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1 Introduction

A classical result of Sylvester [21] (see also [16], [17]), generalizing Bertrand’s
Postulate, states that the greatest prime divisor of a product of k consecutive
integers greater than k exceeds k. More recent work in this vein, well surveyed
in [18], has focussed on sharpening Sylvester’s theorem, or upon providing
lower bounds for the number of prime divisors of such a product. As noted
in [18], a basic technique in these arguments is to make a careful distinction
between “small” and “large” primes, and then apply sophisticated results
from multiplicative number theory. Along these lines, if we write(

n

k

)
= U · V, n ≥ 2k,

where U is composed only of primes ≤ k and V only of those exceeding k, then
Ecklund, Eggleton, Erdős and Selfridge [5] deduce the inequality U < V , valid
with at most finitely many exceptions. To prove this, they employ a variety of
combinatorial lemmata, the Prime Number Theorem, and a result of Mahler
[11] from Diophantine approximation. In fact, they obtain something much
more explicit, except in the cases k ∈ {3, 5, 7}, where the appeal to [11]
leads to ineffectivity (rather than a precise list of exceptional pairs (n, k)).
In this situation, we find in [5] a conjecture, described as the “most obvious
outstanding problem” in this area, characterizing the exceptional pairs for
k ∈ {3, 5, 7} (there are believed to be precisely 19). This also appears as
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problem B31 in [9] and is referenced in [6]. In this paper, as a byproduct of
rather more general results (see Section 2), we will prove this conjecture in
two of the three cases:

Theorem 1.1. If k ∈ {5, 7}, n ≥ 2k is an integer, and we write(
n

k

)
= U · V,

where U and V are integers with P (U) ≤ k and V coprime to k!, then it
follows that V > U , unless

(n, k) ∈ {(10, 5), (12, 5), (21, 7), (28, 5), (30, 7), (54, 7)} .
Here, we denote by P (m), the greatest prime factor of an integer m (with

P (±1) = 1). Our approach is based upon careful examination of the case
of two consecutive integers. As far back as 1897, C. Störmer [20] showed
that the largest prime factor of x2 + x tends to infinity with x and gave an
algorithm for finding every x for which x2 +x has all of its prime factors less
than a prescribed bound. D. H. Lehmer [10], improving on this algorithm,
determined explicitly the 869 positive integers x for which the largest prime
factor of x2 + x is ≤ 41. Fixing primes p and q, for x sufficiently large and
for k, l, and y nonnegative integers satisfying

x2 + x = pkqly, (1.1)

it follows from [20] that the value of y is necessarily large. In fact, Mahler [11]
applied a p-adic version of Roth’s theorem from Diophantine approximation
due to Ridout [13] to show that for an arbitrary ε > 0 and x sufficiently large
(depending on p, q and ε), the value of y exceeds x1−ε. Unfortunately, this
result is ineffective in the sense that it is not possible to explicitly quantify the
term “sufficiently large”. The strongest effective analogue of this statement
available to us, in general, is due to Stewart [19], who obtained an estimate
of the shape y � xδ for certain δ = δ(p, q) > 0. This result is based on
careful use of lower bounds for linear forms in logarithms and applies also to
the situation where the right hand side of (1.1) contains an arbitrary fixed
list of primes.

For the purpose of proving Theorem 1.1 and for other applications, how-
ever, we require a result that is valid for larger values of δ than those implicit
in [19], yet still effective (indeed explicit). In this paper, we will deduce such
estimates via the hypergeometric method of Thue and Siegel. We establish,
by way of example, the following :
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Theorem 1.2. Let x be a positive integer not in the set {1, 2, 3, 8}, and
suppose that k, l, and y are nonnegative integers satisfying

x2 + x = 2k3ly.

Then y > x0.285.

The need for a result of this flavour (a very special case of the statements
of our Section 2) was actually the prime motivating force for this paper.
Theorem 1.2 plays a crucial role in work of the last two authors and Travis
Kidd (in preparation) on the irreducibility of L

(m)
m (x), where

L(α)
m (x) =

m∑
j=0

(m+ α)(m− 1 + α) · · · (j + 1 + α)(−x)j

(m− j)!j!

is the generalized Laguerre polynomial. In particular, it helps eliminate the
possibility of L

(m)
m (x) having a quadratic factor for m > 2. This enables one

to show that the polynomial L
(m)
m (x) is irreducible for each integerm > 2 with

m ≡ 2 (mod 4), whence, following the work of I. Schur [16, 17] and R. Gow
[8], there is, for every integer m ≥ 2, a generalized Laguerre polynomial of
degree m having Galois group the alternating group Am.

The layout of this paper is as follows. In Section 2, we provide notation
and statements of our results in full generality. In Section 3, we introduce the
approximating polynomials that will play the key role in our proofs (Padé
approximants to the binomial function). In Section 4, we discuss needed
bounds, archimedean estimates, on values of these approximating polynomi-
als. In Section 5, we obtain nonarchimedean estimates associated with the
polynomials; these correspond to bounds for the greatest common divisor of
the coefficients associated with the approximating polynomials. In Section 6,
we give a computational argument for obtaining all small solutions associ-
ated with the diophantine inequalities in this paper. Sections 7 through 10
are devoted to completing the proofs of the main results in the paper.

Acknowledgments: The authors express their gratitude to Frits Beukers
and Rob Tijdeman for early discussions that aided in their investigations.
They are also grateful to Carrie Finch and Mark Kozek who read through
an early version of the paper and suggested various changes.
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2 The more general theorems

We will deduce Theorems 1.1 and 1.2 as reasonably straightforward conse-
quences of the following result.

Theorem 2.1. Let p, q and λ = λ(p, q) be as follows:

p q λ(p, q) p q λ(p, q)
2 3 0.285 3 11 0.329
2 5 0.258 3 13 0.231
2 7 0.259 5 7 0.227
2 11 0.059 5 11 0.199
2 13 0.054 5 13 0.163
3 5 0.216 7 13 0.098
3 7 0.038 11 13 0.037

If k, l, x1 and x2 are nonnegative integers for which∣∣pkx1 − qlx2

∣∣ ≤ 100, (2.1)

then either pkx1 ≤ 1000, one of (pkx1, q
lx2) and (qlx2, p

kx1) is in the set

{(1024, 972), (1029, 1024), (1215, 1210), (1280, 1215), (1280, 1250),

(1331, 1250), (1372, 1280), (1536, 1458), (1792, 1701), (2058, 2048),

(2197, 2187), (2500, 2401), (2560, 2500), (2673, 2662), (3125, 3072),

(3645, 3584), (4394, 4374), (5120, 5103), (6591, 6561), (6655, 6561),

(7203, 7168), (8019, 7986), (8788, 8748), (10985, 10935), (13182, 13122),

(14406, 14336), (14641, 14580), (15360, 15309), (15379, 15309),

(16038, 15972), (17576, 17496), (19773, 19683), (21970, 21870)

(24057, 23958), (30618, 30613), (32805, 32768), (37268, 37179),

(65610, 65536), (190333, 190269), (1771561, 1771470)},
or

max{x1, x2} > min{pkx1, q
lx2}λ. (2.2)

The reason that we have given these measures to three decimal places is
that it is crucial for our arguments leading to Theorem 1.1 that we have

λ(2, 3) + λ(3, 5) > 1/2.
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To achieve this requires extremely careful analysis and rather extensive com-
putations; the measures for other values of p and q have not been computed
nearly so carefully and hence may be readily sharpened. Note that we have
restricted attention to prime values of p and q. As our proof will reveal, this
is only for simplicity and in light of our desired applications. There is no
intrinsic reason for such a constraint. It is also worth noting that extending
Theorem 1.1 to the case k = 3 is essentially equivalent to sharpening Theo-
rem 2.1, in the case (p, q) = (2, 3), to λ(2, 3) > 1/2. We suspect that proving
such an inequality will require the introduction of fundamentally new ideas.

