of arbitrary C as considered here.

1. Introduction

With n, d and k positive integers, we set

∆(n, k, d) = n(n+ d) · · ·
(
n+ (k − 1)d

)
.

Fix d as above and real numbers ε > 0 and C ≥ d. We are interested in establishing
that the equation

∆(n, k, d) = by2 (1.1)

——————————-
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has finitely many solutions in positive integers n, k, b and y with

gcd(n, d) = 1, k ≥ 3, n ≥
(
C − d+ εd

)
k and P (b) ≤ Ck, (1.2)

where P (b) denotes the largest prime dividing b.
Solutions to equation (1.1) have been investigated extensively in the literature

and even further with the exponent on y on the right replaced by an arbitrary integer
≥ 2. A particularly important result in this direction is the complete solution to the
case d = b = 1 by P. Erdős and J. L. Selfridge [6], which implies that the product of
two or more consecutive positive integers is never a power. A small sampling of the
literature on the subject includes the work of T. N. Shorey and R. Tijdeman [17],
the expository work of T. N. Shorey [16] and the references there, and the more
recent work by M. A. Bennett, N. Bruin, K. Győry and L. Hajdu [2], K. Győry,
L. Hajdu, and Á. Pintér [8] and N. Saradha and T. N. Shorey [15].

As we shall describe at the beginning of the third section, traditional methods
allow one to bound the number of solutions to (1.1) and (1.2) when C is small and,
in particular, for C ≤ 2 (and a little beyond). But for large C, these methods fail.
In this paper, we describe an improvement on these methods which allows one to
handle this problem for larger C as well. Our main result is the following.

Theorem 1.1. Fix a positive integer d. Let ε ∈ (0, 1) and C ≥ d be arbitrary.
There is a finite effectively computable set S = S(d, ε, C) of 4-tuples such that if
(1.1) and (1.2) hold, then (n, k, b, y) ∈ S.

The above result is formulated in the way that we will establish it. We note,
however, that the condition gcd(n, d) = 1 can be dropped and the expression εd

appearing in the lower bound for n can be replaced by ε. Indeed, these are not
actual improvements on Theorem 1.1 but rather equivalent formulations of it. We
also note that one cannot obtain an analogous result with ε = 0 in (1.2) since
then (1.1) would have infinitely many solutions corresponding to k ≥ 3 arbitrary,
n = d(C − d)ke, b = ∆(n, k, d) and y = 1.

Acknowledgment: The authors express their gratitude to the referee for some
helpful suggestions.

2. Preliminaries

We suppose as we may that b is squarefree. For m a positive integer, we will also
make use of the notation νp(m) = e where pe‖m. Observe that it suffices to bound
n and k as above for which (1.1) has a solution satisfying (1.2). In fact, for each
fixed k ≥ 3, there are finitely many possibilities for squarefree b satisfying the
last condition in (1.2). For each such b and solution to (1.1), we can consider the
product ∆(n, 3, d) which will necessarily be a square times a positive squarefree
integer having all of its prime factors ≤ Ck. Thus, we obtain

∆(n, 3, d) = b′y2,
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where P (b′) ≤ Ck. There are finitely many possibilities then for b′, and we deduce
(1.1) has finitely many integer solutions as solutions correspond to integer points
on the elliptic curve described by ∆(n, 3, d) = b′y2. That these integer points can
be effectively computed is a consequence of, for example, Theorem 4.2 in [1] which
asserts (in the case n = 3 there) the following:

Let K be an algebraic number field, and let α1, α2 and α3 be distinct algebraic
integers in K. Then the equation

Y 2 = (X − α1)(X − α2)(X − α3) (2.1)

has only a finite number of solutions in algebraic integers X and Y in K and
these can be effectively determined.

As noted in [1], the result remains valid if a non-zero factor in K is included on
the right side of (2.1) (in fact, this is easily seen to be equivalent to the assertion
above). Thus, it suffices to show that (1.1) and (1.2) imply k is bounded.

Beginning with (1.1), for 0 ≤ j < k, we can write

n+ jd = ajx
2
j , aj , xj ∈ Z, aj squarefree.

We will want to know that P
(
∆(n, k, d)

)
is large, so we state this as a first result.

