
May 14, 2013 11:13 WSPC/INSTRUCTION FILE DFVpaperRevisionSub-
mitted

International Journal of Number Theory
c© World Scientific Publishing Company

The non-cyclotomic part of f(x)xn + g(x) and roots of reciprocal
polynomials off the unit circle

E. Dobrowolski

Department of Mathematics and Statistics,

University of Northern British Columbia,
Prince George BC V2N 4Z9, Canada

dobrowolski@cnc.bc.ca

M. Filaseta∗

Department of Mathematics, University of South Carolina,

Columbia, SC 29208, U.S.A.

filaseta@math.sc.edu

A. F. Vincent

Department of Mathematics, University of South Carolina,

Columbia, SC 29208, U.S.A.

vincenta@email.sc.edu

Given relatively prime polynomials f(x) and g(x) in Z[x] with non-zero constant terms,

we show that for n greater than an explicitly determined bound depending on f(x) and
g(x), if the polynomial f(x)xn + g(x) is non-reciprocal, then its non-cyclotomic part is

irreducible except for some explicit cases where a known factorization of f(x)xn + g(x)

can easily be described. Prior work of a similar nature is discussed which shows under
similar circumstances the non-reciprocal part of f(x)xn +g(x) is irreducible. The current

paper establishes and makes use of a result which shows that a reciprocal polynomial
f(x) with a root off the unit circle must have a root bounded away from the unit circle
by an explicitly given function of the degree of f(x), the leading coefficient a of f(x) and

the discriminant of f(x). Notably in this result, a need not be 1.
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1. Introduction

For a non-zero f(x) ∈ R[x], we define f̃(x) = xdeg ff(1/x). The polynomial f̃(x) is
called the reciprocal of f(x). The constant term of f̃(x) is the leading coefficient of
f(x) and, hence, non-zero. If α 6= 0 is a root of f(x), then 1/α is a root of f̃(x). If
f(x) = ±f̃(x), then necessarily each root of f(x) is non-zero. Thus, f(x) = ±f̃(x)
implies that α is a root of f(x) if and only if 1/α is a root of f(x). We call such
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an f(x) reciprocal. If f(x) is not reciprocal, we say that f(x) is non-reciprocal.
The content of a non-zero polynomial f(x) ∈ Z[x] is the greatest common divisor
of its coefficients. For f(x) ∈ Z[x], we are interested in the polynomial obtained
by removing the content of f(x) and those reciprocal factors of f(x) in Z[x] that
are irreducible over the rationals and that have content 1 and positive leading
coefficient. We refer to what remains as the non-reciprocal part of f(x). For example,
the non-reciprocal part of 3(−x + 1)x(x2 + 2) is −x(x2 + 2) (the content 3 and
the irreducible reciprocal factor x − 1 have been removed from the polynomial
3(−x+1)x(x2 +2)). We similarly refer to the non-cyclotomic part of an f(x) ∈ Z[x]
as the polynomial f(x) removed of its cyclotomic factors. For

f(x) =
r∑
j=0

ajx
j = ar

∏
1≤j≤r

(x− αj) ∈ R[x],

we recall that the Mahler measure of f(x) is given by

M(f) = |ar|
∏

1≤j≤r
|αj |>1

|αj |.

Furthermore, the Euclidean norm of f(x) is defined by

‖f‖ =

√√√√ r∑
j=0

a2
j .

Finally, for two polynomials f(x) and g(x) in Z[x], we use the notation
gcdZ(f(x), g(x)) to denote the polynomial h(x) ∈ Z[x] with largest degree and
largest leading coefficient that divides both f(x) and g(x) in Z[x]. In particular,
gcdZ(f(x), g(x)) = 1 implies that the content of f(x) and the content of g(x) are
relatively prime.

Based on early work by Schinzel [10,11], which in particular connected the study
of polynomials of the form xn + g(x) to a problem of P. Turán and a problem on
covering systems of the integers (see also [4]), one can find an explicit B1 = B1(f, g)
such that, for n ≥ B1, the non-reciprocal part of the polynomial f(x)xn + g(x) is
either irreducible or ±1 provided f(x)xn + g(x) itself does not factor in a precisely
given way (see (i) and (ii) and the examples after Theorem 1.1 below). Motivated
to strengthen what can be said in this direction, Ford, Konyagin, and the second
author [5] obtained the following explicit estimate.