Theorem 2.1 will in fact follow from more general machinery. In order to
state these results, we beg the reader’s indulgence while we introduce some
notation. Let c > d ≥ 1 be integers and set s = c/d. We define

logL(s) =
1

d

∑
(c+d)/2<j<c+d

r=jd−1 mod (c+d)

(
Ψ

(
f(c, d, r)

)
− Ψ

(
r

c+ d

))
,

where

f(c, d, r) =




1

d

(
1 +

⌊
dr

c+ d

⌋)
if c ≤ j < c+ d

1

c− d

(
1 +

⌊
(c− d)r

c+ d

⌋)
if (c+ d)/2 < j < c.

To clarify, the sum in the definition of logL(s) is over j, Ψ(z) is the derivative
of the logarithm of Γ(z), and r is chosen, in each case, to be the integer in
{0, 1, . . . , c + d − 1} satisfying r ≡ jd−1 (mod (c+ d)). For 0 < z < 1, we
take

u1 =
s(2 − z) −√

s2z2 + 4 − 4z

2(1 − z)(s+ 1)

and

u2 =
sz + 2 −√

s2z2 + 4 − 4z

2z(s+ 1)
.

Writing

α(s) =
(s+ 1)s+1

(s− 1)s−1
,

set
Q(s, z) = α(s)us−1

1 (1 − u1) (1 − u1 + zu1)
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and
E(s, z) = α(s)u2 (1 − u2) (1 − zu2)

s−1.

The choices of u1 and u2 above and their appearance in the definition of
Q(s, z) and E(s, z) are not arbitrary. The function us−1(1 − u)(1 − u + zu)
obtains its maximum for u ∈ [0, 1] at u = u1, while the maximum of the
function u(1 − u)(1 − zu)s−1 for u ∈ [0, 1] occurs at u = u2.

Our main result, at least from an effective, rather than explicit, viewpoint
is the following.

Theorem 2.2. Let p and q be distinct integers. Suppose that there exist
positive integers a, b, k0, l0 and D0 such that

apk0 − bql0 = D0, (2.3)

and write

z0 = D0/(ap
k0), M1 = min{pk0 , ql0} and M2 = max{pk0 , ql0}.

Assume further that there exists a rational number s satisfying 1 < s < 1/z0,

Ω1 :=
pk0(s−1) L(s)

absQ(s, z0)
> 1, (2.4)

and

Ω2 :=
Ms

1 L(s)

(apk0)s−1 D2
0 E(s, z0)

> 1. (2.5)

If D is a positive integer and ε > 0, then there exists an effectively computable
constant x0 = x0(p, q, s,D, ε) such that if x1, x2, k and l are nonnegative
integers satisfying pkx1 ≥ x0 and∣∣pkx1 − qlx2

∣∣ ≤ D, (2.6)

then

max{x1, x2} ≥ (pkx1

)λ1−ε
where λ1 =

log(Ω2)

log(Ms
2 Ω2)

.

As a corollary, we obtain the following effective, inexplicit version of The-
orem 2.1.
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Corollary 2.3. Let p, q and λ2 = λ2(p, q) be as follows :

p q λ2(p, q) p q λ2(p, q)
2 3 0.2921 3 11 0.3453
2 5 0.2679 3 13 0.2372
2 7 0.2757 5 7 0.2667
2 11 0.0698 5 11 0.2091
2 13 0.0798 5 13 0.1838
3 5 0.2238 7 13 0.1243
3 7 0.0505 11 13 0.0729

If D is a positive integer, then there exists an effectively computable constant
x0 = x0(D) such that if x1, x2, k and l are nonnegative integers satisfying

pkx1 ≥ x0 and
∣∣pkx1 − qlx2

∣∣ ≤ D,

then
max{x1, x2} > (pkx1)

λ2 .

We note that we are not asserting that we can always apply Theorem 2.2
to obtain results of this nature for general p and q. Indeed, we are apparently
unable to derive anything of a nontrivial nature when p = 7 and q = 11.

To prove Theorem 2.1, we require a completely explicit version of The-
orem 2.2. To state this, we need some further definitions. If c > d ≥ 1 are
integers, and n = dm− δ for δ ∈ {0, 1}, define

G(c, d, n) = gcd
r∈{0,1,...,n}

((
2n− r

n

)(
cm− n− 1 + r

r

))
. (2.7)

Suppose that we have

G(c, d, n) ≥ L1(s)
dm for m > m0 = m0(c, d, L1(s)). (2.8)

Note that we may trivially take m0 = 0 and L1(s) = 1. In Section 5, we will
see what stronger bounds are possible. Define

C1,δ =
α(s)d (s2 − 1)

(−1)δ/2

2πQ(s, z)d
·
∫ 1

0

uc−d−1+δ(1 − u)d−δ(1 − u+ zu)d−δdu,
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and

C2,δ =
α(s)d (s2 − 1)

(−1)δ/2

2πE(s, z)d
·
∫ 1

0

ud−δ(1 − u)d−δ(1 − zu)c−d−1+δdu.

Also, write

Ω3 =
pk0(s−1) L1(s)

absQ(s, z0)
, Ω4 =

Ms
1 L1(s)

(apk0)s−1 D2
0 E(s, z0)

, λ3 =
log(Ω4)

log(Ms
2 Ω4)

,

κ1 = max
δ∈{0,1}

2DC1,δ

(apk0)δ
, κ2 = min

δ∈{0,1}

(
apk0

)1−δ

2D1−2δ
0 C2,δ

,

and, if ε > 0, set

x0 = M
c(M+1)
1−λ3

2 ,

where

M = max

{
log (κ1)

d log Ω3

,
(1 + λ3) log

(Mc
2 κ

−1
2

)
ε d log (Ms

2 Ω4)
,
(1 + λ3) log(κ2)

ε d log (Ms
2 Ω4)

,m0

}
.

We have

Theorem 2.4. Let p and q be distinct positive integers. Suppose that there
exist positive integers a, b, k0, l0 and D0 such that

apk0 − bql0 = D0, (2.9)

and write

z0 = D0/(ap
k0), M1 = min{pk0 , ql0} and M2 = max{pk0 , ql0}.

Assume further that there exists a rational number s with 1 < s < 1/z0, Ω3 >
1 and Ω4 > 1. Then for all positive integers D, x1 and x2 and nonnegative
integers k and l and for all ε > 0 , if

min{pkx1, q
lx2} ≥ x0 (2.10)

and ∣∣pkx1 − qlx2

∣∣ ≤ D, (2.11)

then
max{x1, x2} ≥ min{pkx1, q

lx1}λ3−ε.
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3 Some useful polynomials

Our results will require careful analysis of Padé approximants to the binomial
function (1 − z)n. In the case that n is a positive integer, these are just
polynomials, which we may construct as follows. Let us suppose that A, B
and C are positive integers and define

PA,B,C(z) =
(A+B + C + 1)!

A!B!C!

∫ 1

0

uA(1 − u)B(z − u)C du, (3.1)

QA,B,C(z) =
(−1)C(A+B + C + 1)!

A!B!C!

∫ 1

0

uB(1 − u)C(1 − u+ zu)A du (3.2)

and

EA,B,C(z) =
(A+B + C + 1)!

A!B!C!

∫ 1

0

uA(1 − u)C(1 − zu)B du. (3.3)

Arguing as in Section 2 of [2], we deduce that

PA,B,C(z) − (1 − z)B+C+1QA,B,C(z) = zA+C+1EA,B,C(z). (3.4)

One may note, by comparison to e.g. Beukers [4], that if A = C, then
PA,B,C(z) and QA,B,C(z) correspond to the diagonal Padé approximants to
(1 − z)B+C+1 with error term EA,B,C(z). The following results are given in
[2] and [4] :

Lemma 3.1. The expressions PA,B,C(z), QA,B,C(z) and EA,B,C(z) satisfy

PA,B,C(z) =
C∑

r=0

(
A+B + C + 1

r

)(
A+ C − r

A

)
(−z)r,

QA,B,C(z) = (−1)C

A∑
r=0

(
A+ C − r

C

)(
B + r

r

)
zr

and

EA,B,C(z) =
B∑

r=0

(
A+ r

r

)(
A+B + C + 1

A+ C + r + 1

)
(−z)r.
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Lemma 3.2. There is a non-zero integer D = D(A,B) for which

PA,B,A(z)QA+1,B−1,A+1(z) −QA,B,A(z)PA+1,B−1,A+1(z) = Dz2A+1.