Theorem 2.1. Fix a positive integer d. Let ε ∈ (0, 1) and C ≥ d be arbitrary.
There is a finite effectively computable set S′ = S′(d, ε, C) of 2-tuples such that if
n and k are positive integers for which

k ≥ 2, gcd(n, d) = 1, n ≥ (C − d+ εd)k, (n, k) 6∈ S′,

then

P
(
∆(n, k, d)

)
> Ck.

Proof. An asymptotic form of Dirichlet’s Theorem (such as that in [4], p. 123, see
(11) and the discussion after it) implies that there is an explicit k0 such that if
k ≥ k0, then there is a prime in the set

{n+ (k − bεkc+ 1)d, n+ (k − bεkc+ 2)d, . . . , n+ (k − 2)d, n+ (k − 1)d}

for all n satisfying

(C − d+ εd)k ≤ n ≤ e3Ck.

We deduce that if P
(
∆(n, k)

)
≤ Ck, then either k < k0 or n > e3Ck.

Suppose that n > e3Ck. We show in this case that P
(
∆(n, k)

)
> Ck provided k

is sufficiently large. We use an idea of Erdős [5]. For each prime p ≤ Ck, we consider
np from the set

T = {n, n+ d, . . . , n+ (k − 1)d} (2.2)
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for which νp(np) is maximal. If x is the number of integers < np in T and y the
number > np, then x+ y = k − 1. We also have

νp

( ∏
m∈T
m 6=np

m

)
≤
∞∑
j=1

(⌊
x

pj

⌋
+
⌊
y

pj

⌋)
≤
∞∑
j=1

⌊
x+ y

pj

⌋
= νp

(
(k − 1)!

)
.

We deduce that∏
p≤Ck

pe‖∆(n,k,d)

pe ≤ (k − 1)!
∏
p≤Ck

np ≤ kk(n+ kd)π(Ck) ≤ kk(2n)π(Ck).

Hence,

log
∏
p≤Ck

pe‖∆(n,k,d)

pe ≤ k log k + π(Ck) log(2n) ≤ k log k +
2Ck
log k

log(2n).

On the other hand,

log
∏
m∈T

m > log nk ≥ k log n.

Thus, ∏
p≤Ck

pe‖∆(n,k,d)

pe <
∏
m∈T

m

provided

log n ≥ log k +
2C

log k
log(2n).

The latter holds provided(
1− 2C

log k

)
log n ≥ log k +

2C log 2
log k

.

Since n > e3Ck, it suffices here for(
1− 2C

log k

)(
log k + 3C

)
≥ log k +

2C log 2
log k

,

which is easily seen to hold for k ≥ k′0, say.
We are left then with the task of considering finitely many k < max{k0, k

′
0}. A

result of G. Pólya [12] implies that P (n(n+d)) tends to infinity with n. In particular,
there is an n0 such that if n > n0, then for all k satisfying 2 ≤ k < max{k0, k

′
0},

one has

P
(
∆(n, k, d)

)
≥ P

(
n(n+ d)

)
≥ C max{k0, k

′
0} > Ck.

What remains are pairs (k, n) satisfying 2 ≤ k < max{k0, k
′
0} and (C−d+εd)k ≤

n ≤ n0. There are finitely many such pairs. The prime distribution results used



March 4, 2012 18:21 WSPC/INSTRUCTION FILE FLSpaper2011

Solving n(n + d) · · ·
`
n + (k − 1)d

´
= by2 with P (b) ≤ Ck 5

above are effective, so we deduce that the set S′ given in the theorem is effectively
computable, and the result follows.

We note that [13] provides some explicit estimates that can be used for obtaining
k0 for small d, for example d ≤ 72. The use of Pólya’s result can be replaced by
work in [11] for d ∈ {1, 2, 4} or a use of estimates on linear forms of logarithms or
by use of algorithms for Thue equations as in [3] and [18]. The reader may also want
to see [10] for related work on the largest prime factor of a product of consecutive
numbers in an arithmetic progression.

Given Theorem 2.1, one can show effectively that, with the conditions on n in
(1.2), the inequality

P
(
∆(n, k, d)

)
> Ck

holds for all but finitely many pairs (n, k). This is more than enough to allow one
to consider the case that the aj are distinct. This is accomplished as follows. Since
some xj is divisible by a prime > Ck ≥ dk, we deduce that

n+ kd > ajx
2
j ≥ (kd+ 1)2 > k2d2 + kd.