Theorem 1.1. Let f(x) and g(x) be in Z[x] with f(0) 6= 0, g(0) 6= 0, and
gcdZ(f(x), g(x)) = 1. Let r1 and r2 denote the number of non-zero terms in f(x)
and g(x), respectively. If

n ≥ B1 := max
{

2× 52N−1, 2 max
{

deg f, deg g
}(

5N−1 +
1
4

)}
where

N = 2 ‖f‖2 + 2 ‖g‖2 + 2r1 + 2r2 − 7,
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then the non-reciprocal part of f(x)xn + g(x) is irreducible or identically 1 or −1
unless one of the following holds:

(i) The polynomial −f(x)g(x) is a pth power for some prime p dividing n.
(ii) For either ε = 1 or ε = −1, one of εf(x) or εg(x) is a 4th power, the other

is 4 times a 4th power, and n is divisible by 4.

The conditions (i) and (ii) above are necessary. We illustrate this necessity with
two examples. In each example, m denotes a positive integer. For n = 6m, we have

(x+ 5)3xn − 8 = ((x+ 5)x2m − 2)((x+ 5)2x4m + 2(x+ 5)x2m + 4),

giving an example illustrating (i). For an example illustrating (ii), we take n = 4m
and note that

4xn+ 81(x+1)4 = (2x2m+ 6(x+1)xm+ 9(x+1)2)(2x2m− 6(x+1)xm+ 9(x+1)2).

The same work of Schinzel in [10,11] more specifically addresses, in the case
that f(x) = 1, the existence of a B2 = B2(f, g) such that n ≥ B2 implies that
the non-cyclotomic part of the polynomial f(x)xn + g(x) is either irreducible or ±1
when (i) and (ii) of Theorem 1.1 do not hold. An explicit estimate for such a B2 is
not given there. On the other hand, the work by Schinzel in [12] (as a consequence
of Theorem 3) or [13] (as a consequence of Theorem 4) would allow for one to
obtain such an explicit value of B2(f, g) for general f(x) and g(x) in Z[x] when
f(x)xn + g(x) is non-reciprocal. Note that for n > max{deg f, deg g}, the condition
that f(x)xn + g(x) is non-reciprocal is equivalent to g(x) 6= ±f̃(x). To elaborate on
how the material from [12] can be used for this problem, we include an argument
in Appendix A that gives a bound associated with Corollary 1.3 below.

One goal of ours is to supply an explicit estimate for B2 = B2(f, g). We will
also require here the condition g(x) 6= ±f̃(x) mentioned above. In this direction,
we show the following.

Theorem 1.2. Let f(x) and g(x) be in Z[x] with f(0) 6= 0, g(0) 6= 0,
gcdZ(f(x), g(x)) = 1 and g(x) 6= ±f̃(x). Let b = gcd

(
f̃(0), g(0)

)
. Define

m1 =
√
‖f‖2 + ‖g‖2

and

m2 = max{deg f + 2 deg g, 2 deg f + deg g, 2}.

If

n > B2 := max
{

22m3
2−2m2

2+m2m
m2

2+m2
2 m

2m2
2

1 + deg g,

logm1

log 2
(deg g + 2m2) bm2−12m2−1(m2 − 1)(m2−1)/2ω

}
where ω = 1.216134 . . . denotes the positive real root of 64x3− 64x2− 16x− 1, then
every irreducible reciprocal divisor of f(x)xn + g(x) with positive leading coefficient
is cyclotomic.
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As an immediate consequence of Theorem 1.1 and Theorem 1.2, we have the
following.

Corollary 1.3. Let f(x) and g(x) be in Z[x] with f(0) 6= 0, g(0) 6= 0,
gcdZ(f(x), g(x)) = 1 and g(x) 6= ±f̃(x). In the notation of Theorem 1.1 and 1.2,
we have that if

n > max{B1, B2},

then the non-cyclotomic part of f(x)xn + g(x) is irreducible or identically 1 or −1
unless either (i) or (ii) holds.