In particular, Lemma 3.1 implies that PA,B,C(z), QA,B,C(z) and EA,B,C(z)
are polynomials in z with integer coefficients, and Lemma 3.2 implies that
PA,B,A(z) and PA+1,B−1,A+1(z) (as well as QA,B,A(z) and QA+1,B−1,A+1(z)) are
relatively prime polynomials.

4 Bounding the Approximants

For our applications, we will have need of asymptotically sharp bounds for
the polynomials defined in the preceding section, both in archimedean and
nonarchimedean metrics. We take c and d to be relatively prime positive
integers. As in (2.7), we suppose c > d and that n = dm or dm − 1. Write
s = c/d. Here and subsequently, let A = C = n, B = cm− n− 1 and write,
suppressing various dependencies,

Pn(z) = Pn,cm−n−1,n(z), Qn(z) = Qn,cm−n−1,n(z),

and

En(z) = En,cm−n−1,n(z).

Our next result is essentially Lemma 5 of [2] and follows from replacing −1/N
by z, and noting that the argument given there is still valid. We remark that
some variable names have been modified.

Lemma 4.1. If n = dm− δ for δ ∈ {0, 1}, then∣∣Qn(z)
∣∣ < C1,δ

(
Q(s, z)

)dm

and ∣∣En(z)
∣∣ < C2,δ

(
E(s, z)

)dm
.

For fixed values of c, d, z and, hence, s, the values of Q(s, z), E(s, z),
and the integrals appearing in C1,δ and C2,δ of Lemma 4.1 can be computed
exactly. We therefore can use Lemma 4.1 to determine bounds for Qn(z) and
En(z). While we will make no efforts to establish the fact, it is easy to show
that these bounds are asymptotically sharp.
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5 Nonarchimedean estimates

We next turn our attention to nonarchimedean analogues of Lemma 4.1. Our
main goal will be to derive strong lower bounds upon the quantity G(c, d, n)
defined in (2.7). An implicit result of interest to us is the following

lim inf
m→∞

G(c, d, n)1/(dm) ≥ L(s). (5.1)

Here, we assume that n = dm or dm − 1. In fact, with a little work, it
is not difficult to deduce equality here and to replace the lim inf with the
limit (though, for our applications, this is relatively unimportant). To prove
Theorem 2.1, we require more explicit estimates for L1(c/d) for certain fixed
choices of integers c and d; recall that this function provides a lower bound
for G(c, d, n). We will prove the following :

Proposition 5.1. Inequality (2.8) holds for the values of c, d, L1(c/d) and
m0 indicated in the following table.

c d L1(c/d) m0 c d L1(c/d) m0

9 8 1.1742 25 5 3 1.5454 86
8 7 1.1951 28 3 1 1.5498 260
7 6 1.2219 53 25 17 1.5540 582
6 5 1.2581 35 7 4 1.6219 60
5 4 1.3098 50 8 3 1.6560 149
9 7 1.3317 15 9 5 1.6636 79
7 5 1.4135 74 5 2 1.7017 231
4 3 1.4170 153 7 3 1.7282 161
3 2 1.5395 138 9 4 1.7666 87
8 5 1.5407 53 2 1 1.9377 150

Our chief tool in establishing Proposition 5.1 is the following result,
Lemma 3 of [2]. Its form is suggested by the coefficients of the approxi-
mating polynomials.

Lemma 5.2. Suppose t is a positive integer satisfying⌊
At

A+B + C

⌋
+

⌊
Bt

A+B + C

⌋
+

⌊
Ct

A+B + C

⌋
= t− 2 (5.2)

and that we define

M(A,B,C, t) = max

{
A⌊

At
A+B+C

⌋
+ 1

,
B⌊

Bt
A+B+C

⌋
+ 1

,
C⌊

Ct
A+B+C

⌋
+ 1

}
. (5.3)
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If p is a prime for which

M(A,B,C, t) < p ≤ A+B + C

t
,

then

p |
(
A+ C − r

C

)(
B + r

r

)
for all r ∈ {0, 1, . . . , A}.

Recall that our goal is to obtain a lower bound for G(c, d, n). We begin by
noting that the set of primes arising from Lemma 5.2 are disjoint for different
values of t. To see this, observe that (x+ y)/(u+ v) is between x/u and y/v
for any positive real numbers x, y, u and v. Set

d1 =

⌊
At

A+B + C

⌋
+1, d2 =

⌊
Bt

A+B + C

⌋
+1 and d3 =

⌊
Ct

A+B + C

⌋
+1.

Then we have

M(A,B,C, t) = max

{
A

d1

,
B

d2

,
C

d3

}
≥ max

{
A

d1

,
B + C

d2 + d3

}
≥ A+B + C

d1 + d2 + d3

.

From (5.2), we have d1 + d2 + d3 = t+ 1 and hence

M(A,B,C, t) ≥ A+B + C

t+ 1
,

which implies our claim.
From Lemma 5.2, we thus have that

G(c, d, n) ≥
∏

t

(∏
p

p

)
(5.4)

where t ranges over all positive integers satisfying

2

⌊
nt

cm+ n− 1

⌋
+

⌊
(cm− n− 1)t

cm+ n− 1

⌋
= t− 2 (5.5)

and p is prime with

M(A,B,C, t) < p ≤ cm+ n− 1

t
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(where M(A,B,C, t) is as in (5.3), remembering that we take A = C = n
and B = cm − n − 1). With x = nt/(cm + n − 1), we can rewrite (5.5) as
2bxc + bt− 2xc = t− 2. One checks that this is equivalent to{

nt

cm+ n− 1

}
>

1

2
. (5.6)

Suppose that m ≥ 2t and
{
t/(s+1)

}
> 1/2. We justify next that (5.6) holds

so that if m ≥ 2t, then the first product in (5.4) can be taken over all t for
which

{
t/(s+ 1)

}
> 1/2. To see that (5.6) holds, we begin with

nt

cm+ n− 1
>

dt

c+ d
− 1

2(c+ d)
=

t

s+ 1
− 1

2(c+ d)
. (5.7)

This inequality can be easily verified by using m ≥ 2t and dm ≤ n+ 1, and
the equality follows immediately from s = c/d. To establish (5.6) and also to
help simplify our expression for the lower bound on the primes p appearing
in (5.4), we will show⌊

nt

cm+ n− 1

⌋
=

⌊
t

s+ 1

⌋
and

⌊
(cm− n− 1)t

cm+ n− 1

⌋
=

⌊
(s− 1)t

s+ 1

⌋
. (5.8)

Observe that {t/(s+1)} > 1/2 and (5.7) imply bnt/(cm+n−1)c ≥ bt/(s+1)c.
To obtain the reverse inequality and, hence, the first part of (5.8), we use
that {

dt

c+ d

}
=

{
t

s+ 1

}
>

1

2
> 0

implies
dt

c+ d
≤
⌊

dt

c+ d

⌋
+ 1 − 1

c+ d
.

Thus, the first equation in (5.8) will follow if we can show

nt

cm+ n− 1
<

dt

c+ d
+

1

c+ d
.