Hence, n > k2d2. Now, if au = av with u 6= v, then

(k − 1)d ≥ |aux2
u − avx2

v| = au(xu + xv)|xu − xv| > auxu ≥
√
aux2

u >
√
k2d2 = kd,

which is impossible.
Note that above we can also obtain that

n+ kd > C2k2.

In the opposite direction, the inequality n > k2d2 easily implies kd < n so that
n+ kd ≤ 2n. We also have as a consequence of (1.1) that P (aj) ≤ Ck for each j.

Before proceeding, we prefer a stronger lower bound on n or, more precisely, on
the numbers xj . We address that next.

Lemma 2.2. If (1.1) and (1.2) hold and k is sufficiently large, then n > Ck2.8.

Proof. Assume n ≤ Ck2.8. We saw above that n > k2d2 ≥ k2. The basic idea is
to find a lower bound on the number of integers in the set T given in (2.2) that
are squarefree. We show that at least 57% of the elements of T are squarefree by
making use of the assumption n ≤ Ck2.8. We explain first why this leads us to a
contradiction.

Let t = d0.57ke. Suppose there are ≥ t elements of T that are squarefree. Then

log
∏

0≤j<k

aj ≥ log
∏

0≤j<t

(n+ jd) > t log n ≥ 0.57k log(k2) > 1.1k log k.

On the other hand, each prime p ≤ Ck divides at most bk/pc+1 of the numbers aj .
Recall that the aj are squarefree and satisfy P (aj) ≤ Ck. For k sufficiently large,
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we deduce that

log
∏

0≤j<k

aj ≤
∑
p≤Ck

(⌊
k

p

⌋
+ 1
)

log p ≤ k
∑
p≤Ck

log p
p

+
∑
p≤Ck

log p

≤ 1.05k log k + 1.1Ck ≤ 1.1k log k.

Thus, we have a contradiction.
We finish the proof by showing that there are at least t squarefree numbers in

T . We consider primes in three different ranges.
Let z = log k with k sufficiently large. We start with primes ≤ z. Since

gcd(n, d) = 1, the number of multiples of m2 in T is 0 if m has a prime factor
in common with d. Otherwise, the number of multiples of m2 in T is⌊

k

m2

⌋
+Rm =

k

m2
+R′m

where Rm ∈ {0, 1} and R′m ∈ (−1, 1]. Let P denote the product of the primes ≤ z.
Note that we are considering k sufficiently large. Then the sieve of Eratosthenes
implies that number of elements of T that are not divisible by p2 for every prime
p ≤ z is ∑

m|P

µ(m)
(
k

m2
+R′m

)
=
∏
p≤z

(
1− 1

p2

)
k + E,

where

|E| ≤ 2π(z) ≤ 2log k = klog 2 ≤ 0.01k.

Since ∏
p≤z

(
1− 1

p2

)
≥
∏
p

(
1− 1

p2

)
=

6
π2

> 0.6,

we deduce that there are at least 0.59k elements of T that are not divisible by p2

for every prime p ≤ z.
Next, we observe that the number of elements of T divisible by p2 for some

prime p ∈ (z, kd] is bounded by∑
z<p≤kd

(⌊
k

p2

⌋
+ 1
)
≤ k

∑
m>z

1
m2

+ π(kd) ≤ k

z − 1
+

2kd
log k

< 0.01k.

We deduce that there are at least 0.58k elements of T that are not divisible by p2

for every prime p ≤ kd.
Finally, we consider the primes p > kd for which p2 divides some element of

T . Observe that necessarily p <
√
n+ kd ≤

√
2n. Recall that we are assuming

n ≤ Ck2.8. As a consequence k ≥ (n/C)1/2.8 > n0.35. Thus, we are interested in
primes p for which

n0.35 < kd < p ≤
√

2n.
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Observe that, for each such p, there is at most one multiple of p2 in T . Furthermore,
if ap2 is such a multiple, then a is a positive integer satisfying

a ≤ n+ kd

p2
≤ 2n
n2·0.35

= 2n0.3 < 2k0.3/0.35 < k0.9.

On the other hand, if we also have a second prime q ∈ (kd,
√

2n] for which aq2 ∈ T ,
then

kd > |ap2 − aq2| = a|p+ q||p− q| ≥ a|p+ q| > kd,

an impossibility. Thus, the primes p > kd for which there is an element of T divisible
by p2 correspond to distinct positive integer multipliers a < k0.9. In particular, we
deduce that there are < k0.9 such primes. Hence, there are also < k0.9 < 0.01k
elements of T divisible by the square of a prime exceeding kd. We obtain then that
there are at least 0.57k elements of T that are not divisible by the square of a prime,
and the result follows.