In order to obtain Theorem 1.2, we will want information about roots near the
unit circle, reminiscent of prior work on the subject such as that of P. E. Blanksby
and H. L. Montgomery [1], C. J. Smyth [15] and the first author [3]. Specifically,
we want an estimate for the maximum absolute value of a root of f(x) ∈ Z[x] when
f(x) is reciprocal and contains a root off the unit circle. What sets this apart from
the work cited above is that we are interested in the case that f(x) is not necessarily
monic. As the example 2x2 +x+2 shows, it is possible for f(x) to be non-monic, to
be non-cyclotomic and to have all its roots on the unit circle. So the condition that
f(x) has at least one root off the unit circle is of significance here. We will show the
following.

Theorem 1.4. Let f(x) ∈ Z[x] be an irreducible reciprocal polynomial with leading
coefficient a and roots α1, . . . , αd. If f(x) has a root off the unit circle, then

max
1≤j≤d

{|αj |} ≥ min

{
1 +

1
2d−1ω

, 1 +

√
|∆(f)|

|a|d−12d−1(d− 1)(d−1)/2ω

}
where ∆(f) is the discriminant of f(x) and ω is as in Theorem 1.2.

Since |∆(f)| is greater than the minimum absolute value of a discriminant of
a field of degree d over Q, then for sufficiently large d, we note that one can use
lower bounds for this minimum obtained by Odlyzko and others (cf. [9]) to rewrite
the lower bound in Theorem 1.4 in terms of the leading coefficient of f(x) and the
number of real and complex conjugate roots of f(x).

2. Proof of Theorem 1.4

For the proof of Theorem 1.4, we begin by observing that the conditions in the
theorem that f(x) is reciprocal and that a root of f(x) exists off the unit circle
imply that the degree d of f(x) is greater than 1. Since a reciprocal polynomial
of odd degree has 1 or −1 as a root, the condition that f(x) is irreducible implies
further that d is even. We suppose as we may that a, the leading coefficient of f(x),
is positive. The discriminant of f(x) is given by

∆(f) = a2(d−1)
∏

1≤u<v≤d

(αu − αv)2.
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Since f(x) is reciprocal, the product of its roots has absolute value 1 (that the
product of the roots of f(x) equals 1 is also true but slightly harder to see and not
needed here). Thus,∣∣∣∣ ∏

1≤u<v≤d

(αu − αv)2
∣∣∣∣ =

∣∣∣∣∣(α1 · · ·αd)d−1
∏

1≤u≤d
1≤v≤d
u 6=v

(1− α−1
u αv)

∣∣∣∣∣
=

∣∣∣∣∣ ∏
1≤u≤d
1≤v≤d
u 6=v

(1− α−1
u αv)

∣∣∣∣∣.
(2.1)

We use again that f(x) is reciprocal, observing that if reiθ is a root of f(x), then
so is the conjugate of its inverse, namely (1/r)eiθ. Since also f(x) is irreducible,
we deduce that for each u ∈ {1, 2, . . . , d}, there is a unique w(u) ∈ {1, 2, . . . , d} for
which αw(u) = 1/αu. Furthermore, if |αu| 6= 1, then we have w(u) 6= u, w(w(u)) = u

and exactly one of |αu| > 1 and |αw(u)| > 1 holds. In this case, we also have

(1− α−1
u αw(u))(1− α−1

w(u)αu) = 2− |αu|2 − |αw(u)|2

= (1− |αu|2)(1− |αw(u)|2)

= (1− |αu|2)(1− |αu|−2).