From n ≤ dm and n ≥ 2dt− 1 ≥ dt, we obtain

nt

cm+ n− 1
≤ t

s+ 1 − 1
n

=
t

s+ 1
+

t

n(s+ 1)
(
s+ 1 − 1

n

)
≤ t

s+ 1
+

1

d(s+ 1)
(
s+ 1 − 1

n

) < dt

c+ d
+

1

c+ d
.
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Hence, the first equation in (5.8) holds. Since the inequality
{
t/(s+1)

}
> 1/2

is strict, we deduce that

t

s+ 1
−
⌊

t

s+ 1

⌋
− 1

2
=

dt

c+ d
−
⌊

t

s+ 1

⌋
− 1

2
≥ 1

2(c+ d)
.

Combining this inequality with (5.7) and the first equation in (5.8), we obtain
(5.6). Since now both {t/(s + 1)} and {nt/(cm + n − 1)} exceed 1/2, the
second equation in (5.8) follows from the first as the second can be rewritten⌊

t− 2nt

cm+ n− 1

⌋
=

⌊
t− 2t

s+ 1

⌋
.

Before proceeding, we make some observations. First, it is not difficult
to modify the above arguments to show that if m > t and 3d > c, then
{t/(s + 1)} > 1/2 still implies {nt/(cm + n − 1)} > 1/2. As the condition
3d > c is satisfied for the choices of c and d we consider, this allows for an
extension on the range of m considered. Also, we note that the conditions
{nt/(cm+n−1)} > 1/2 and {t/(s+1)} > 1/2 are not equivalent, even with
m ≥ 2t. If t ≡ 0 (mod c+d) and n = dm−1, for example, then {t/(s+1)} =
0 but {nt/(cm + n − 1)} > 1/2. Also, if c ≡ d ≡ 1 (mod 2), t ≡ (c + d)/2
(mod c+d) and n = dm, then {t/(s+1)} = 1/2 but {nt/(cm+n−1)} > 1/2.
These issues can help with the computations but did not in the end improve
our theorems, so we do not address these matters further.

Proposition 5.3. Suppose that m and t are positive integers with m ≥ 2t,
and that n = dm or n = dm− 1. Then G(c, d, n) is divisible by all primes p
satisfying

n⌊
t

s+1

⌋
+ 1

< p ≤ cm+ n− 1

t
if

{
t

s+ 1

}
>

s

s+ 1

and

cm− n− 1⌊
(s−1)t
s+1

⌋
+ 1

< p ≤ cm+ n− 1

t
if

1

2
<

{
t

s+ 1

}
<

s

s+ 1
.

In the case that {t/(s+ 1)} = s/(s+ 1), the first or second range on p above
holds depending on whether n = dm or n = dm− 1, respectively.
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Proof. Observe that the condition c > d > 0 that we have imposed on c and
d implies s/(s+ 1) > 1/2. We have that m ≥ 2t and need only consider the
case that

{
t/(s + 1)

}
> 1/2. With A = C = n and B = cm − n − 1, (5.8)

simplifies (5.3) to

M(A,B,C, t) = max

{
n⌊

t
s+1

⌋
+ 1

,
cm− n− 1⌊ (s−1)t

s+1

⌋
+ 1

}
.

To aid with making use of M(A,B,C, t), we show next that if n = dm, then{
t

s+ 1

}
≥ s

s+ 1
=⇒ n⌊

t
s+1

⌋
+ 1

≥ cm− n− 1⌊
(s−1)t
s+1

⌋
+ 1

(5.9)

and

1

2
<

{
t

s+ 1

}
<

s

s+ 1
=⇒ n⌊

t
s+1

⌋
+ 1

<
cm− n− 1⌊

(s−1)t
s+1

⌋
+ 1

. (5.10)

Let k = bt/(s+ 1)c. Since {t/(s+ 1)} > 1/2, we deduce that

n⌊
t

s+1

⌋
+ 1

=
n

k + 1
and

cm− n− 1⌊ (s−1)t
s+1

⌋
+ 1

=
cm− n− 1⌊
t− 2t

s+1

⌋
+ 1

=
cm− n− 1

t− 2k − 1
.

The second inequality in (5.9) is now easily seen to hold if and only if

n(t− 2k − 1) ≥ (cm− n− 1)(k + 1)

which simplifies to
nt+ k + 1 ≥ nk + cmk + cm.

Multiplying through by d and using n = dm, we obtain that the second
inequality in (5.9) is equivalent to

ndt+ dk + d ≥ ndk + cnk + cn. (5.11)

Set η = {t/(s+1)} = {dt/(c+d)}. Now, suppose the first inequality in (5.9)
holds. Then η ≥ s/(s+ 1) = c/(c+ d) so that

dt

c+ d
=

t

s+ 1
= k + η =⇒ dt ≥ k(c+ d) + c.

15



With this lower bound on dt, one easily checks that (5.11) holds and (5.9)
follows. Now, suppose the first set of inequalities in (5.10) holds. We want
to show that the inequality in (5.11) is not true. In this case,

η =

{
dt

c+ d

}
<

s

s+ 1
=

c

c+ d
=⇒ η ≤ c− 1

c+ d
.

Thus,

dt = (k + η)(c+ d) ≤
(
k +

c− 1

c+ d

)
(c+ d) = k(c+ d) + c− 1.

As we want to show (5.11) does not hold, it suffices to establish then that
n > dk + d. Since

n = dm ≥ 2dt > max{d, 2kc+ 2kd} ≥ dk + d,

(5.10) follows.
In the case that n = dm− 1, (5.9) and (5.10) can be replaced by{

t

s+ 1

}
>

s

s+ 1
=⇒ n⌊

t
s+1

⌋
+ 1

>
cm− n− 1⌊

(s−1)t
s+1

⌋
+ 1

(5.12)

and

1

2
<

{
t

s+ 1

}
≤ s

s+ 1
=⇒ n⌊

t
s+1

⌋
+ 1

≤ cm− n− 1⌊ (s−1)t
s+1

⌋
+ 1

. (5.13)

The analysis is similar to the above. With the notation as before, the second
inequality in (5.12) is equivalent to nt + k + 1 > nk + cmk + cm. Since
n = dm− 1, this can be written as

ndt+ dk + d > ndk + cnk + cn+ ck + c.

The first inequality in (5.12) implies

dt = (k + η)(c+ d) ≥ k(c+ d) + c+ 1,

while the first inequality in (5.13) yields

dt = (k + η)(c+ d) ≤ k(c+ d) + c.
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In regards to (5.12), note that

n = dm− 1 ≥ 2dt− 1 = 2(k + η)(c+ d) − 1

≥ (2k + 1)(c+ d) > (k + 1)(c− d).

These are sufficient to justify (5.12) and (5.13). Proposition 5.3 follows.

To understand the contribution of the primes described in Proposition 5.3,
we need to examine the intervals in which they lie rather carefully. Generally,
we are interested in the integers t in the sets

U1 =

{
t :

{
t

s+ 1

}
>

s

s+ 1

}
,

U2 =

{
t :

{
t

s+ 1

}
=

s

s+ 1

}
,

and

U3 =

{
t :

1

2
<

{
t

s+ 1

}
<

s

s+ 1

}
.

Note that t/(s + 1) = dt/(c + d) and s/(s + 1) = c/(c + d). Writing t =
(c+ d)w + r where 0 ≤ r < c+ d, we deduce that t ∈ U1 precisely when r is
of the form jd−1 mod (c+ d) (i.e., the integer in [0, c+ d) that is congruent
to jd−1 modulo c+ d) where c < j < c+ d. Similarly, t ∈ U3 precisely when
r is of the form jd−1 mod (c + d) where (c + d)/2 < j < c. One checks also
that t ∈ U2 precisely when r is of the form jd−1 mod (c + d) where j = c,
which is equivalent to the case that r = c+ d− 1. Setting

W =

⌊
m

2(c+ d)

⌋
− 1,

we deduce from Proposition 5.3 that

log G(c, d, dm) ≥
W∑

w=0

(
S1 + S2

)
, (5.14)

where

S1 =
∑

c≤j<c+d
r≡jd−1 mod (c+d)

max

{
θ

(
(c+ d)m− 1

(c+ d)w + r

)
− θ

(
dm

dw + 1 + bdr/(c+ d)c
)
, 0

}
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and

S2 =
∑

(c+d)/2<j<c
r≡jd−1 mod (c+d)

max

{
θ

(
(c+ d)m− 1

(c+ d)w + r

)
− θ

(
(c− d)m− 1

(c− d)w + 1 +
⌊

(c−d)r
c+d

⌋
)
, 0

}
.