The main idea behind the proof of Lemma 2.2 comes from the study of gaps
between squarefree numbers. Using [7], the lower bound can easily be sharpened
further to obtain that n ≥ k5−ε for any ε > 0. For our purposes, we only need the
above weaker version of the lemma. In fact, something considerably weaker would
also do. Our interest is in the following result.

Corollary 2.3. Let α be such that 0 < α ≤ k0.8, and let T be as in (2.2). For k
sufficiently large, the numbers xj, with 0 ≤ j < k, for which aj ≤ αk are distinct.

Proof. By Lemma 2.2, we have n > Ck2.8. If aj ≤ αk, then we obtain from
ajx

2
j ≥ n that

x2
j ≥

n

αk
>
Ck2.8

αk
=
Ck1.8

α
≥ dk.

We deduce that there can be at most one multiple of x2
j in T , and the corollary

follows.

3. The Main Lemma

For the moment, consider the case d = 2. Let tj denote the jth odd squarefree
number. The prior approach to obtaining the solutions to (1.1) given (1.2) is to
combine a lower bound and an upper bound on

∑
0≤j<k log aj . The lower bound is

obtained from ∑
0≤j<k

log aj ≥
∑

0≤j<k

log tj+1 (3.1)

and a fairly precise estimate for this last sum. The upper bound is obtained using
an approach of Erdős already used in the proof of Theorem 2.1. Here, the approach
can be described roughly as follows. For each prime p ≤ Ck, one can bound the
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number of aj divisible by p by estimating the number of j ∈ {0, 1, . . . , k − 1} for
which νp(n+ jd) is odd. If the number of such j is s(p), then∑

0≤j<k

log aj ≤
∑
p≤Ck

s(p) log p. (3.2)

We deduce by combining the above estimates that∑
p≤Ck

s(p) log p ≥
∑

0≤j<k

log tj+1.

Ideally, we want appropriate estimates for each side of this inequality to lead to a
contradiction when k is large. Observe that the right side is independent of C. As
a consequence, this approach seemingly is bound to fail when C is large.

We modify the above idea. To understand the modification, it helps to examine
s(p) more closely. The condition gcd(n, d) = 1 in (1.2) implies that s(p) = 0 if p|d.
We observe that otherwise we have

s(p) ≤


1 if k ≤ p ≤ Ck
2 if k/2 ≤ p < k

3 if k/3 ≤ p < k/2
...

...

These bounds on s(p) are in some sense best possible. Although we cannot hope
to do better, what we will show is that, as p varies, if s(p) takes many values near
the upper bound indicated above, then typically aj is considerably larger than tj+1.
In other words, if the values of s(p) are near the upper bounds suggested above,
at least on average, then the lower bound for

∑
0≤j<k log aj given by (3.1) can be

improved.
We elaborate on the details of this idea next. We no longer restrict d to being

2. Our main improvement is based on the following lemma.

Lemma 3.1. Let k be a sufficiently large integer. Fix positive real numbers α and
β, possibly depending on k, with β < 1. Let

A = [1, αk] ∩ {a0, a1, . . . , ak−1} and J = [βk, k).

Then there are at most ⌊
α

β

⌋2⌊2
√

2α+ β

β

⌋
·
⌊

4dα+ β2

β2

⌋
different primes p in J with the property that p|a for two or more different a ∈ A.

Proof. We only consider α < k1/2 since the result is trivial for larger (and some-
what smaller) values of α. Observe that if p ∈ J and p|a for some a ∈ A, then

1 ≤ a

p
≤ αk

βk
= α/β.
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As a/p is also an integer, there are ≤ α/β possibilities for a/p. Suppose that p and
q are primes in J such that

ai
p

=
au
q

and
aj
p

=
av
q
, (3.3)

where

ai, aj , au, av ∈ A, p|ai, p|aj , q|au, q|av.

Since aix2
i ≥ n and ai ≤ αk, we have that xi ≥

√
n/(αk). On the other hand,

aix
2
i ≤ n + (k − 1)d ≤ 2n and p|ai so that xi ≤

√
2n/p ≤

√
2n/(βk). Similar

arguments hold for bounding xj , xu and xv. Hence,√
n/(αk) ≤ xi, xj , xu, xv ≤

√
2n/(βk). (3.4)

Observe that ∣∣(ai/p)x2
i − (aj/p)x2

j

∣∣ ≤ (k − 1)d/p ≤ d/β∣∣(au/q)x2
u − (av/q)x2

v

∣∣ ≤ (k − 1)d/q ≤ d/β.