Therefore, the right-hand side of (2.1) can be written as∣∣∣∣∣ ∏
1≤u≤d
w(u) 6=u

(1−α−1
u αw(u))

∣∣∣∣∣ ·
∣∣∣∣∣ ∏

1≤u≤d
1≤v≤d

v 6∈{u,w(u)}

(1− α−1
u αv)

∣∣∣∣∣
=

∣∣∣∣∣ ∏
1≤u≤d
|αu|>1

(1− |αu|2)(1− |αu|−2)

∣∣∣∣∣ ·
∣∣∣∣∣ ∏

1≤u≤d
1≤v≤d

v 6∈{u,w(u)}

(1− α−1
u αv)

∣∣∣∣∣.
Let k denote the number of roots αu satisfying |αu| > 1. By relabeling if needed,

we take these k roots to be α1, α2, . . . , αk. Noting that there are then exactly k

roots αu satisfying |αu| < 1, we relabel if need be to take these k roots to be
αd, αd−1, . . . , αd−k+1. For 1 ≤ u ≤ k, we define εu by |αu| = 1 + εu. In particular,
each εu > 0. Note also that, by the conditions in the theorem, k ≥ 1. To obtain our
result, we suppose as we may that εu < 1 for 1 ≤ u ≤ k. We deduce then that∣∣(1− (1 + εu)2)(1− (1 + εu)−2)

∣∣ ≤ 4 ε2u for 1 ≤ u ≤ k.

Thus,∣∣∣∣∣ ∏
1≤u≤d
|αu|>1

(1− |αu|2)(1− |αu|−2)

∣∣∣∣∣ =

∣∣∣∣∣
k∏
u=1

(1− |αu|2)(1− |αu|−2)

∣∣∣∣∣ ≤ 4k(ε1 · · · εk)2.
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We use again that the product of the roots of f(x) has absolute value 1, and note
that |αuαw(u)| = 1. Hence,∣∣∣∣∣ ∏

1≤u≤d
1≤v≤d

v 6∈{u,w(u)}

(1− α−1
u αv)

∣∣∣∣∣ =

∣∣∣∣∣ ∏
1≤u≤d
1≤v≤d

v 6∈{u,w(u)}

(αu − αv)

∣∣∣∣∣ = P1 · P2,

where

P1 =

∣∣∣∣∣ ∏
1≤u≤d−k
1≤v≤d−k
v 6=u

(αu − αv)

∣∣∣∣∣ and P2 =

∣∣∣∣∣ ∏
1≤u≤d
1≤v≤d

v 6∈{u,w(u)}
max{u,v}>d−k

(αu − αv)

∣∣∣∣∣.

Observe that the product in P1 is restricted to αu and αv both having absolute
value ≥ 1 and the product in P2 is restricted to αu and αv with at least one having
absolute value < 1. We find an upper bound for each of P1 and P2.

The value of P1 can be interpreted as the square of the determinant of the
(d− k)× (d− k) Vandermonde matrix

1 α1 α2
1 . . . αd−k−1

1

1 α2 α2
2 . . . αd−k−1

2

1 α3 α2
3 . . . αd−k−1

3
...

...
...

. . .
...

1 αd−k α2
d−k . . . α

d−k−1
d−k

 .

By applying Hadamard’s inequality, we obtain

P1 ≤ (d− k)d−kM0(f)2(d−k−1),

where M0(f) = M(f)/|a|.
In P2, we consider first the factors αu−αv with u > d−k. For a fixed αu, there

are d− 2 possibilities for αv since v 6∈ {u,w(u)}. Thus, there are a total of k(d− 2)
factors of the form αu − αv with u > d− k. Similarly, there are a total of k(d− 2)
factors of the form αu − αv with v > d − k. Together, this gives 2k(d − 2) factors
of the form αu − αv, but the ones with both u > d − k and v > d − k have been
counted twice. There are k(k − 1) such factors counted twice, so the product in P2

consists of exactly 2k(d− 2)− k(k − 1) factors αu − αv. Observe that if u ≤ k in a
factor αu−αv, then v > d−k and v 6= w(u); similarly, if v ≤ k, then u > d−k and
u 6= w(v). Thus, each j ≤ k appears as a u or v in exactly 2(k− 1) factors αu−αv.
Bounding |αu − αv| by 2 max{|αu|, |αv|} in P2, we deduce

P2 ≤
( k∏
j=1

(2|αj |)
)2(k−1)

22k(d−2)−k(k−1)−2k(k−1) = 22kd−k2−3kM0(f)2(k−1).