Here, θ(x) =
∑

p≤x log p. Also, we have

log G(c, d, dm− 1) ≥
W∑

w=0

(
S ′

1 + S ′
2

)
, (5.15)

where

S ′
1 =

∑
c<j<c+d

r≡jd−1 mod (c+d)

max

{
θ

(
(c+ d)m− 2

(c+ d)w + r

)
− θ

(
dm− 1

dw + 1 + bdr/(c+ d)c
)
, 0

}

and

S ′
2 =

∑
(c+d)/2<j≤c

r≡jd−1 mod (c+d)

max

{
θ

(
(c+ d)m− 2

(c+ d)w + r

)
− θ

(
(c− d)m

(c− d)w + 1 +
⌊ (c−d)r

c+d

⌋
)
, 0

}
.

It is not the case that all of the maxima above are needed, but the appearance
of the maxima clarifies our approach. To estimate an expression of the form
θ(x) − θ(y) appearing above, we combine a lower bound for θ(x) with an
upper bound for θ(y). The resulting lower bound for θ(x) − θ(y) may be
negative, and in this case we can appeal to max{θ(x) − θ(y), 0} ≥ 0.

For Theorem 2.2, where we do not require explicit constants, it suffices
to note that, asymptotically, θ(x) ∼ x whereby we may conclude from (5.14)
(recalling the definition of f(c, d, r) from the Introduction) that

lim inf
m→∞

1

dm
log G(c, d, dm)

is bounded below by

1

d

∑
(c+d)/2<j<c+d

r=jd−1 mod (c+d)

∞∑
w=0

(
1

w + r/(c+ d)
− 1

w + f(c, d, r)

)
.
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Arguing similarly for G(c, d, dm− 1) and noting that

1

d

(
1 +

⌊
dr

c+ d

⌋)
=

1

c− d

(
1 +

⌊
(c− d)r

c+ d

⌋)
= 1

in case j = c (whence r = c+d−1), we deduce inequality (5.1) upon applying
the identity

Ψ

(
f(c, d, r)

)
− Ψ

(
r

c+ d

)
=

∞∑
w=0

(
1

w + r/(c+ d)
− 1

w + f(c, d, r)

)
.

We now turn our attention to the proof of Proposition 5.1. We will
appeal to inequalities for θ(x) due to Rosser and Schoenfeld [14], Schoenfeld
[15], Ramaré and Rumely [12] and the first author [3]. The following is a
consequence of Theorems 1 and 2 from [12], and of the second table in Section
5 from [3]; we also add the bound θ(x) < x for 0 < x ≤ 1011 of Rosser and
Schoenfeld mentioned above.

Lemma 5.4. For 1 ≤ x ≤ 1011, we have

x− 2.072
√
x < θ(x) < x.

Furthermore, for x ≥ 108, we have

|θ(x) − x| ≤ 0.000213x.

Finally, if x ≥ x0 then

θ(x) > x

(
1 − 1

β log x

)

for β and x0 as follows:

β x0 β x0 β x0

6 8623 3 1429 7/5 149
5 5407 5/2 809 9/7 101

9/2 3527 7/3 599 7/6 67
4 3301 2 563 8/7 59

7/2 2657 9/5 347 1 41
10/3 1973 5/3 227 4/5 2
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This lemma allows us to compute lower and upper bounds for the values
of θ(x) appearing in the sums in (5.14) and (5.15) (depending on the sizes of
the arguments). Observe that for m ≥ 1010, one can take β = 6 in the lower
bound for θ(x) above for each argument given in the summands.

For fixed c and d, the proof of Proposition 5.1 splits into four cases,
depending on the size of m (where n = dm or dm − 1). For small m (say
for m ≤ 1000), we explicitly compute G(c, d, n) for each of n = dm or dm−
1. Then for “medium-sized” m, typically 1000 < m ≤ 50000, we apply
inequalities (5.14) and (5.15) directly. The benefit of appealing to these
bounds is that the intervals under consideration do not change greatly as
the value of m is slightly increased and hence if we are able to show, for
example, that G(c, d, dm) exceeds L1(c/d)

dm by a reasonable margin, then
we can deduce inequalities of the shape

G(c, d, d(m+ i)) ≥ L1(c/d)
d(m+i)

for 0 ≤ i ≤ m0, where m0 is a computable positive constant. This compu-
tational approach is discussed in greater detail in the first author’s papers
[3] and [1] (in particular, see Section 7 of the latter), where it is termed
“boot-strapping” (also, see the next section where a similar approach is used
on k). In practice, it works well to reduce these intermediate calculations
to a workable level. For larger values of m (usually m ≥ 50000), we turn
to Lemma 5.4 (as mentioned earlier, it is convenient to consider m < 1010

and m ≥ 1010 separately). In all cases except (c, d) = (4, 3) and (25, 17),
this leads immediately to Proposition 5.1. If (c, d) = (4, 3), we apply our
boot-strapping for 1000 ≤ m < 210000 and Lemma 5.4 for m ≥ 210000.
For (c, d) = (25, 17), we calculate G(c, d, n) explicitly for m ≤ 2000, count
primes in the intervals given by (5.14) and (5.15) for 2000 < m < 3.7 × 106,
and appeal to Lemma 5.4 for m ≥ 3.7 × 106. The computation, carried out
in Pari GP on a number of Sun workstations, was moderately lengthy. Full
details are available from the authors on request.

6 Computations for small integers

The final ingredient we require before we proceed with the proofs of our main
results is a computational method for handling “small” values of pkx1 and
qlx2. In this section, we will describe how we employ such a method to prove
the following:
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Proposition 6.1. For primes p and q with 2 ≤ p < q ≤ 13, suppose k, l, x1

and x2 are nonnegative integers for which∣∣pkx1 − qlx2

∣∣ ≤ 100, x1x2 ≤ min{pkx1, q
lx2}1/3,

and
10000 < pkx1 < exp

(
106
)
.

Then (pkx1, q
lx2) or (qlx2, p

kx1) must be among

(13182, 13122), (14641, 14580), (16807, 16767), (19773, 19683), (31250, 31213),

(32805, 32768), (65610, 65536), (65625, 65536), (1771561, 1771470).

If the condition x1x2 ≤ min{pkx1, q
lx2}1/3 is replaced by

max{x1, x2} ≤ min{pkx1, q
lx2}1/3,

then (pkx1, q
lx2) or (qlx2, p

kx1) belongs to a set containing 93 pairs. The
following table indicates, for each choice of primes p and q, the largest value
of pkx1 in such a pair and the corresponding value of ∆ = pkx1 − qlx2.

p q max pkx1 ∆ p q max pkx1 ∆
2 3 65536 −74 3 13 220548015 −27
2 5 13828096 −29 5 7 134375 −81
2 7 39059456 −12 5 11 10625 −23
2 11 60555264 88 5 13 2693359375 −47
2 13 208666624 −42 7 11 453789 −82
3 5 5078214 89 7 13 76832 −63
3 7 1495908 85 11 13 1742279 58
3 11 1771470 −91

Furthermore, for a fixed p and q as above, among all pairs (pkx1, q
lx2) satis-

fying the conditions imposed, the maximal value of k and the maximal value
of l occur for the pair (pkx1, p

kx1 −∆) indicated by the table with the excep-
tion of the prime pair (p, q) = (5, 7) where 6 is the maximal such k occurring,
for example, with the pair (31250, 31213). Also, if |∆| ≤ 6, then (pkx1, q

lx2)
or (qlx2, p

kx1) corresponds to one of the pairs

(13125, 13122), (13312, 13310), (21875, 21870), (26624, 26620),

(30618, 30613), (69632, 69629), (688128, 688127),

(1376256, 1376254), (9764867, 9764864), (19529734, 19529728).
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Theorem 2.4 allows us to obtain that (2.11) has no solutions for y < xλ−ε

provided that x ≥ x0, where

x = min{pkx1, q
lx2} and y = max{x1, x2}.