Setting

X = x2
v

(
(ai/p)x2

i − (aj/p)x2
j

)
− x2

j

(
(au/q)x2

u − (av/q)x2
v

)
,

we see that

|X| ≤
d(x2

j + x2
v)

β
≤ 4dn
β2k

.

From (3.3), we also have

|X| = ai
p

∣∣x2
ix

2
v − x2

jx
2
u

∣∣ ≥ ∣∣xixv + xjxu
∣∣∣∣xixv − xjxu∣∣ ≥ 2n

αk

∣∣xixv − xjxu∣∣.
Therefore, ∣∣xixv − xjxu∣∣ ≤ 2dα

β2
. (3.5)

For the moment, view p, xi and xj as fixed. We bound the number of distinct
pairs (xu, xv) satisfying (3.4) and (3.5). Observe that if δ = gcd(xi, xj), then aix

2
i

and ajx2
j are both divisible by pδ2. Two multiples of pδ2 in the arithmetic progres-

sion n + jd with difference d must differ by at least pδ2d ≥ βkδ2d. On the other
hand, aix2

i and ajx2
j differ by at most (k−1)d. Hence, δ ≤ 1/

√
β. For a fixed integer

t ∈ [−2dα/β2, 2dα/β2], if xixv − xjxu = t, then the integer pairs (x, y) satisfying
xix− xjy = t are given by

x = xv +
xjs

δ
, y = xu +

xis

δ
, where s ∈ Z.

Due to (3.4), we are interested in the case that

xj
δ
≥
√
n/(αk)
1/
√
β

=
√
βn√
αk

and
∣∣∣∣xv +

xjs

δ

∣∣∣∣ ≤ √2n√
βk
.
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We deduce that there can be at most

2
√

2n√
βk
×
√
αk√
βn

+ 1 =
(
2
√

2α/β
)

+ 1

different values of s. Hence, we have
(
2
√

2α/β
)

+ 1 as an upper bound on the
number of possibilities for xu and xv satisfying (3.4) and xixv−xjxu = t for a fixed
t ∈ [−2dα/β2, 2dα/β2]. Letting t vary, we get the upper bound

B =
⌊

2
√

2α+ β

β

⌋
·
⌊

4dα+ β2

β2

⌋
on the total number of distinct pairs (xu, xv) that can satisfy (3.4) and (3.5). This
includes the solution xu = xi and xv = xj .

Set

N =
⌊
α

β

⌋2⌊2
√

2α+ β

β

⌋
·
⌊

4dα+ β2

β2

⌋
+ 1.

Observe that if we consider ≥ N pairs (u, v) of positive integers with each of u and
v being ≤ α/β, then the pigeon-hole principle implies that there must be some pair
that occurs > B times. Assume that there are ≥ N different primes p in J with the
property that p|aip and p|ajp for distinct aip , ajp ∈ A. Then some pair (aip/p, ajp/p)
occurs for > B primes. Let P be such a set of primes in J so that, in particular,

|P| > B. (3.6)

For p ∈ P, let xip and xjp be as before so that aipx
2
ip

and ajpx
2
jp

are among the
numbers n, n+ d, . . . , n+ (k − 1)d. Thus, if q is in P, then we have that

aip
p

=
aiq
q
,

ajp
p

=
ajq
q
,
∣∣xipxjq − xjpxiq ∣∣ ≤ 2dα

β2

and, furthermore, that there are ≤ B distinct possibilities for the pair (xiq , xjq ).
From (3.6), we deduce that some pair (xiq , xjq ) is repeated. Recalling that α < k1/2,
we obtain a contradiction to Corollary 2.3. Hence, the proof is complete.

4. Proof of Theorem 1.1

We will make use of the following result.

Lemma 4.1. Let sj denote the jth squarefree positive integer. There is an m0 such
that if m is an integer ≥ m0, then

m∏
j=1

sj ≥ (1.6)mm!. (4.1)

We note that the above result is an easy consequence of the fact that the square-
free integers have asymptotic density 6/π2. The reader can consult [9] for details.
For the approach below, we can also manage with the weaker and trivial estimate
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sj ≥ j instead of Lemma 4.1. Presumably, Lemma 4.1 will, however, help in obtain-
ing effective results for specific C.