Combining the above, we now obtain that

|∆(f)| ≤ a2(d−1)(ε1 · · · εk)222kd−k2−k(d− k)d−kM0(f)2(d−2).
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Hence,

ε1 · · · εk ≥
√
|∆(f)|

ad−12(d− k+1
2 )k(d− k)(d−k)/2M0(f)d−2

.

Now, if

x1 · · ·xk = B,

where B is fixed and each xj > 0, then

(1 + x1) · · · (1 + xk) ≥ (1 +B1/k)k. (2.2)

There are a variety of approaches to verifying the above inequality; we simply note
here that (2.2) is a consequence of a classical inequality of Maclaurin (see Theorem
52 of [7]). From (2.2), we deduce

M0(f) = (1 + ε1) · · · (1 + εk)

≥

1 +

( √
|∆(f)|

ad−12(d− k+1
2 )k(d− k)(d−k)/2M0(f)d−2

)1/k
k

.

Let α = max1≤u≤d{|αu|}. Since f(x) has exactly k roots outside the unit circle we
have αk ≥M0(f). Hence,

α ≥ 1 +

( √
|∆(f)|

ad−12(d− k+1
2 )k(d− k)(d−k)/2αk(d−2)

)1/k

≥ 1 +

( √
|∆(f)|

ad−1(d− k)(d−k)/2

)1/k
1

2d−1αd−2
.

We set X =
√
|∆(f)|/(ad−1(d − k)(d−k)/2), and consider separately the case that

X ≥ 1 and X < 1. In the latter case, we observe that X1/k is minimized when
k = 1. Thus, we deduce

α ≥ min

{
1 +

1
2d−1αd−2

, 1 +

√
|∆(f)|

ad−12d−1(d− 1)(d−1)/2αd−2

}
. (2.3)

To complete the proof we show that we can replace αd−2 in the denominators
above with ω, where ω is as stated in Theorem 1.2. To do this, we set γd to be the
positive real root of xd−1 − xd−2 − (1/2d−1). Then γd > 1, and we get

1
(γd − 1)2d−1

= γd−2
d ≥ 1.

Thus,

γd ≤ 1 +
1

2d−1
.
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For d ≥ 6, one checks that (d− 2)/2d−1 ≤ 1/8. Since (1 + (1/x))x < e for all x > 0,
we deduce that, for d ≥ 6, we have

γd−2
d ≤

(
1 +

1
2d−1

)d−2

=
((

1 +
1

2d−1

)2d−1)(d−2)/2d−1

< e1/8 < 1.2. (2.4)

Recall d is even. We claim that

γd−2
d ≤ γ2

4 = ω.

The equality above is an exercise in arithmetic. As ω > 1.2 and (2.4) holds for
d ≥ 6, the inequality above is verified by simply considering d = 2 and d = 4, both
of which clearly are satisfied.

Now, we consider two possibilities αd−2 ≤ ω and αd−2 > ω. In the case that
αd−2 ≤ ω, the theorem follows as the bound in (2.3) is decreased by replacing αd−2

with ω. Suppose now that αd−2 > ω. Then d 6= 2 and

α > exp
(

logω
d− 2

)
> 1 +

logω
d− 2

.

For d ≥ 6, one checks that

logω
d− 2

>
1

2d−1ω
,

so that the theorem follows for such d. Recall that ω = γ2
4 . Thus, for d = 4, we use

that α2 > ω and the definition of γ4 to obtain

α > ω1/2 = γ4 = 1 +
1

23γ2
4

= 1 +
1

2d−1ω
,

and again the theorem follows. Thus, Theorem 1.4 holds for all d.

3. Proof of Theorem 1.2

In what follows, let P (x) = Pn(x) = f(x)xn + g(x), where f(x) and g(x) are as in
the statement of Theorem 1.2. We suppose, as we may, that n > deg g. In particular,
this implies m1 = ‖P‖. We make use of the following two preliminary results found
in [6, Lemma 1 and Lemma 3].

Lemma 3.1. Suppose h(x) is irreducible and has a root with absolute value < 1.
If h(x) | P (x) and h(x) - g(x), then

n ≤ C(deg g + 2 deg h)

where C = logm1/ log(M(h)/|h(0)|).