The condition that x ≥ x0 can be eliminated and replaced by a list of solu-
tions to (2.11) after an appropriate computation. In particular, we are able
to deduce Theorem 1.1 based on such computations. Given the size of the
x0 we encounter, the computations to find all solutions to (2.11) with x < x0

require some care. We describe in this section the approach that we use to
obtain these solutions.

For our purposes, we fix z = 10000, x0 = e10
6

and λ = 1/3, but we
discuss the approach in some generality as it can easily be modified for other
situations where z > 0, x0 > 0 and λ ∈ (0, 1). Notably, some care is needed
for λ > 1/3. Fix D > 0 and primes p and q as before (renaming if necessary
to account for the sign of D). We describe how we can obtain all pairs
(pkx1, q

lx2), with k, l, x1 and x2 positive integers, for which

pkx1 − qlx2 = D (6.1)

where
z < x = qlx2 ≤ x0 and y = max{x1, x2} ≤ xλ. (6.2)

Note that D > 0 and (6.1) imply qlx2 = min{pkx1, q
lx2}. The choice z =

10000 is used for convenience and chosen so that the solutions to (6.1) with
x ≤ z and y ≤ xλ, can be determined by a direct computation.

From the fact that y ≤ xλ, we have the inequality x1 ≤
(
pkx1

)λ
whereby

x1 ≤
(
pk
)λ/(1−λ)

. (6.3)

Hence, (
pk
)1/(1−λ)

= pk
(
pk
)λ/(1−λ) ≥ pkx1 ≥ x > z.

We deduce a lower bound on k from the above and an upper bound on k
from (6.2), namely

⌈
log
(
z1−λ

)
log p

⌉
≤ k ≤

⌊
log(x0 +D)

log p

⌋
. (6.4)
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We will consider an interval of k simultaneously. Specifically, we consider
k ∈ [K,K +K ′) where

⌈
log
(
z1−λ

)
log p

⌉
≤ K < K +K ′ ≤

⌊
log(x0 +D)

log p

⌋
+ 1.

For a given K between the upper and lower limits above, we will define a
positive integer K ′ in such a way that we dispose of the cases with k ∈
[K,K +K ′) all at once. Our main interest in considering an interval of k is
to speed up computations for large k. With this in mind, we consider K ′ = 1
for K < 200 and will consider larger K ′ only in the case that K ≥ 200.

An argument similar to the above gives

x2 ≤
(
ql
)λ/(1−λ)

and

⌈
log
(
z1−λ

)
log q

⌉
≤ l ≤

⌊
log x0

log q

⌋
.

We will also want a second lower bound on l obtained in an analogous manner.
Observe that(

ql
)1/(1−λ)

= ql(ql
)λ/(1−λ) ≥ qlx2 = pkx1 −D ≥ max

{
q, pk −D

}
.

For k ∈ [K,K +K ′), we deduce

l ≥
⌈

(1 − λ) log max
{
q, pK −D

}
log q

⌉
,

whence

l ≥ B = max

{⌈
(1 − λ) log max

{
q, pK −D

}
log q

⌉
,

⌈
log
(
z1−λ

)
log q

⌉}
.

We explain now how the above lower bound on l is enough to allow us
to make efficient computations for obtaining the solutions to (6.1) and (6.2)
for the main applications in this paper. As k ∈ [K,K + K ′), there is a
nonnegative integer u < K ′ such that k = K + u. From (6.1) and l ≥ B, we
deduce

pux1 ≡ Dp−K (mod qB). (6.5)

For fixed K, we compute B and the least positive integer solution to x′1 ≡
Dp−K (mod qB). Thus, pux1 ≡ x′1 (mod qB). Recall that K ′ = 1 if K <
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200. For these K, we have u = 0. As p, k = K and D are known, we can
check directly if x1 = x′1 provides us with a solution to (6.1) and (6.2).

Still with K < 200, we justify next that there are no solutions to (6.1)
and (6.2) with x1 > x′1. Here, k = K. A solution to (6.1) and (6.2), with
x1 > x′1, necessarily satisfies x1 ≥ x′1 + qB ≥ qB. By the definition of B, we
have

qB ≥ (pk −D)1−λ,

and hence, via (6.3),

(pk −D)1−λ ≤ (pk
)λ/(1−λ)

. (6.6)

Observe that the maximum value of λ/(1 − λ)2 for λ ∈ [0, 1/3] is 3/4. As
D ≤ 100, one checks that (6.6) implies that pk < 141. For p as in Proposition
6.1, we deduce pk ≤ 128. As z = 104, we obtain from 128x1 ≥ pkx1 > z that

x2
1 > 128 ≥ pk =⇒ x3

1 > pkx1 =⇒ x1 >
(
pkx1

)1/3
> x1/3.

Since λ = 1/3, we see that (6.2) cannot hold.
For K ≥ 200, we verify that there are no solutions to (6.1) and (6.2) for

all k ∈ [K,K+K ′) as follows. Here, we have k = K+u with u ∈ [0, K ′) and
pux1 ≡ x′1 (mod qB). Recall that x′1 is the minimal positive integer for which
this congruence holds. It follows that x1 ≥ x′1/p

u; otherwise, pux1 would be
too small for the congruence to hold. Given (6.3), we will be done justifying
there are no solutions to (6.1) and (6.2) for k ∈ [K,K +K ′) if we can show

x′1
pu

>
(
pK+u

)λ/(1−λ)
for u ∈ [0, K ′).

For λ = 1/3, the exponent λ/(1− λ) is 1/2. It therefore suffices to establish
that

x′1 ≥ pK′(
pK+K′)1/2

. (6.7)

Observe that the definition of x′1 implies that we can “expect” that x′1 is on
the order of qB and that this is on the order of p(1−λ)K = p2K/3 or more. It
follows that we should be able to take K ′ to be about K/9. As x′1 and K are
known quantities in (6.7), to assure that (6.7) holds, we set

K ′ =

⌊
1

3

(
2 log x′1
log p

−K

)⌋
.

24



In our computations, x′1 is typically large enough that even a direct compu-
tation of K ′ via this simple formula takes more time than is feasible. We
alleviated this problem by again taking advantage of the fact that x′1 should
be near qB. Beginning with bB log q/ log pc and decrementing by 1 as needed,
one very quickly comes to an integer w for which pw > x′1 and this w can be
used in place of log x′1/ log p in the formula for K ′. Although we expect K ′

to be about K/9, it is possible that K ′ ≤ 0. The idea then is to obtain K ′

as above and check that K ′ > 0. If so, then we can eliminate the possibility
that (6.1) and (6.2) hold for all k ∈ [K,K +K ′) simultaneously. Our checks
showed in fact that K ′ > 0 in every case. In other words, as we progressed
through the K ≥ 200 eliminating intervals [K,K +K ′) as we proceeded, the
value of K ′ remained positive.

The above discussion illuminates the main parts of our algorithm for
verifying Proposition 6.1. Given the above, the computations were straight
forward and done with Maple 9.5.

7 Proofs of Theorem 2.2 and Theorem 2.4

We give the proof of Theorem 2.4. The proof of Theorem 2.2 proceeds along
identical lines, only with L1(s) replaced by L(s)1−ε′ for suitably small ε′, and
Ω3,Ω4 and λ3 replaced by Ω1,Ω2 and λ1, respectively.