Recall that we need only consider k sufficiently large. For such a k, we set
α = k0.12 and β = e−33C in Lemma 3.1. Let U be the set of j ∈ {0, 1, . . . , k− 1} for
which aj ≤ αk, and let W be the set of j ∈ {0, 1, . . . , k − 1} for which aj > αk. In
particular, we have

|U |+ |W | = k.

It suffices to consider k large and, in particular, k ≥ 2m0. We set

m = k −
⌊

30Ck
log k

⌋
in Lemma 4.1. We use that either (i) |U | > m or (ii) |U | ≤ m. In the case of (i), we
have ∏

j∈U
aj ≥

m∏
j=1

sj ≥ (1.6)mm!.

We use the simple inequality m! ≥ mm/em which follows by observing em =∑∞
j=0m

j/j! ≥ mm/m!. Thus, still in the case of (i), we deduce

∑
j∈U

log aj ≥
m∑
j=1

log sj ≥ m log(k/2) +m
(

log(1.6)− 1
)

≥ m log k +m
(

log(1.6)− 1− log 2
)
≥ k log k − (30C + 1.23)k.

Observe that primes ≥ k can divide at most one aj . Hence, Lemma 3.1 implies that
there is a constant C ′ depending on C and d such that for all but ≤ C ′α3.5 ≤ C ′k0.5

primes p ∈ [βk,Ck], there is at most one j ∈ U such that p|aj . For each of the
≤ C ′k0.5 primes p ∈ [βk,Ck] for which there is more than one j ∈ U such that p|aj ,
we use that there are at most⌊

k

p

⌋
+ 1 ≤

⌊
k

βk

⌋
+ 1 ≤ 1

β
+ 1

such j. Observe also that such p are necessarily ≤ k so that log p ≤ log k for such p.
For each p < βk, we simply use the upper bound bk/pc+ 1 on the number of j ∈ U
for which p|aj . We obtain∑

j∈U
log aj ≤

∑
p≤Ck

log p+
C ′k0.5

β
log k +

∑
p≤βk

k log p
p

.

It is not difficult to estimate these sums, but we note that one can appeal to The-
orem 4 and Theorem 6 of [14] which give∑

p≤x

log p < x+
x

2 log x
for all x > 1
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and ∑
p≤x

log p
p

< log x+ E +
1

2 log x
for all x ≥ 319,

where E = −1.33258 . . . is a constant. Since k is sufficiently large, we easily deduce
that ∑

j∈U
log aj ≤ k log k + (1.5C + log β)k = k log k − 31.5Ck.

This contradicts the lower bound we had for the sum; hence, we are done in the
case of (i).

Suppose now that (ii) holds. Then we must have |W | ≥
⌊
30Ck/ log k

⌋
. Since all

of the prime divisors of each aj are ≤ Ck and the aj are squarefree, we deduce

k−1∑
j=0

log aj ≤
∑
p≤Ck

(⌊
k

p

⌋
+ 1
)

log p ≤ k
∑
p≤k

log p
p

+
∑
p≤Ck

log p ≤ k log k + 2Ck,

where again we can appeal to the estimates indicated above from Theorem 4 and
Theorem 6 of [14]. On the other hand,

k−1∑
j=0

log aj =
∑
j∈U

log aj +
∑
j∈W

log aj ≥
|U |∑
j=1

log sj + |W | log(αk).

Since |U | ≤ k, in the last sum each sj is easily ≤ 2k. On the other hand, αk =
k1.12 > 2k. As |U |+|W | = k, we can find a lower bound for the right-hand expression
above by setting

|U | = k −
⌊

30Ck
log k

⌋
= m and |W | =

⌊
30Ck
log k

⌋
.

We deduce

k−1∑
j=0

log aj ≥
m∑
j=1

log sj +
⌊

30Ck
log k

⌋
log
(
k1.12

)
.

Appealing to the earlier estimate for this last sum, we deduce

k−1∑
j=0

log aj ≥ k log k − (30C + 1.23)k + 33.6Ck − 1.12 log k ≥ k log k + 2.3Ck.

Thus, in this case, we also obtain a contradiction.
Summarizing, we deduce that if k is sufficiently large, then there are no solutions

to (1.1) and (1.2). As we have seen, this implies the result stated in the theorem.
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