Lemma 3.2. Suppose the roots of h(x) are distinct and all have absolute value ≥ 1.
Suppose further that no root of h(x) is a root of unity. Let d = deg h. If h(x) | P (x)
and h(x) - g(x), then

n ≤ 2ddd
2+dm2d

1 ‖h‖2d
2−2d + deg g.
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Note that any irreducible reciprocal divisor of P (x) must divide the reciprocal
of P (x), which is

g̃(x)xn+deg f−deg g + f̃(x).

Hence, any irreducible reciprocal divisor of P (x) divides

A(x) = (g̃(x)xn+deg f−deg g + f̃(x))f(x)xdeg g − (f(x)xn + g(x))g̃(x)xdeg f

= f(x)f̃(x)xdeg g − g(x)g̃(x)xdeg f .

The conditions f(0) 6= 0, g(0) 6= 0, g(x) 6= ±f̃(x) and gcdZ(f(x), g(x)) = 1 imply
that A(x) 6= 0. Thus, any irreducible reciprocal factor of P (x) has degree less than
or equal to m2.

Suppose now that h(x) is an irreducible reciprocal non-cyclotomic factor of P (x)
with a positive leading coefficient. Note that the condition gcdZ(f(x), g(x)) = 1
implies that the content of h(x) is 1. From the analysis above, h(x)|A(x) so that
deg h ≤ m2. Let a denote the leading coefficient of h(x). Since h(x) is reciprocal, the
constant term of h(x) is ±a. Since h(x) divides P (x), we deduce that a divides the
leading coefficient and the constant term of P (x). Since f̃(0) is the leading coefficient
of f(x) and g(0) is the constant term of g(x), we deduce a|f̃(0) and a|g(0). Thus,
a ≤ b = gcd

(
f̃(0), g(0)

)
. We also note that since g(0) 6= 0 and gcd(f(x), g(x)) = 1,

we have that h(x) - g(x).
We first consider the case that h(x) has a root off the unit circle. Since h(x) is

reciprocal, it must then have a root with absolute value > 1, a root with absolute
value < 1, and a leading coefficient equal to ±h(0). Setting d = deg h and denoting
the roots of h(x) by α1, . . . , αd, we see that

M(h)
|h(0)|

=
∏

1≤j≤d
|αj |>1

|αj | ≥ max
1≤j≤d

{|αj |}.

Thus, Lemma 3.1 implies

n ≤ C(deg g + 2d),

where

C =
logm1

log(M(h)/|h(0)|)
≤ logm1

log
(

max
1≤j≤d

{|αj |}
) .

We apply Theorem 1.4 to obtain

C ≤ logm1

/
log

(
min

{
1 +

1
2d−1ω

, 1 +

√
|∆(h)|

ad−12d−1(d− 1)(d−1)/2ω

})
.

The graph of y = log(1+x) lies above y = (log 2)x for 0 < x < 1 so that log(1+x) ≥
(log 2)x for 0 ≤ x ≤ 1. Also,

√
|∆(h)| ≥ 1. Thus, we can deduce from the estimate

above that

C ≤ logm1

log 2
ad−12d−1(d− 1)(d−1)/2ω.
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This establishes that n is at most
logm1

log 2
(deg g + 2d) ad−12d−1(d− 1)(d−1)/2ω.

In the case that all roots of h(x) are on the unit circle, we make use of an
inequality of M. Mignotte [8] to deduce

‖h‖ ≤ 2d‖f(x)xn + g(x)‖ = 2dm1.

From Lemma 3.2, we obtain

n ≤ 2ddd
2+dm2d

1 ‖h‖2d
2−2d + deg g

≤ 2ddd
2+dm2d

1 22d3−2d2m2d2−2d
1 + deg g

≤ 22d3−2d2+ddd
2+dm2d2

1 + deg g.

Recalling that a ≤ b and d ≤ m2, Theorem 1.2 follows.

Acknowledgment: The authors thank the referee for pointing out the nice appli-
cation of Theorem 3 in [12] as described in the Appendix.
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Appendix A.

Let m1 and m2 be as defined in Theorem 1.2. We show here how Theorem 3 of [12]
can be used to obtain Corollary 1.3 but with the lower bound max{B1, B2} on n

replaced by

exp
(
500m4

1(2m2)2m
2
1+1
)
.