Let us begin by supposing that p, q, k, l, x1, x2 and D satisfy (2.10) and
(2.11). We assume throughout, as we may, that x1x2 is coprime to pq and,
renaming if necessary, suppose that

pkx1 > qlx2.

For the duration of this proof, we employ the shorthand

x = min{pkx1, q
lx2} = qlx2 and y = max{x1, x2}.

Recall that s = c/d where c and d are relatively prime positive integers. Set

m1 =

⌊
k

k0c

⌋
, m2 =

⌊
l

l0c

⌋
,

α = k − k0cm1 ∈ [0, k0c) and β = l − l0cm2 ∈ [0, l0c). (7.1)

Then we may rewrite (2.11) in the form

0 < pk0cm1x′1 − ql0cm2x′2 ≤ D
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where
x′1 = pαx1 and x′2 = qβx2.

Choosing m = min{m1,m2}, we have

0 < pk0cmx′′1 − ql0cmx′′2 ≤ D, (7.2)

where either x′′1 = x′1 or x′′2 = x′2.
Recall that A = C = n and B = cm − n − 1, where n = dm or dm − 1.

The definition of G(c, d, n) in (2.7) then corresponds to the greatest common
divisor of the coefficients of Qn(z) given in Lemma 3.1. Clearly, G(c, d, n)−1 ·
Qn(z) is a polynomial with integer coefficients. Also, from Lemma 3.1, the
degree of Pn(z) is n. On the right-hand side of (3.4), the coefficient of zj

is 0 for each j ≤ n. We deduce then that G(c, d, n)−1 · Pn(z) and, hence,
G(c, d, n)−1 · En(z) are also polynomials with integer coefficients.

Fixing once and for all z = z0 = D0/(ap
k0) and substituting this into

(3.4), we find that (
apk0

)cm
P − (bql0

)cm
Q = E (7.3)

where

P =
1

G(c, d, n)
(apk0)nPn (z0) , Q =

1

G(c, d, n)
(apk0)nQn (z0)

and

E =
1

G(c, d, n)
(apk0)cm−n−1D2n+1

0 En (z0) .

Multiplying (7.2) by bcmQ and (7.3) by x′′2, we deduce that

pk0cm
∣∣bcmQx′′1 − acmPx′′2

∣∣ ≤ bcmD|Q| + |E|x′′2.
From Lemma 3.2, it is straightforward to show that, for at least one of n = dm
and dm− 1, we have bcmQx′′1 6= acmPx′′2. If not, then

bcmQdm(z0)x
′′
1 = acmPdm(z0)x

′′
2 and bcmQdm−1(z0)x

′′
1 = acmPdm−1(z0)x

′′
2.

Multiplying the first of these equations by Pdm−1(z0) and the second by
Pdm(z0), we find that

Qdm(z0)Pdm−1(z0) −Qdm−1(z0)Pdm(z0) = 0,
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contradicting Lemma 3.2, since z0 6= 0. Fixing n = dm − δ, with δ ∈ {0, 1}
and bcmQx′′1 6= acmPx′′2, we deduce that

pk0cm ≤ bcmD|Q| + |E|x′′2. (7.4)

The idea is to show that each of |Q| and |E| is not too large, whereby we
may employ (7.4) to obtain a lower bound on x′′2 (and hence on y).

Recall that we aim to show that y ≥ xλ3−ε. We may therefore suppose
y < xλ3 . With this restriction, we begin by demonstrating that

dm > max

{
log (κ1)

log Ω3

,
(1 + λ3) log

(Mc
2 κ

−1
2

)
ε log (Ms

2 Ω4)
,
(1 + λ3) log(κ2)

ε log (Ms
2 Ω4)

, dm0

}
. (7.5)

Since
y = max{p−αx′1, q

−βx′2} < xλ3

and either x′′1 = x′1 or x′′2 = x′2, it follows that

min{p−αx′′1, q
−βx′′2} < xλ3 .

Thus, either
x = ql0cmx′′2 = ql0cmqβq−βx′′2 < ql0cmql0cxλ3

so that
ql0cm > x1−λ3 q−l0c,

or, if x′′1 = x′1, arguing similarly,

pk0cm > x1−λ3 p−k0c.

These are equivalent to

m >
(1 − λ3) log x− log

(
ql0c
)

log (ql0c)

and

m >
(1 − λ3) log x− log

(
pk0c
)

log (pk0c)
,

respectively. The condition x ≥ x0 is equivalent to

(1 − λ3) log x ≥ (M + 1) log
(Mc

2

)
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and hence we have that m > M , whereby inequality (7.5) follows immedi-
ately.

Applying Lemma 4.1 and inequality (2.8), yields the upper bound

|Q| < (apk0)dm−δC1,δQ(s, z0)
dm

L1(s)dm
≤ κ1

2D

(
apk0Q(s, z0)

L1(s)

)dm

.

Since (7.5) implies that κ1 < Ωdm
3 , we may conclude from (7.4) that

x′′2 >
pk0cm

2|E| .

Since Lemma 4.1 leads to the inequality

|E| < (apk0)(c−d)m+δ−1D2dm+1−2δ
0 C2,δE(s, z0)

dm

L1(s)dm
,

it therefore follows that

x′′2 > κ2

(
pk0 L1(s)

as−1D2
0E(s, z0)

)dm

= κ2Ω
dm
4

(
pk0

M1

)cm

≥ κ2Ω
dm
4 . (7.6)

Since also

x′′1 >
(
ql0

pk0

)cm

x′′2 > κ2Ω
dm
4

(
ql0

M1

)cm

≥ κ2Ω
dm
4 , (7.7)

we may conclude that

y >M−c
2 min{x′′1, x′′2} >M−c

2 κ2 Ωdm
4 .

From
x = ql0cmx′′2 < pk0cmx′′1,

we may thereby write

log y

log x
≥ − log(Mc

2) + min{log x′′1, log x′′2}
dm log(Ms

2) + min{log x′′1, log x′′2}
.

If u and v are positive numbers, then the function (w− u)/(w+ v) increases
with w. It follows therefore that

log y

log x
≥ − log(Mc

2) + log
(
κ2Ω

dm
4

)
dm log(Ms

2) + log
(
κ2Ωdm

4

)
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and hence y ≥ xθ, where

θ =
log(Ω4) − log

(Mc
2 κ

−1
2

)
/(dm)

log (Ms
2 Ω4) + log(κ2)/(dm)

.

From (7.5), we have

max

{
1

dm
log
(Mc

2 κ
−1
2

)
,

1

dm
log(κ2)

}
<

ε

1 + λ3

· log (Ms
2 Ω4) .

Using also λ3 = log(Ω4)/ log(Ms
2 Ω4), we deduce that

θ >
λ3 − ε

1 + λ3

1 +
ε

1 + λ3

> λ3 − ε.

This completes the proof of Theorem 2.4. As noted previously, Theorem 2.2
follows with minor modifications.

8 Proofs of Corollary 2.3 and Theorem 2.1

To prove Corollary 2.3, we apply Theorem 2.2, choosing parameters in the
following fashion :

{p, q} a pk0 b ql0 s {p, q} a pk0 b ql0 s
{2, 3} 1 9 1 8 1.44829 {3, 11} 1 243 2 121 1.35497
{2, 5} 1 128 1 125 1.22744 {3, 13} 1 2197 1 2187 1.15161
{2, 7} 1 8 1 7 1.46706 {5, 7} 2 25 1 49 1.49683
{2, 11} 1 128 1 121 1.22806 {5, 11} 1 125 1 121 1.22853
{2, 13} 1 512 3 169 1.40712 {5, 13} 2 13 1 25 1.62743
{3, 5} 1 27 1 25 1.31653 {7, 13} 1 343 2 169 1.33134
{3, 7} 5 49 1 243 1.64610 {11, 13} 1 13 1 11 1.40106

Observe that in applying Theorem 2.2, we take c and d to be relatively prime
integers for which s = c/d in the above table. As far as we are aware, these
choices are essentially optimal to maximize the measures λ2(p, q) in Corollary
2.3. We know of no values of a, b, k0, l0 and s which leads to a nontrivial result
in case, for example, (p, q) = (7, 11).
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To prove Theorem 2.1, we utilize the same parameters a, b, k0 and l0, and
take D = 100. We further choose s = c/d and ε as in the following table. In
each case, we have the inequality

λ3(p, q) > λ(p, q) + ε

and are able to conclude that (2.2) holds, at least provided x = min{pkx1, q
lx2}

is suitably large, say x ≥ x0 for the stated values of x0.

{p, q} c d ε log(x0) {p, q} c d ε log(x0)
{2, 3} 25 17 0.000099 695411 {3, 11} 7 5 0.0006 83857
{2, 5} 5 4 0.0003 96124 {3, 13} 7 6 0.001 63244
{2, 7} 3 2 0.0002 37549 {5, 7} 8 5 0.0007 53104
{2, 11} 5 4 0.0002 116863 {5, 11} 5 4 0.0004 67508
{2, 13} 3 2 0.0005 35516 {5, 13} 5 3 0.0008 22453
{3, 5} 4 3 0.00004 371785 {7, 13} 7 5 0.0007 60660
{3, 7} 5 3 0.0009 30156 {11, 13} 3 2 0.00006 116253

Since log(x0) < 7 × 105 in each case, Theorem 2.1 is thus a consequence of
Proposition 6.1 and direct computations for small values of pkx1.

9 The proof of Theorem 1.1

The argument of Ecklund, Eggleton, Erdős and Selfridge [5] to deduce an
analogue of Theorem 1.1 for k 6∈ {3, 5, 7} depends essentially on the fact that,
for values of k > 2 outside this exceptional set, we always have k ≥ 2π(k).
Ignoring the contribution to V of terms of the shape n−ip, where ip is chosen
(not necessarily uniquely) so that p divides n − ip maximally, we are led to
the conclusion that

V >
(n− k + 1)k−π(k)

k!
,

which, for fixed k 6∈ {3, 5, 7} and suitably large n leads to the desired con-
clusion (for k ∈ {4, 6, 8}, one needs to argue somewhat more carefully). For
k ∈ {3, 5, 7}, however, k < 2π(k) and hence we cannot estimate trivially
the contributions to V coming from the terms n − ip. Indeed, our proof of
Theorem 1.1 requires an appeal to Theorem 2.1 with

(p, q) ∈ {(2, 3), (2, 5), (3, 5), (5, 7)}.
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We begin by treating the case k = 5. Let us suppose that there exists an
integer n ≥ 10 and nonnegative integers α, β, δ and V such that(

n

5

)
= 2α3β5δ · V with gcd(V, 30) = 1

and

V 2 <

(
n

5

)
. (9.1)

We will suppose further that n > 10004; a direct computation shows that
otherwise n ∈ {10, 12, 28}. We claim that there exist distinct integers i, j, k ∈
{0, 1, 2, 3, 4} such that

n ≡ i (mod 8), n ≡ j (mod 9) and n ≡ k (mod 5). (9.2)

If not, then one of the following holds :

(i) ν2(n(n− 1)(n− 2)(n− 3)(n− 4)) ≤ 4,

(ii) ν3(n(n− 1)(n− 2)(n− 3)(n− 4)) ≤ 2,

or there exists an i ∈ {0, 1, 2, 3, 4} such that one of

(iii) n ≡ i (mod 72), n ≡ i (mod 40) or n ≡ i (mod 45).

Here, by νp(m) we mean, for a positive integer m, the largest integer t such
that pt divides m. In cases (i) and (ii), arguing crudely, we have that

V ≥ (n− 2)(n− 3)(n− 4)

36

which, with (9.1) contradicts n > 10004. In case (iii), we similarly have

V ≥ (n− 2)(n− 3)(n− 4)

24
,

again contradicting our lower bound upon n.
We may therefore assume the existence of distinct i, j, k satisfying (9.2)

and hence from

n(n− 1)(n− 2)(n− 3)(n− 4) = 2α+33β+15δ+1V,
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write n− i = 2αni, n− j = 3βnj and n− k = 5δ+1nk, for integers ni, nj and
nk. It follows that

V ≥ ninjnk(n− 3)(n− 4)/24. (9.3)

Since

max
{∣∣2αni − 3βnj

∣∣ , ∣∣2αni − 5δ+1nk

∣∣ , ∣∣3βnj − 5δ+1nk

∣∣} ≤ 4,

applying Theorem 2.1, we have that

max{ni, nj} > (n− 4)0.285, max{ni, nk} > (n− 4)0.25

and

max{nj, nk} > (n− 4)0.216, whence ninjnk > (n− 4)0.501.

Combining this with (9.3),

V >
(n− 3)(n− 4)1.501

24
,

which, with (9.1), implies the inequality n < 10341. Proposition 6.1 together
with a simple computation based on the final sentence of this result implies
a contradiction.

The case k = 7 is similar. We consider the equation(
n

7

)
= 2α3β5δ7γ · V with gcd(V, 210) = 1,

where now we suppose that

V 2 <

(
n

7

)
. (9.4)

As before, a routine computation ensures that n ≤ 10006 implies that n ∈
{21, 30, 54}. Assuming, then, that n > 10006, it is easy to show, analogous
to the case k = 5, that necessarily there are distinct integers 0 ≤ i, j, k, l ≤ 6
such that

n ≡ i (mod 8), n ≡ j (mod 9), n ≡ k (mod 25) and n ≡ l (mod 7). (9.5)

Thus, writing n− i = 2αni, n− j = 3βnj, n− k = 5δnk and n− l = 7γ+1nl,
we have

max
{∣∣2αni − 3βnj

∣∣ , ∣∣5βnk − 7γ+1nl

∣∣} ≤ 6
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and
V ≥ ninjnknl(n− 4)(n− 5)(n− 6)/720. (9.6)

Applying Theorem 2.1, we obtain

ninjnknl > (n− 6)0.512. (9.7)

In fact, the only pair listed in that theorem with components greater than
10000 and difference ≤ 6 is (30618, 30613), and 30613 has no prime divisor
≤ 7 so this pair needn’t be considered. Combining (9.4), (9.6) and (9.7) with
n < 10168 results in a contradiction to Proposition 6.1. This completes the
proof of Theorem 1.1.

10 The proof of Theorem 1.2

Theorem 1.2 is an easy consequence of the following more general result.

Theorem 10.1. Let x and D be positive integers with D ≤ 100 and D
coprime to 6, and suppose that k, l, and y are nonnegative integers, with y
coprime to 6, satisfying

x2 +Dx = 2k3ly.

Then one of the following holds:

(i) y ≥ x0.285

(ii) y = 1 and one of x and x + D is of the form 2k with k ≤ 8 and the
other is of the form 3l with l ≤ 5

(iii) (x,D) is either (640, 89) or (32768, 37).

The proof is almost an immediate consequence of Theorem 2.1. Since D
is coprime to 6, at most one of x and x + D is divisible by 2 and at most
one is divisible by 3. We deduce that y ≥ x unless one of x and x +D is of
the form 2kx1 and the other is of the form 3lx2 where x1 and x2 are positive
integers coprime to 6. Thus,

|2kx1 − 3lx2| ≤ 100 and y = x1x2 ≥ max{x1, x2}.

If x > 1000, then Theorem 2.1 implies that either (2kx1, 3
lx2) or (3lx2, 2

kx1)
belongs to a set of 40 elements listed explicitly in the theorem. A check
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through these 40 elements and a direct computation of the x ≤ 1000 estab-
lishes the theorem.

As a final note, it is perhaps worth mentioning that the restriction here
to values of D coprime to 6 is essentially for simplicity and can be removed
(with a slight reduction in the exponent 0.285) after a short computation,
noting two more exceptional pairs with x > 1000, namely (x,D) = (1458, 78)
and (65536, 74).
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