In Theorem 3 of [12], set

F (x1, x2) = f(x1)x2 + g(x1), n1 = 1 and n2 = n.

We make use of the notation in [12]; in particular, see how K, L, J and canon-
ical factorizations are defined there. Recall the conditions f(0) 6= 0, g(0) 6= 0,
gcdZ(f(x), g(x)) = 1 and g(x) 6= ±f̃(x) in Corollary 1.3. We deduce

K F (x1, x2) = LF (x1, x2) = F (x1, x2).

One further checks that, in the notation of [12] (which differs from our own),

‖F‖ = m2
1 and |F |∗ ≤ m2.

Theorem 3 of [12] now implies that there is an r × 2 integral matrix N =
(
aij
)

of
rank r ∈ {1, 2} and an integral vector −→v = 〈v1, vr〉, that is

−→v =

{
〈v1〉 if r = 1,

〈v1, v2〉 if r = 2,

with 〈1, n〉 = −→v N and

max
i,j
{|aij |} ≤

exp
(
9 · 2m2

1−4
)

if r = 2,

exp
(
500m4

1(2m2)2m
2
1+1
)

if r = 1,

such that the canonical factorization

K

(
f

( r∏
j=1

y
aj1
j

) r∏
j=1

y
aj2
j + g

( r∏
j=1

y
aj1
j

))
can= const

s∏
σ=1

Fσ(y1, yr)eσ

implies the single variable canonical factorization

K
(
f(x)xn + g(x)

) can= const
s∏

σ=1

K Fσ(xv1 , xvr )eσ .

If r = 1, then 1 = v1a11 and n = v1a12. We deduce in this case that v1 = ±1 and

n = |a12| ≤ exp
(
500m4

1(2m2)2m
2
1+1
)
.
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It remains to consider the case that r = 2. Let

G(y1, y2) = f(ya11
1 ya21

2 ) ya12
1 ya22

2 + g(ya11
1 ya21

2 ).

We show next that J G is irreducible unless (i) or (ii) of Theorem 1.1 holds. Sup-
pose that the polynomial J G in y1 and y2 is reducible in Q[y1, y2]. We make the
substitution

y1 = xv1y−a21 and y2 = xv2ya11

in G(y1, y2) to obtain

H(x, y) = f(x)xnya11a22−a12a21 + g(x).

Observe that 〈1, n〉 = −→v N implies v1a11 + v2a21 = 1 so that the terms yk1y
`
2 in

G(y1, y2) correspond to different terms xk
′
y`
′

in H(x, y) with

k′ = kv1 + `v2 and `′ = −ka21 + `a11.

Since the definition of J implies J G has no non-constant monomial factors, each
irreducible factor of J G corresponds to a factor of J H with at least two terms.
In particular, the reducibility of J G in Q[y1, y2] implies the reducibility of J H in
Q[x, y].

Since the rank of N is r = 2, we deduce that a11a22 − a12a21 6= 0. Since
gcdZ(f(x), g(x)) = 1 and g(0) 6= 0, we deduce from J H being reducible in Q[x, y]
that J H is reducible as a polynomial in y over the field Q(x) of rational functions
in x. Recalling also that f(0) 6= 0, we deduce from Capelli’s theorem (see [14]) that
either (i) of Theorem 1.1 holds for some prime p dividing a11a22 − a12a21 or (ii) of
Theorem 1.1 holds and 4 divides a11a22 − a12a21.

We consider now the case that r = 2 and J G is irreducible. Hence, KG is
either irreducible or a constant. The application of Theorem 3 of [12] above implies
K
(
f(x)xn + g(x)

)
is either irreducible or a constant. For

n > exp
(
500m4

1(2m2)2m
2
1+1
)
> m2 ≥ deg g,

the terms in f(x)xn and g(x) have different degrees so that the condition
gcdZ(f(x), g(x)) = 1 implies that the greatest common divisor of the coefficients
of f(x)xn + g(x) equals 1. We deduce in this case that K

(
f(x)xn + g(x)

)
is either

irreducible or ±1, giving the desired conclusion.


